Search results for: finite difference modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8146

Search results for: finite difference modelling

7366 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation

Authors: P. D. Pastuszak

Abstract:

The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.

Keywords: active thermography, composite, curved structures, defects

Procedia PDF Downloads 307
7365 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines

Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović

Abstract:

This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.  

Keywords: wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emmisions, finite element analysis

Procedia PDF Downloads 167
7364 Analysis of Beams with Web Opening Subject to Vertical Loads

Authors: P. Chantarawitoon, H. Askarinejad

Abstract:

The steel beams with web opening including the cellular and castellated I-beams are fabricated from a solid web I-beam through a double cutting method to a specific shape and size along the beam. The two halves of the beams are then welded together, increasing the overall depth of the web section. In this paper, the deflection of the cellular and castellated beams subject to uniform vertical loads are investigated using Finite Element Autodesk simulation package. The structural response of the beams with web opening are compared with regular solid beams. Additionally, parametric studies are carried out to study the influence of the geometric properties of a cellular beam to its structural responses.

Keywords: beams with web opening, cellular and castellated beams, finite element analysis, vertical deflection

Procedia PDF Downloads 230
7363 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar

Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien

Abstract:

The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.

Keywords: range profile, difference operator method, window-based method, automatic target recognition

Procedia PDF Downloads 113
7362 Optimization of Pressure in Deep Drawing Process

Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi

Abstract:

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.

Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling

Procedia PDF Downloads 440
7361 Modeling of Flows in Porous Materials under Pressure Difference

Authors: Nicoleta O. Tanase, Ciprian S. Mateescu

Abstract:

This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles.

Keywords: CFD, porous media, permeability, flow spectrum

Procedia PDF Downloads 43
7360 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems

Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi

Abstract:

The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.

Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm

Procedia PDF Downloads 159
7359 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 379
7358 Two-Dimensional Modeling of Seasonal Freeze and Thaw in an Idealized River Bank

Authors: Jiajia Pan, Hung Tao Shen

Abstract:

Freeze and thaw occurs seasonally in river banks in northern countries. Little is known on how the riverbank soil temperature responds to air temperature changes and how freeze and thaw develops in a river bank seasonally. This study presents a two-dimensional heat conduction model for numerical investigations of seasonal freeze and thaw processes in an idealized river bank. The model uses the finite difference method and it is convenient for applications. The model is validated with an analytical solution and a field case with soil temperature distributions. It is then applied to the idealized river bank in terms of partially and fully saturated conditions with or without ice cover influence. Simulated results illustrate the response processes of the river bank to seasonal air temperature variations. It promotes the understanding of freeze and thaw processes in river banks and prepares for further investigation of frost and thaw impacts on riverbank stability.

Keywords: freeze and thaw, riverbanks, 2D model, heat conduction

Procedia PDF Downloads 118
7357 Stress Analysis of a Pressurizer in a Pressurized Water Reactor Using Finite Element Method

Authors: Tanvir Hasan, Minhaz Uddin, Anwar Sadat Anik

Abstract:

A pressurizer is a safety-related reactor component that maintains the reactor operating pressure to guarantee safety. Its structure is usually made of high thermal and pressure resistive material. The mechanical structure of these components should be maintained in all working settings, including transient to severe accidents conditions. The goal of this study is to examine the structural integrity and stress of the pressurizer in order to ensure its design integrity towards transient situations. For this, the finite element method (FEM) was used to analyze the mechanical stress on pressurizer components in this research. ANSYS MECHANICAL tool was used to analyze a 3D model of the pressurizer. The material for the body and safety relief nozzle is selected as low alloy steel i.e., SA-508 Gr.3 Cl.2. The model was put into ANSYS WORKBENCH and run under the boundary conditions of (internal Pressure, -17.2 MPa, inside radius, -1348mm, the thickness of the shell, -127mm, and the ratio of the outside radius to an inside radius, - 1.059). The theoretical calculation was done using the formulas and then the results were compared with the simulated results. When stimulated at design conditions, the findings revealed that the pressurizer stress analysis completely fulfilled the ASME standards.

Keywords: pressurizer, stress analysis, finite element method, nuclear reactor

Procedia PDF Downloads 145
7356 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit

Abstract:

We study the existence of positive solutions to the three points difference summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

Keywords: positive solution, boundary value problem, fixed point theorem, cone

Procedia PDF Downloads 425
7355 Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling

Authors: Seyyed Mohammad Hasheminia, Heoung Jae Chun, Jong Chan Park, Hong Suk Chang

Abstract:

Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive.

Keywords: composite joints, composite materials, hybrid joints, single-lap joint

Procedia PDF Downloads 389
7354 Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes

Authors: A. Benmerkhi, A. Bounouioua, M. Bouchemat, T. Bouchemat

Abstract:

In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 106 is achieved at the resonant mode located at λ = 1.4970 µm.

Keywords: photonic crystal, microcavity, filling ratio, elliptical holes

Procedia PDF Downloads 120
7353 Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element

Authors: Mojtaba Ahmadabadi, Akbar Masoudi, Morteza Rezai

Abstract:

In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution.

Keywords: retaining wall, fem, soil and wall interaction, angle of internal friction of the soil, wall displacement

Procedia PDF Downloads 377
7352 Modelling the Effect of Distancing and Wearing of Face Masks on Transmission of COVID-19 Infection Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

The COVID-19 is an infection caused by coronavirus, which has been designated as a pandemic in the world. In this paper, we proposed a model to study the effect of distancing and wearing masks on the transmission of COVID-19 infection dynamics. The invariant region of the model is established. The COVID-19 free equilibrium and the reproduction number of the model were obtained. The local and global stability of the model is determined using the linearization technique method and Lyapunov method. It was found that COVID-19 free equilibrium state is locally asymptotically stable in feasible region Ω if R₀ < 1 and globally asymptomatically stable if R₀ < 1, otherwise unstable if R₀ > 1. More so, numerical analysis and simulations of the dynamics of the COVID-19 infection are presented.

Keywords: distancing, reproduction number, wearing of mask, local and global stability, modelling, transmission

Procedia PDF Downloads 126
7351 A Horn Antenna Loaded with SIW FSS of Crossed Dipoles

Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam

Abstract:

In this article analysis and investigation of the effect of loading a horn antenna with substrate integrated waveguide frequency selective surface (SIW FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524mm and loss tangent 0.004. This structure is called a filtering antenna (filtenna). Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite SIW FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.3 GHz (0.955–0.985 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.

Keywords: antenna, filtenna, frequency-selective surface (FSS), horn antennas

Procedia PDF Downloads 271
7350 Business Intelligence for Profiling of Telecommunication Customer

Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro

Abstract:

Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.

Keywords: business intelligence, customer segmentation, data warehouse, data mining

Procedia PDF Downloads 461
7349 Liquefaction Susceptibility of Tailing Storage Facility-Comparison of National Centre for Earthquake Engineering Research and Finite Element Methods

Authors: Mehdi Ghatei, Masoomeh Lorestani

Abstract:

Upstream Tailings Storage Facilities (TSFs) may experience slope instabilities due to soil liquefaction, especially in regions known to be seismically active. In this study, liquefaction susceptibility of an upstream-raised TSF in Western Australia was assessed using two different approaches. The first approach assessed liquefaction susceptibility using Cone Penetration Tests with pore pressure measurement (CPTu) as described by the National Centre for Earthquake Engineering Research (NCEER). This assessment was based on the four CPTu tests that were conducted on the perimeter embankment of the TSF. The second approach used the Finite Element (FE) method with application of an equivalent linear model to predict the undrained cyclic behavior, the pore water pressure and the liquefaction of the materials. The tailings parameters were estimated from the CPTu profiles and from the laboratory tests. The cyclic parameters were estimated from the literature where test results of similar material were available. The results showed that there was a good agreement, in the liquefaction susceptibility of the tailings material, between the NCEER and FE methods with equivalent linear model.

Keywords: liquefaction , CPTU, NCEER, finite element method, equivalent linear model

Procedia PDF Downloads 256
7348 Linking Business Process Models and System Models Based on Business Process Modelling

Authors: Faisal A. Aburub

Abstract:

Organizations today need to invest in software in order to run their businesses, and to the organizations’ objectives, the software should be in line with the business process. This research presents an approach for linking process models and system models. Particularly, the new approach aims to synthesize sequence diagram based on role activity diagram (RAD) model. The approach includes four steps namely: Create business process model using RAD, identify computerized activities, identify entities in sequence diagram and identify messages in sequence diagram. The new approach has been validated using the process of student registration in University of Petra as a case study. Further research is required to validate the new approach using different domains.

Keywords: business process modelling, system models, role activity diagrams, sequence diagrams

Procedia PDF Downloads 367
7347 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.

Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity

Procedia PDF Downloads 353
7346 Experimental Modal Analysis of Kursuncular Minaret

Authors: Yunus Dere

Abstract:

Minarets are tower like structures where the call to prayer of Muslims is performed. They have a symbolic meaning and sacred place among Muslims. Being tall and slender, they are prone to damage under earthquakes and strong winds. Kursuncular stone minaret was built around thirty years ago in Konya/TURKEY. Its core and helical stairs are made of reinforced concrete. Its stone spire was damaged during a light earthquake. Its spire is later replaced with a light material covered with lead sheets. In this study, the natural frequencies and mode shapes of Kursuncular minaret is obtained experimentally and analytically. First an ambient vibration test is carried out using a data acquisition system with accelerometers located at four locations along the height of the minaret. The collected vibration data is evaluated by operational modal analysis techniques. For the analytical part of the study, the dimensions of the minaret are accurately measured and a detailed 3D solid finite element model of the minaret is generated. The moduli of elasticity of the stone and concrete are approximated using the compressive strengths obtained by Windsor Pin tests. Finite element modal analysis of the minaret is carried out to get the modal parameters. Experimental and analytical results are then compared and found in good agreement.

Keywords: experimental modal analysis, stone minaret, finite element modal analysis, minarets

Procedia PDF Downloads 308
7345 Economic Analysis of the Impact of Commercial Agricultural Credit Scheme (CACS) on Farmers Income in Nigeria

Authors: Titus Wuyah Yunana

Abstract:

This study analyzed the impact of commercial agricultural credit scheme on income of beneficiary farmers in Kaduna State using the Net farm income and double difference method. A questionnaire was used to source the data from 306 farmers comprising of 153 beneficiaries and 153 non-beneficiaries. The results indicated that the net farm income of the commercial agricultural credit scheme beneficiaries increases from N15,006,352.00 before scheme to N24,862,585.00 after the first and the second phases of the scheme. There was also an increase in the net farm income of the non-beneficiaries from N9, 670,385.40 to N14, 391,469.00 during the scheme. The double difference method analysis indicated a positive mean income difference value between beneficiaries and nonbeneficiaries after the first and the second phases of the scheme. The study recommends expansion in the number of beneficiaries and efficient allocation and utilization of the resources. The government should also introduce more programs that will assist the farmers to increase their productivity, income and the economy as a whole.

Keywords: agriculture, credit scheme, farmers, income, beneficiary

Procedia PDF Downloads 314
7344 Advanced Approach to Analysis the Thin Strip Profile in Cold Rolling of Pair Roll Crossing and Shifting Mill Using an Arbitrary Lagrangian-Eulerian Technique

Authors: Abdulrahman Aljabri, Essam R. I. Mahmoud, Hamad Almohamedi, Zhengyi Jiang

Abstract:

Cold rolled thin strip has received intensive attention through technological and theoretical progress in the rolling process, as well as researchers have focused on its control during rolling as an essential parameter for producing thinner strip with good shape and profile. An advanced approach has been proposed to analysis the thin strip profile in cold rolling of pair roll crossing and shifting mill using Finite Element Analysis (FEA) with an ALE technique. The ALE (Arbitrary Lagrangian-Eulerian) techniques to enable more flexibility of the ALE technique in the adjustment of the finite element mesh, which provides a significant tool for simulating the thin strip under realistic rolling process constraint and provide accurate model results. The FEA can provide theoretical basis for the 3D model of controlling the strip shape and profile in thin strip rolling, and deliver an optimal rolling process parameter, and suggest corrective changes during cold rolling of thin strip.

Keywords: pair roll crossing, work roll shifting, strip shape and profile, finite element modeling

Procedia PDF Downloads 84
7343 High Temperature Creep Analysis for Lower Head of Reactor Pressure Vessel

Authors: Dongchuan Su, Hai Xie, Naibin Jiang

Abstract:

Under severe accident cases, the nuclear reactor core may meltdown inside the lower head of the reactor pressure vessel (RPV). Retaining the melt pool inside the RPV is an important strategy of severe accident management. During this process, the inner wall of the lower head will be heated to high temperature of a thousand centigrade, and the outer wall is immersed in a large amount of cooling water. The material of the lower head will have serious creep damage under the high temperature and the temperature difference, and this produces a great threat to the integrity of the RPV. In this paper, the ANSYS program is employed to build the finite element method (FEM) model of the lower head, the creep phenomena is simulated under the severe accident case, the time dependent strain and stress distribution is obtained, the creep damage of the lower head is investigated, the integrity of the RPV is evaluated and the theoretical basis is provided for the optimized design and safety assessment of the RPV.

Keywords: severe accident, lower head of RPV, creep, FEM

Procedia PDF Downloads 216
7342 Vibration Analysis of a Solar Powered UAV

Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg

Abstract:

This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to mimic the vibration induced by actuators (magnet in coil generators) used to aid in the flight of the UAV. A Fluid-Structure Interaction (FSI) study was performed in order to ascertain pertinent deigns stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is in the range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is in the range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range of 1.04 to 1.23 kPa corresponding to velocity magnitudes in the range of 22 to 66 m/s.

Keywords: ANSYS, finite element, FSI, UAV, vibrations

Procedia PDF Downloads 482
7341 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites

Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar

Abstract:

In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.

Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method

Procedia PDF Downloads 459
7340 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.

Keywords: aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity

Procedia PDF Downloads 299
7339 Structural Element Vibration Analysis with finite element method: Use of Rayleigh Quotient

Authors: Houari Boumediene University of Science, Technology.

Abstract:

"Various methods are typically used in the dynamic analysis of transversely vibrating beams. To achieve this, numerical methods are used to solve the general eigenvalue problem. The equations of equilibrium, which describe the motion, are derived from a fourth-order differential equation. Our study is based on the finite element method, and the results of the investigation are the vibration frequencies obtained using the Jacobi method. Two types of elementary mass matrices are considered: one representing a uniform distribution of mass along the element and the other consisting of concentrated masses located at fixed points whose number increases progressively with equal distances at each evaluation stage. The beams studied have different boundary constraints, representing several classical situations. Comparisons are made for beams where the distributed mass is replaced by n concentrated masses. As expected, the first calculation stage involves determining the lowest number of beam parts that gives a frequency comparable to that obtained from the Rayleigh formula. The obtained values are then compared to theoretical results based on the assumptions of the Bernoulli-Euler theory. These steps are repeated for the second type of mass representation in the same manner."

Keywords: finite element method, bernouilli eulertheory, structural analysis, vibration analysis, rayleigh quotient

Procedia PDF Downloads 76
7338 Design and Validation of Cutting Performance of Ceramic Matrix Composites Using FEM Simulations

Authors: Zohaib Ellahi, Guolong Zhao

Abstract:

Ceramic matrix composite (CMC) material possesses high strength, wear resistance and anisotropy thus machining of this material is very difficult and demands high cost. In this research, FEM simulations and physical experiments have been carried out to assess the machinability of carbon fiber reinforced silicon carbide (C/SiC) using polycrystalline diamond (PCD) tool in slot milling process. Finite element model has been generated in Abaqus/CAE software and milling operation performed by using user defined material subroutine. Effect of different milling parameters on cutting forces and stresses has been calculated through FEM simulations and compared with experimental results to validate the finite element model. Cutting forces in x and y-direction were calculated through both experiments and finite element model and found a good agreement between them. With increase in cutting speed resultant cutting forces are decreased. Resultant cutting forces are increased with increased feed per tooth and depth of cut. When machining performed along the fiber direction stresses generated near the tool edge were minimum and increases with fiber cutting angle.

Keywords: experimental & numerical investigation, C/SiC cutting performance analysis, milling of CMCs, CMC composite stress analysis

Procedia PDF Downloads 72
7337 Effectiveness of Buteyko Method in Asthma Control and Quality of Life of School-Age Children

Authors: Romella C. Lina, Matthew Daniel V. Leysa, Zarah D. F. Libozada, Maria Francesca I. Lirio, Angelo A. Liwag, Gabriel D. Ramos, Margaret M. Natividad

Abstract:

This study aimed to determine the effectiveness of Buteyko Method in asthma control and quality of life of school-age children wherein a pretest-posttest design was utilized to measure the changes after the administration of Buteyko Method. Fourteen (14) subjects with bronchial asthma, aged 7-11 participated in the study. They were equally divided into two groups: the control group received no intervention while the experimental group was asked to attend sessions of Buteyko Method lecture and demonstration. The experimental group was visited for three (3) consecutive weeks to monitor their progress and compliance. Both groups were asked to answer ACQ pre- and post-intervention and PAQLQ before the start of the intervention phase and every week during the follow-up visits. In comparing the asthma control pre-test and post-test mean scores of the control group, no significant difference was noted (p=0.177) while the experimental group showed a significant difference after the administration of Buteyko Method (p=0.002). Moreover, the quality of life pre-test and post-test mean scores of the control group showed no significant difference in any week within one month of follow-up (p=0.736, 0.604, 0.689) while the experimental group showed a significant difference on the third week (p = 0.035) and fourth week (p=0.002) but no significant difference on the second week (p=0.111). Therefore, the use of Buteyko Method within 3-4 weeks as an adjunct to conventional management of asthma helps in improving asthma control and quality of life of school-age children.

Keywords: Buteyko Method, asthma, school-age children, asthma control, quality of life

Procedia PDF Downloads 403