Search results for: Bishop Score
1268 The Role of Internal and External Control in the Migrant Related Representations of Right-Wing Extremists
Authors: Gabriella Kengyel
Abstract:
This study aims to describe the differences between the attitudes of the right-wing extremists with internal or external control towards migrants. They both have a significantly higher score on Rotter's Locus of Control Scale, and they are quite xenophobic (54%) according to Bogardus Social Distance Scale. Present research suggests their motives are different. Principle components analysis shows that extremists with internal control reject migrants because of welfare chauvinism and they think that there is some kind of political conspirationism behind the European Refugee Crisis. Contrarily extremist with external control believe in a common enemy and they are significantly more ethnocentric and less skeptical in politics. Results suggest that extremist with internal control shows hostility toward minorities and migrants mainly because of their own reference group.Keywords: control, extremist, migrant, right-wing
Procedia PDF Downloads 2781267 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards
Authors: Golnush Masghati-Amoli, Paul Chin
Abstract:
Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering
Procedia PDF Downloads 1341266 The Trade Flow of Small Association Agreements When Rules of Origin Are Relaxed
Authors: Esmat Kamel
Abstract:
This paper aims to shed light on the extent to which the Agadir Association agreement has fostered inter regional trade between the E.U_26 and the Agadir_4 countries; once that we control for the evolution of Agadir agreement’s exports to the rest of the world. The next valid question will be regarding any remarkable variation in the spatial/sectoral structure of exports, and to what extent has it been induced by the Agadir agreement itself and precisely after the adoption of rules of origin and the PANEURO diagonal cumulative scheme? The paper’s empirical dataset covering a timeframe from [2000 -2009] was designed to account for sector specific export and intermediate flows and the bilateral structured gravity model was custom tailored to capture sector and regime specific rules of origin and the Poisson Pseudo Maximum Likelihood Estimator was used to calculate the gravity equation. The methodological approach of this work is considered to be a threefold one which starts first by conducting a ‘Hierarchal Cluster Analysis’ to classify final export flows showing a certain degree of linkage between each other. The analysis resulted in three main sectoral clusters of exports between Agadir_4 and E.U_26: cluster 1 for Petrochemical related sectors, cluster 2 durable goods and finally cluster 3 for heavy duty machinery and spare parts sectors. Second step continues by taking export flows resulting from the 3 clusters to be subject to treatment with diagonal Rules of origin through ‘The Double Differences Approach’, versus an equally comparable untreated control group. Third step is to verify results through a robustness check applied by ‘Propensity Score Matching’ to validate that the same sectoral final export and intermediate flows increased when rules of origin were relaxed. Through all the previous analysis, a remarkable and partial significance of the interaction term combining both treatment effects and time for the coefficients of 13 out of the 17 covered sectors turned out to be partially significant and it further asserted that treatment with diagonal rules of origin contributed in increasing Agadir’s_4 final and intermediate exports to the E.U._26 on average by 335% and in changing Agadir_4 exports structure and composition to the E.U._26 countries.Keywords: agadir association agreement, structured gravity model, hierarchal cluster analysis, double differences estimation, propensity score matching, diagonal and relaxed rules of origin
Procedia PDF Downloads 3181265 Impact of Unconditional Cash Transfer Scheme on the Food Security Status of the Elderly in Ekiti State, Nigeria
Authors: R. O. Babatunde, O. M. Igbalajobi, F. Matambalya
Abstract:
Moderate economic growth in developing and emerging countries has led to improvement in the food consumption and nutrition situation in the last two decades. Nevertheless, about 870 million people, with a quarter of them from Sub-Saharan Africa, are still suffering from hunger worldwide. As part of measures to reduce the widespread poverty and hunger, cash transfer programmes are now being implemented in many countries of the world. While nationwide cash transfer schemes are few in Sub-Saharan Africa generally, the available ones are more concentrated in East and Southern Africa. Much of the available literature on social protection had focused on the poverty impact of cash transfer schemes at the household level, with the larger proportion originating from Latin America. On the contrary, much less empirical studies have been conducted on the poverty impact of cash transfer in Sub-Saharan Africa, let alone on the food security and nutrition impact. To fill this gap in knowledge, this paper examines the impact of cash transfer on food security in Nigeria. As a case study, the paper analysed the Ekiti State Cash Transfer Scheme (ECTS). ECTS is an unconditional transfer scheme which was established in 2011 to directly provide cash transfer to elderly persons aged 65 years and above in Ekiti State of Nigeria. Using survey data collected in 2013, we analysed the impact of the scheme on food availability and dietary diversity of the beneficiary households. Descriptive and Propensity Score Matching (PSM) techniques were used to estimate the Average Treatment Effect (ATE) and Average Treatment Effect on the Treated (ATT) among the beneficiary and control groups. Thereafter, a model to test for the impact of participation in the cash transfer scheme on calorie availability and dietary diversity was estimated. The results indicate that while households in the sample are clearly vulnerable, there were statistically significant differences between the beneficiary and control groups. For instance, monthly expenditure, calorie availability and dietary diversity were significantly larger among the beneficiary and consequently, the prevalence and depth of hunger were lower in the group. Econometric results indicate that the cash transfer has a positive and significant effect on food availability and dietary diversity in the households. Expanding the coverage of the present scheme to cover all eligible households in the country and incorporating cash transfer into a comprehensive hunger reduction policy will make it to have a greater impact at improving food security among the most vulnerable households in the country.Keywords: calorie availability, cash transfers, dietary diversity, propensity score matching
Procedia PDF Downloads 3841264 Fine-Tuned Transformers for Translating Multi-Dialect Texts to Modern Standard Arabic
Authors: Tahar Alimi, Rahma Boujebane, Wiem Derouich, Lamia Hadrich Belguith
Abstract:
Machine translation task of low-resourced languages such as Arabic is a challenging task. Despite the appearance of sophisticated models based on the latest deep learning techniques, namely the transfer learning and transformers, all models prove incapable of carrying out an acceptable translation, which includes Arabic Dialects (AD), because they do not have official status. In this paper, we present a machine translation model designed to translate Arabic multidialectal content into Modern Standard Arabic (MSA), leveraging both new and existing parallel resources. The latter achieved the best results for both Levantine and Maghrebi dialects with a BLEU score of 64.99.Keywords: Arabic translation, dialect translation, fine-tune, MSA translation, transformer, translation
Procedia PDF Downloads 611263 An Application of Quantile Regression to Large-Scale Disaster Research
Authors: Katarzyna Wyka, Dana Sylvan, JoAnn Difede
Abstract:
Background and significance: The following disaster, population-based screening programs are routinely established to assess physical and psychological consequences of exposure. These data sets are highly skewed as only a small percentage of trauma-exposed individuals develop health issues. Commonly used statistical methodology in post-disaster mental health generally involves population-averaged models. Such models aim to capture the overall response to the disaster and its aftermath; however, they may not be sensitive enough to accommodate population heterogeneity in symptomatology, such as post-traumatic stress or depressive symptoms. Methods: We use an archival longitudinal data set from Weill-Cornell 9/11 Mental Health Screening Program established following the World Trade Center (WTC) terrorist attacks in New York in 2001. Participants are rescue and recovery workers who participated in the site cleanup and restoration (n=2960). The main outcome is the post-traumatic stress symptoms (PTSD) severity score assessed via clinician interviews (CAPS). For a detailed understanding of response to the disaster and its aftermath, we are adapting quantile regression methodology with particular focus on predictors of extreme distress and resilience to trauma. Results: The response variable was defined as the quantile of the CAPS score for each individual under two different scenarios specifying the unconditional quantiles based on: 1) clinically meaningful CAPS cutoff values and 2) CAPS distribution in the population. We present graphical summaries of the differential effects. For instance, we found that the effect of the WTC exposures, namely seeing bodies and feeling that life was in danger during rescue/recovery work was associated with very high PTSD symptoms. A similar effect was apparent in individuals with prior psychiatric history. Differential effects were also present for age and education level of the individuals. Conclusion: We evaluate the utility of quantile regression in disaster research in contrast to the commonly used population-averaged models. We focused on assessing the distribution of risk factors for post-traumatic stress symptoms across quantiles. This innovative approach provides a comprehensive understanding of the relationship between dependent and independent variables and could be used for developing tailored training programs and response plans for different vulnerability groups.Keywords: disaster workers, post traumatic stress, PTSD, quantile regression
Procedia PDF Downloads 2841262 The Relationship Between Sleep Characteristics and Cognitive Impairment in Patients with Alzheimer’s Disease
Authors: Peng Guo
Abstract:
Objective: This study investigates the clinical characteristics of sleep disorders (SD) in patients with Alzheimer's disease (AD) and their relationship with cognitive impairment. Methods: According to the inclusion and exclusion criteria of AD, 460 AD patients were consecutively included in Beijing Tiantan Hospital from January 2016 to April 2022. Demographic data, including gender, age, age of onset, course of disease, years of education and body mass index, were collected. The Pittsburgh sleep quality index (PSQI) scale was used to evaluate the overall sleep status. AD patients with PSQI ≥7 was divided into AD with SD (AD-SD) group, and those with PSQI < 7 were divided into AD with no SD (AD-nSD) group. The overall cognitive function of AD patients was evaluated by the scales of Mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA), memory was evaluated by the AVLT-immediate recall, AVLT-delayed recall and CFT-delayed memory scales, the language was evaluated by BNT scale, visuospatial ability was evaluated by CFT-imitation, executive function was evaluated by Stroop-A, Stroop-B and Stroop-C scales, attention was evaluated by TMT-A, TMT-B, and SDMT scales. The correlation between cognitive function and PSQI score in AD-SD group was analyzed. Results: Among the 460 AD patients, 173 cases (37.61%) had SD. There was no significant difference in gender, age, age of onset, course of disease, years of education and body mass index between AD-SD and AD-nSD groups (P>0.05). The factors with significant difference in PSQI scale between AD-SD and AD-nSD groups include sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, use of sleeping medication and daytime dysfunction (P<0.05). Compared with AD-nSD group, the total scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales in AD-SD group were significantly lower(P<0.01,P<0.01,P<0.01,P<0.05). In AD-SD group, subjective sleep quality was significantly and negatively correlated with the scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales (r=-0.277,P=0.000; r=-0.216,P=0.004; r=-0.253,P=0.001; r=-0.239, P=0.004), daytime dysfunction was significantly and negatively correlated with the score of AVLT-immediate recall scale (r=-0.160,P=0.043). Conclusion The incidence of AD-SD is 37.61%. AD-SD patients have worse subjective sleep quality, longer time to fall asleep, shorter sleep time, lower sleep efficiency, severer nighttime SD, more use of sleep medicine, and severer daytime dysfunction. The overall cognitive function, immediate recall and visuospatial ability of AD-SD patients are significantly impaired and are closely correlated with the decline of subjective sleep quality. The impairment of immediate recall is highly correlated with daytime dysfunction in AD-SD patients.Keywords: Alzheimer's disease, sleep disorders, cognitive impairment, correlation
Procedia PDF Downloads 311261 Business Process Orientation: Case of Croatia
Authors: Ljubica Milanović Glavan
Abstract:
Because of the increasing business pressures, companies must be adaptable and flexible in order to withstand them. Inadequate business processes and low level of business process orientation, that in its core accentuates business processes as opposed to business functions and focuses on process performance and customer satisfaction, hider the ability to adapt to changing environment. It has been shown in previous studies that the companies which have reached higher business process maturity level consistently outperform those that have not reached them. The aim of this paper is to provide a basic understanding of business process orientation concept and business process maturity model. Besides that the paper presents the state of business process orientation in Croatia that has been captured with a study conducted in 2013. Based on the results some practical implications and guidelines for managers are given.Keywords: business process orientation, business process maturity, Croatia, maturity score
Procedia PDF Downloads 5471260 Clinical Efficacy and Tolerability of Dropsordry™ in Spanish Perimenopausal Women with Urgency Urinary Incontinence (UUI)
Authors: J. A. Marañón, L. Lozano C. De Los Santos, L. Martínez-Campesino, E. Caballero-Garrido, F. Galán-Estella
Abstract:
Urinary incontinence (UI) is a significant health problem with considerable social and economic impact. An estimated 30% of women aged 30 to 60 years old have urinary incontinence (UI), while more than 50% of community-dwelling older women have the condition. Stress urinary incontinence and overactive bladder are the common types of incontinence The prevalence of stress and mixed (stress and urge) incontinence is higher than urge incontinence, but the latter is more likely to require treatment. In women, moderate and severe have a prevalence ranging from about 12% to 17% The objectives of this study was to examine the effect of the supplementation of tablets containing Dropsordry in women with urge urinary incontinence (UUI). Dropsordry is a novel active containing phytoestrogens from SOLGEN, the high genistin soy bean extract and pyrogallol plus polyphenols from standarized pumpkin seed extract,. The study was a single-center, not randomiized open prospective, study. 28 women with urinary incontinence ≥45 years were enrolled in this study (45-62 y. old age . Mean 52 y old). Items related to UI symptoms, were previously collected (T0) and these ítems were reviewed at the final of the study – 8 weeks. (T2). The presence of UI was previously diagnosed using the International Continence Society standards (ICS). Relationships between presence of UI and potential related factors as diabetes were also explored. Daily urinary test control was performed during the 8 weeks of treatment. Daily dosage was 1 g/ day (500 mg twice per day) from 0 to 4 week (T1), following a 500 mg/day daily intake from 4 to 8 week (T2). After eight weeks of treatment, the urgency grade score was reduced a 24,7%. The total urge episodes was reduced a 46%. Surprisingly there was no a significant change in daytime urinations (< 5%), however nocturia was reduced a 69,35%. Strenght Urinary Incontinence (SUI) was also tested showing a remarkably 52,17% reduction. Moreover the use of daily pantyliners was reduced a 66,25%. In addition, it was performed a panel test survey with quests when subjects of the study were enrolled (T0) and the same quests was performed after 8 weeks of supplementation (T2). 100% of the enrolled women fullfilled the ICIQ-SF quest (Spanish versión) and they were also questioned about the effects they noticed in response to taking the supplement and the change in quality of life. Interestingly no side effects were reported. There was a 96,2% of subjective satisfaction and a 85,8% objective score in the improvement of quality of life. CONCLUSION: the combination of High genistin isoflavones and pumpkin seed pyrogallol in Dropsordry tablets seems to be a safe and highly effective supplementation for the relieve of the urinary incontinence symptoms and a better quality of life in perimenopause women .Keywords: isoflavones, pumpkin, menopause, incontinence, genistin
Procedia PDF Downloads 4051259 Application of Balance Score Card (BSc) in Education: Case of the International University
Authors: Hieu Nguyen
Abstract:
Performance management is the concern of any organizations in the context of increasing demand and fierce competition between education institution. This paper draws together the performance management concepts and focuses specifically to Balance Scorecard in the context of education. The study employs semi-structured in-depth interview to explore the measurement items for each of the sub-objectives in the four perspectives. Each of the perspectives’ explored measurement items will then be discussed the role and influence of them towards the perspective and how to improve the measurements to have improved performance management. Finally, the measurements will be put together as a suggested balanced scorecard framework in the case of International University.Keywords: performance management, education institution, balance scorecard, measurement items, four perspectives, international univeristy
Procedia PDF Downloads 4111258 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 1321257 Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)
Authors: Supatchalee Sirichokworrakit
Abstract:
Fishbone of Nile tilapia (Tilapia nilotica), waste from the frozen Nile tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p≤0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p≤0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score.Keywords: tilapia bone flour, noodles, cooking quality, calcium
Procedia PDF Downloads 4021256 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 81255 Association between G2677T/A MDR1 Polymorphism with the Clinical Response to Disease Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis
Authors: Alan Ruiz-Padilla, Brando Villalobos-Villalobos, Yeniley Ruiz-Noa, Claudia Mendoza-Macías, Claudia Palafox-Sánchez, Miguel Marín-Rosales, Álvaro Cruz, Rubén Rangel-Salazar
Abstract:
Introduction: In patients with rheumatoid arthritis, resistance or poor response to disease modifying antirheumatic drugs (DMARD) may be a reflection of the increase in g-P. The expression of g-P may be important in mediating the effluence of DMARD from the cell. In addition, P-glycoprotein is involved in the transport of cytokines, IL-1, IL-2 and IL-4, from normal lymphocytes activated to the surrounding extracellular matrix, thus influencing the activity of RA. The involvement of P-glycoprotein in the transmembrane transport of cytokines can serve as a modulator of the efficacy of DMARD. It was shown that a number of lymphocytes with glycoprotein P activity is increased in patients with RA; therefore, P-glycoprotein expression could be related to the activity of RA and could be a predictor of poor response to therapy. Objective: To evaluate in RA patients, if the G2677T/A MDR1 polymorphisms is associated with differences in the rate of therapeutic response to disease-modifying antirheumatic agents in patients with rheumatoid arthritis. Material and Methods: A prospective cohort study was conducted. Fifty seven patients with RA were included. They had an active disease according to DAS-28 (score >3.2). We excluded patients receiving biological agents. All the patients were followed during 6 months in order to identify the rate of therapeutic response according to the American College of Rheumatology (ACR) criteria. At the baseline peripheral blood samples were taken in order to identify the G2677T/A MDR1 polymorphisms using PCR- Specific allele. The fragment was identified by electrophoresis in polyacrylamide gels stained with ethidium bromide. For statistical analysis, the genotypic and allelic frequencies of MDR1 gene polymorphism between responders and non-responders were determined. Chi-square tests as well as, relative risks with 95% confidence intervals (95%CI) were computed to identify differences in the risk for achieving therapeutic response. Results: RA patients had a mean age of 47.33 ± 12.52 years, 87.7% were women with a mean for DAS-28 score of 6.45 ± 1.12. At the 6 months, the rate of therapeutic response was 68.7 %. The observed genotype frequencies were: for G/G 40%, T/T 32%, A/A 19%, G/T 7% and for A/A genotype 2%. Patients with G allele developed at 6 months of treatment, higher rate for therapeutic response assessed by ACR20 compared to patients with others alleles (p=0.039). Conclusions: Patients with G allele of the - G2677T/A MDR1 polymorphisms had a higher rate of therapeutic response at 6 months with DMARD. These preliminary data support the requirement for a deep evaluation of these and other genotypes as factors that may influence the therapeutic response in RA.Keywords: pharmacogenetics, MDR1, P-glycoprotein, therapeutic response, rheumatoid arthritis
Procedia PDF Downloads 2081254 Catastrophic Health Expenditures: Evaluating the Effectiveness of Nepal's National Health Insurance Program Using Propensity Score Matching and Doubly Robust Methodology
Authors: Simrin Kafle, Ulrika Enemark
Abstract:
Catastrophic health expenditure (CHE) is a critical issue in low- and middle-income countries like Nepal, exacerbating financial hardship among vulnerable households. This study assesses the effectiveness of Nepal’s National Health Insurance Program (NHIP), launched in 2015, to reduce out-of-pocket (OOP) healthcare costs and mitigate CHE. Conducted in Pokhara Metropolitan City, the study used an analytical cross-sectional design, sampling 1276 households through a two-stage random sampling method. Data was collected via face-to-face interviews between May and October 2023. The analysis was conducted using SPSS version 29, incorporating propensity score matching to minimize biases and create comparable groups of enrolled and non-enrolled households in the NHIP. PSM helped reduce confounding effects by matching households with similar baseline characteristics. Additionally, a doubly robust methodology was employed, combining propensity score adjustment with regression modeling to enhance the reliability of the results. This comprehensive approach ensured a more accurate estimation of the impact of NHIP enrollment on CHE. Among the 1276 samples, 534 households (41.8%) were enrolled in NHIP. Of them, 84.3% of households renewed their insurance card, though some cited long waiting times, lack of medications, and complex procedures as barriers to renewal. Approximately 57.3% of households reported known diseases before enrollment, with 49.8% attending routine health check-ups in the past year. The primary motivation for enrollment was encouragement from insurance employees (50.2%). The data indicates that 12.5% of enrolled households experienced CHE versus 7.5% among non-enrolled. Enrollment into NHIP does not contribute to lower CHE (AOR: 1.98, 95% CI: 1.21-3.24). Key factors associated with increased CHE risk were presence of non-communicable diseases (NCDs) (AOR: 3.94, 95% CI: 2.10-7.39), acute illnesses/injuries (AOR: 6.70, 95% CI: 3.97-11.30), larger household size (AOR: 3.09, 95% CI: 1.81-5.28), and households below the poverty line (AOR: 5.82, 95% CI: 3.05-11.09). Other factors such as gender, education level, caste/ethnicity, presence of elderly members, and under-five children also showed varying associations with CHE, though not all were statistically significant. The study concludes that enrollment in the NHIP does not significantly reduce the risk of CHE. The reason for this could be inadequate coverage, where high-cost medicines, treatments, and transportation costs are not fully included in the insurance package, leading to significant out-of-pocket expenses. We also considered the long waiting time, lack of medicines, and complex procedures for the utilization of NHIP benefits, which might result in the underuse of covered services. Finally, gaps in enrollment and retention might leave certain households vulnerable to CHE despite the existence of NHIP. Key factors contributing to increased CHE include NCDs, acute illnesses, larger household sizes, and poverty. To improve the program’s effectiveness, it is recommended that NHIP benefits and coverage be expanded to better protect against high healthcare costs. Additionally, simplifying the renewal process, addressing long waiting times, and enhancing the availability of services could improve member satisfaction and retention. Targeted financial protection measures should be implemented for high-risk groups, and efforts should be made to increase awareness and encourage routine health check-ups to prevent severe health issues that contribute to CHE.Keywords: catastrophic health expenditure, effectiveness, national health insurance program, Nepal
Procedia PDF Downloads 241253 Discovering Semantic Links Between Synonyms, Hyponyms and Hypernyms
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This proposal aims for semantic enrichment between glossaries using the Simple Knowledge Organization System (SKOS) vocabulary to discover synonyms, hyponyms and hyperonyms semiautomatically, in Brazilian Portuguese, generating new semantic relationships based on WordNet. To evaluate the quality of this proposed model, experiments were performed by the use of two sets containing new relations, being one generated automatically and the other manually mapped by the domain expert. The applied evaluation metrics were precision, recall, f-score, and confidence interval. The results obtained demonstrate that the applied method in the field of Oil Production and Extraction (E&P) is effective, which suggests that it can be used to improve the quality of terminological mappings. The procedure, although adding complexity in its elaboration, can be reproduced in others domains.Keywords: ontology matching, mapping enrichment, semantic web, linked data, SKOS
Procedia PDF Downloads 2161252 Electronic Patient Record (EPR) System in South Africa: Results of a Pilot Study
Authors: Temitope O. Tokosi, Visvanathan Naicker
Abstract:
Patient health records contain sensitive information for which an electronic patient record (EPR) system can safely secure and transmit amongst clinicians for use in improving health delivery. Clinician’s use of the behaviour of these systems is under scrutiny to assess their attributes towards health technology. South Africa (SA) clinicians responded to a pilot study survey to assess their understanding of EPR, what attributes are important towards technology use and more importantly streamlining the survey for a larger study. Descriptive statistics using mean scores was used because of the small sample size of 11 clinicians who completed the survey. Nine (9) constructs comprising 62 items were used and a Cronbach alpha score of 0.883 was obtained. Limitations and discussions conclude the study.Keywords: EPR, clinicians, pilot study, South Africa
Procedia PDF Downloads 2641251 Development and Testing of Health Literacy Scales for Chinese Primary and Secondary School Students
Authors: Jiayue Guo, Lili You
Abstract:
Background: Children and adolescent health are crucial for both personal well-being and the nation's future health landscape. Health Literacy (HL) is important in enabling adolescents to self-manage their health, a fundamental step towards health empowerment. However, there are limited tools for assessing HL among elementary and junior high school students. This study aims to construct and validate a test-based HL scale for Chinese students, offering a scientific reference for cross-cultural HL tool development. Methods: We conducted a cross-sectional online survey. Participants were recruited from a stratified cluster random sampling method, a total of 4189 Chinese in-school primary and secondary students. The development of the scale was completed by defining the concept of HL, establishing the item indicator system, screening items (7 health content dimensions), and evaluating reliability and validity. Delphi method expert consultation was used to screen items, the Rasch model was conducted for quality analysis, and Cronbach’s alpha coefficient was used to examine the internal consistency. Results: We developed four versions of the HL scale, each with a total score of 100, encompassing seven key health areas: hygiene, nutrition, physical activity, mental health, disease prevention, safety awareness, and digital health literacy. Each version measures four dimensions of health competencies: knowledge, skills, motivation, and behavior. After the second round of expert consultation, the average importance score of each item by experts is 4.5–5.0, and the coefficient of variation is 0.000–0.174. The knowledge and skills dimensions are judgment-based and multiple-choice questions, with the Rasch model confirming unidimensionality at a 5.7% residual variance. The behavioral and motivational dimensions, measured with scale-type items, demonstrated internal consistency via Cronbach's alpha and strong inter-item correlation with KMO values of 0.924 and 0.787, respectively. Bartlett's test of sphericity, with p-values <0.001, further substantiates the scale's reliability. Conclusions: The new test-based scale, designed to evaluate competencies within a multifaceted framework, aligns with current international adolescent literacy theories and China's health education policies, focusing not only on knowledge acquisition but also on the application of health-related thinking and behaviors. The scale can be used as a comprehensive tool for HL evaluation and a reference for other countries.Keywords: adolescent health, Chinese, health literacy, rasch model, scale development
Procedia PDF Downloads 281250 Evaluation of Prehabilitation Prior to Surgery for an Orthopaedic Pathway
Authors: Stephen McCarthy, Joanne Gray, Esther Carr, Gerard Danjoux, Paul Baker, Rhiannon Hackett
Abstract:
Background: The Go Well Health (GWH) platform is a web-based programme that allows patients to access personalised care plans and resources, aimed at prehabilitation prior to surgery. The online digital platform delivers essential patient education and support for patients prior to undergoing total hip replacements (THR) and total knee replacements (TKR). This study evaluated the impact of an online digital platform (ODP) in terms of functional health outcomes, health related quality of life and hospital length of stay following surgery. Methods: A retrospective cohort study comparing a cohort of patients who used the online digital platform (ODP) to deliver patient education and support (PES) prior to undergoing THR and TKR surgery relative to a cohort of patients who did not access the ODP and received usual care. Routinely collected Patient Reported Outcome Measures (PROMs) data was obtained on 2,406 patients who underwent a knee replacement (n=1,160) or a hip replacement (n=1,246) between 2018 and 2019 in a single surgical centre in the United Kingdom. The Oxford Hip and Knee Score and the European Quality of Life Five-Dimensional tool (EQ5D-5L) was obtained both pre-and post-surgery (at 6 months) along with hospital LOS. Linear regression was used to compare the estimate the impact of GWH on both health outcomes and negative binomial regressions were used to impact on LOS. All analyses adjusted for age, sex, Charlson Comorbidity Score and either pre-operative Oxford Hip/Knee scores or pre-operative EQ-5D scores. Fractional polynomials were used to represent potential non-linear relationships between the factors included in the regression model. Findings: For patients who underwent a knee replacement, GWH had a statistically significant impact on Oxford Knee Scores and EQ5D-5L utility post-surgery (p=0.039 and p=0.002 respectively). GWH did not have a statistically significant impact on the hospital length of stay. For those patients who underwent a hip replacement, GWH had a statistically significant impact on Oxford Hip Scores and EQ5D-5L utility post (p=0.000 and p=0.009 respectively). GWH also had a statistically significant reduction in the hospital length of stay (p=0.000). Conclusion: Health Outcomes were higher for patients who used the GWH platform and underwent THR and TKR relative to those who received usual care prior to surgery. Patients who underwent a hip replacement and used GWH also had a reduced hospital LOS. These findings are important for health policy and or decision makers as they suggest that prehabilitation via an ODP can maximise health outcomes for patients following surgery whilst potentially making efficiency savings with reductions in LOS.Keywords: digital prehabilitation, online digital platform, orthopaedics, surgery
Procedia PDF Downloads 1901249 Advantages of Computer Navigation in Knee Arthroplasty
Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich
Abstract:
Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.Keywords: knee joint, arthroplasty, computer navigation, advantages
Procedia PDF Downloads 901248 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 751247 Development of a Performance Measurement Model for Hospitals Using Multi-Criteria Decision Making (MCDM) Techniques: A Case Study of Three South Australian Major Public Hospitals
Authors: Mohammad Safaeipour, Yousef Amer
Abstract:
This study directs its focus on developing a conceptual model to offer a systematic and integrated method to weigh the related measures and evaluate a competence of hospitals and rank of the selected hospitals that involve and consider the stakeholders’ key performance indicators (KPI’s). The Analytical Hierarchy Process (AHP) approach will use to weigh the dimensions and related sub- components. The weights and performance scores will combine by using the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) and rank the selected hospitals. The results of this study provide interesting insight into the necessity of process improvement implementation in which hospital that received the lowest ranking score.Keywords: performance measurement system, PMS, hospitals, AHP, TOPSIS
Procedia PDF Downloads 3731246 Caregivers Burden: Risk and Related Psychological Factors in Caregivers of Patients with Parkinson’s Disease
Authors: Pellecchia M. T., Savarese G., Carpinelli L., Calabrese M.
Abstract:
Introduction: Parkinson's disease (PD) is characterized by a progressive loss of autonomy which undoubtedly has a significant impact on the quality of life of caregivers, and parents are the main informal caregivers. Caring for a person with PD is associated with an increased risk of psychiatric morbidity and persistent anxiety-depressive distress. The aim of the study is to investigate the burden on caregivers of patients with PD, through the use of multidimensional scales and to identify their personological and environmental determinants. Methods: The study has been approved by the Ethic Committee of the University of Salerno and informed consent for participation to the study was obtained from patients and their caregivers. The study was conducted at the Neurology Department of the A.O.U. "San Giovanni di Dio and Ruggi D’Aragona" of Salerno between September 2020 and May 2021. Materials: The questionnaires used were: a) Caregiver Burden Inventory - CBI a questionnaire of 24 items that allow identifying five sub-categories of burden (objective, psychological, physical, social, emotional); b) Depression Anxiety Stress Scales Short Version - DASS-21 questionnaire consisting of 21 items and valid in examining three distinct but interrelated areas (depression, anxiety and stress); c) Family Strain Questionnaire Short Form - FSQ-SF is a questionnaire of 30 items grouped in areas of increasing psychological risk (OK, R, SR, U); d) Zarit Caregiver Burden Inventory - ZBI, consisting of 22 items based on the analysis of two main factors: personal stress and pressure related to his role; e) Life Satisfaction, a single item that aims to evaluate the degree of life satisfaction in a global way using a 0-100 Likert scale. Findings: N ° 29 caregivers (M age = 55.14, SD = 9.859; 69% F) participated in the study. 20.6% of the sample had severe and severe burden (CBI score = M = 26.31; SD = 22.43) and 13.8% of participants had moderate to severe burden (ZBI). The FSQ-SF highlighted a minority of caregivers who need psychological support, in some cases urgent (Area SR and Area U). The DASS-21 results show a prevalence of stress-related symptoms (M = 10.90, SD = 10.712) compared to anxiety (M = 7.52, SD = 10.752) and depression (M = 8, SD = 10.876). There are significant correlations between some specific variables and mean test scores: retired caregivers report higher ZBI scores (p = 0.423) and lower Life Satisfaction levels (p = -0.460) than working caregivers; years of schooling show a negative linear correlation with the ZBI score (p = -0.491). The T-Test indicates that caregivers of patients with cognitive impairment are at greater risk than those of patients without cognitive impairment. Conclusions: It knows the factors that affect the burden the most would allow for early recognition of risky situations and caregivers who would need adequate support.Keywords: anxious-depressive axis, caregivers’ burden, Parkinson’ disease, psychological risks
Procedia PDF Downloads 2151245 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19
Authors: Parisa Mansour
Abstract:
Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT
Procedia PDF Downloads 631244 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 681243 Nursing Students’ Learning Effects of Online Visits for Mothers Rearing Infants during the COVID-19 Pandemic
Authors: Saori Fujimoto, Hiromi Kawasaki, Mari Murakami, Yoko Ueno
Abstract:
Background: Coronavirus disease (COVID-19) has been spreading throughout the world. In Japan, many nursing universities have conducted online clinical practices to secure students’ learning opportunities. In the field of women’s health nursing, even after the pandemic ended, it will be worthwhile to utilize online practice in declining birthrate and reducing the burden of mothers. This study examined the learning effects of conducting online visits for mothers with infants during the COVID-19 pandemic by nursing students to enhance the students’ ability to carry out the online practice even in ordinary times effectively. Methods: Students were divided into groups of three, and information on the mothers was assessed, and the visits were planned. After role-play was conducted by the students and teachers, an online visit was conducted. The analysis target was the self-evaluation score of nine students who conducted online visits in June 2020 and had consented to participate. The evaluation contents included three items for assessment, two items for planning, one item for ethical consideration, five items for nursing practice, and two items for evaluation. The self-evaluation score ranged from 4 (‘Can do with a little advice’) to 1 (‘Can’t do with a little advice’). A univariate statistical analysis was performed. This study was approved by the Ethical Committee for Epidemiology of Hiroshima University. Results: The items with the highest mean (standard deviation) scores were ‘advocates for the dignity and the rights of mothers’ (3.89 (0.31)) and ‘communication behavior needed to create a trusting relationship’ (3.89 (0.31)).’ Next were the ‘individual nursing practice tailored to mothers (3.78 (0.42))’ and ‘review own practice and work on own task (3.78 (0.42)).’ The mean (standard deviation) of the items by type were as follows: three assessment items, 3.26 (0.70), two planning items, 3.11 (0.49), one ethical consideration item, 3.89 (0.31), five nursing practice items, 3.56 (0.54), and two evaluation items, 3.67 (0.47). Conclusion: The highest self-evaluations were for ‘advocates for the dignity and the rights of mothers’ and ‘communication behavior needed to create a trusting relationship.’ These findings suggest that the students were able to form good relationships with the mothers by improving their ability to effectively communicate and by presenting a positive attitude, even when conducting health visits online. However, the self-evaluation scores for assessment and planning were lower than those of ethical consideration, nursing practice, and evaluation. This was most likely due to a lack of opportunities and time to gather information and the need to modify and add plans in a short amount of time during one online visit. It is necessary to further consider the methods used in conducting online visits from the following viewpoints: methods of gathering information and the ability to make changes through multiple visits.Keywords: infants, learning effects, mothers, online visit practice
Procedia PDF Downloads 1401242 A Genetic Algorithm Approach for Multi Constraint Team Orienteering Problem with Time Windows
Authors: Uyanga Sukhbaatar, Ahmed Lbath, Mendamar Majig
Abstract:
The Orienteering Problem is the most known example to start modeling tourist trip design problem. In order to meet tourist’s interest and constraint the OP is becoming more and more complicate to solve. The Multi Constraint Team Orienteering Problem with Time Windows is the last extension of the OP which differentiates from other extensions by including more extra associated constraints. The goal of the MCTOPTW is maximizing tourist’s satisfaction score in same time not to violate any of these constraints. This paper presents a genetic algorithmic approach to tackle the MCTOPTW. The benchmark data from literature is tested by our algorithm and the performance results are compared.Keywords: multi constraint team orienteering problem with time windows, genetic algorithm, tour planning system
Procedia PDF Downloads 6261241 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement
Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue
Abstract:
Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks
Procedia PDF Downloads 3791240 Current Status and Influencing Factors of Transition Status of Newly Graduated Nurses in China: A Multi-center Cross-sectional Study
Authors: Jia Wang, Wanting Zhang, Yutong Xv, Zihan Guo, Weiguang Ma
Abstract:
Background: Before becoming qualified nurses, newly graduated nurses(NGNs) must experience a painful transition period, even transition shocks. Transition shocks are public health issues. To address the transition issue of NGNs, many programs or interventions have been developed and implemented. However, there are no studies to understand and assess the transition state of newly graduated nurses from work to life, from external abilities to internal emotions. Aims: Assess the transition status of newly graduated nurses in China. Identify the factors influencing the transition status of newly graduated nurses. Methods: The multi-center cross-sectional study design was adopted. From May 2022 to June 2023, 1261 newly graduated nurse in hospitals were surveyed online with the the Demographic Questionnaire and Transition Status Scale for Newly Graduated Nurses. SPSS 26.0 were used for data input and statistical analysis. Statistic description were adopted to evaluate the demographic characteristics and transition status of NGNs. Independent-samples T-test, Analysis of Variance and Multiple regression analysis was used to explore the influencing factors of transition status. Results: The total average score of Transition Status Scale for Newly Graduated Nurses was 4.00(SD = 0.61). Among the various dimensions of Transition Status, the highest dimension was competence for nursing work, while the lowest dimension was balance between work and life. The results showed factors influencing the transition status of NGNs include taught by senior nurses, night shift status, internship department, attribute of working hospital, province of work and residence, educational background, reasons for choosing nursing, types of hospital, and monthly income. Conclusion: At present, the transition status score of new nurses in China is relatively high, and NGNs are more likely to agree with their own transition status, especially the dimension of competence for nursing work. However, they have a poor level of excess in terms of life-work balance. Nursing managers should reasonably arrange the working hours of NGNs, promote their work-life balance, increase the salary and reward mechanism of NGNs, arrange experienced nursing mentors to teach, optimize the level of hospitals, provide suitable positions for NGNs with different educational backgrounds, pay attention to the culture shock of NGNs from other provinces, etc. Optimize human resource management by intervening in these factors that affect the transition of new nurses and promote a better transition of new nurses.Keywords: newly graduated nurse, transition, humanistic car, nursing management, nursing practice education
Procedia PDF Downloads 851239 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement
Procedia PDF Downloads 123