Search results for: improved sparrow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9455

Search results for: improved sparrow search algorithm

1505 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.

Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor

Abstract:

Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.

Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape

Procedia PDF Downloads 392
1504 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 139
1503 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
1502 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 222
1501 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 121
1500 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 85
1499 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology

Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal

Abstract:

Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.

Keywords: urology, surgical innovation, novel surgical techniques, publications

Procedia PDF Downloads 49
1498 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis

Authors: Srinaath Anbu Durai, Wang Zhaoxia

Abstract:

Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.

Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks

Procedia PDF Downloads 116
1497 Monetary Evaluation of Dispatching Decisions in Consideration of Choice of Transport

Authors: Marcel Schneider, Nils Nießen

Abstract:

Microscopic simulation programs enable the description of the two processes of railway operation and the previous timetabling. Occupation conflicts are often solved based on defined train priorities on both process levels. These conflict resolutions produce knock-on delays for the involved trains. The sum of knock-on delays is commonly used to evaluate the quality of railway operations. It is either compared to an acceptable level-of-service or the delays are evaluated economically by linearly monetary functions. It is impossible to properly evaluate dispatching decisions without a well-founded objective function. This paper presents a new approach for evaluation of dispatching decisions. It uses models of choice of transport and considers the behaviour of the end-costumers. These models evaluate the knock-on delays in more detail than linearly monetary functions and consider other competing modes of transport. The new approach pursues the coupling of a microscopic model of railway operation with the macroscopic model of choice of transport. First it will be implemented for the railway operations process, but it can also be used for timetabling. The evaluation considers the possibility to change over to other transport modes by the end-costumers. The new approach first looks at the rail-mounted and road transport, but it can also be extended to air transport. The split of the end-costumers is described by the modal-split. The reactions by the end-costumers have an effect on the revenues of the railway undertakings. Various travel purposes has different pavement reserves and tolerances towards delays. Longer journey times affect besides revenue changes also additional costs. The costs depend either on time or track and arise from circulation of workers and vehicles. Only the variable values are summarised in the contribution margin, which is the base for the monetary evaluation of the delays. The contribution margin is calculated for different resolution decisions of the same conflict. The conflict resolution is improved until the monetary loss becomes minimised. The iterative process therefore determines an optimum conflict resolution by observing the change of the contribution margin. Furthermore, a monetary value of each dispatching decision can also be determined.

Keywords: choice of transport, knock-on delays, monetary evaluation, railway operations

Procedia PDF Downloads 328
1496 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle

Authors: Vivek Thorat, Suhasini Desai

Abstract:

The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.

Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission

Procedia PDF Downloads 254
1495 Feasibility and Acceptability of Mindfulness-Based Cognitive Therapy in People with Depression and Cardiovascular Disorders: A Feasibility Randomised Controlled Trial

Authors: Modi Alsubaie, Chris Dickens, Barnaby Dunn, Andy Gibson, Obioha Ukoumunned, Alison Evans, Rachael Vicary, Manish Gandhi, Willem Kuyken

Abstract:

Background: Depression co-occurs in 20% of people with cardiovascular disorders, can persist for years and predicts worse physical health outcomes. While psychosocial treatments have been shown to effectively treat acute depression in those with comorbid cardiovascular disorders, to date there has been no evaluation of approaches aiming to prevent relapse and treat residual depression symptoms in this group. Therefore, the current study aimed to examine the feasibility and acceptability of a randomised controlled trial design evaluating an adapted version of mindfulness-based cognitive therapy (MBCT) designed specifically for people with co-morbid depression and cardiovascular disorders. Methods: A 3-arm feasibility randomised controlled trial was conducted, comparing MBCT adapted for people with cardiovascular disorders plus treatment as usual (TAU), mindfulness-based stress reduction (MBSR) plus TAU, and TAU alone. Participants completed a set of self-report measures of depression severity, anxiety, quality of life, illness perceptions, mindfulness, self-compassion and affect and had their blood pressure taken immediately before, immediately after, and three months following the intervention. Those in the adapted-MBCT arm additionally underwent a qualitative interview to gather their views about the adapted intervention. Results: 3400 potentially eligible participants were approached when attending an outpatient appointment at a cardiology clinic or via a GP letter following a case note search. 242 (7.1%) were interested in taking part, 59 (1.7%) were screened as being suitable, and 33 (<1%) were eventually randomised to the three groups. The sample was heterogeneous in terms of whether they reported current depression or had a history of depression and the time since the onset of cardiovascular disease (one to 25 years). Of 11 participants randomised to adapted MBCT seven completed the full course, levels of home mindfulness practice were high, and positive qualitative feedback about the intervention was given. Twenty-nine out of 33 participants randomised completed all the assessment measures at all three-time points. With regards to the primary outcome (depression), five out of the seven people who completed the adapted MBCT and three out of five under MBSR showed significant clinical change, while in TAU no one showed any clinical change at the three-month follow-up. Conclusions: The adapted MBCT intervention was feasible and acceptable to participants. However, aspects of the trial design were not feasible. In particular, low recruitment rates were achieved, and there was a high withdrawal rate between screening and randomisation. Moreover, the heterogeneity in the sample was high meaning the adapted intervention was unlikely to be well tailored to all participants needs. This suggests that if the decision is made to move to a definitive trial, study recruitment procedures will need to be revised to more successfully recruit a target sample that optimally matches the adapted intervention.

Keywords: mindfulness-based cognitive therapy (MBCT), depression, cardiovascular disorders, feasibility, acceptability

Procedia PDF Downloads 218
1494 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 84
1493 The Risks of 'Techtopia': Reviewing the Negative Lessons of Smart City Development

Authors: Amanda Grace Ahl, Matthew Brummer

Abstract:

‘Smart cities’ are not always as ‘smart’ as the term suggests, which is not often covered in the associated academic and public policy literatures. In what has become known as the smart city approach to urban planning, governments around the world are seeking to harness the power of information and communications technology with increasingly advanced data analytics to address major social, economic, and environmental issues reshaping the ways people live. The definitional and theoretical boundaries of the smart city framework are broad and at times ambiguous, as is empirical treatment of the topic. However, and for all the disparity, in investigating any number of institutional and policy prescriptions to the challenges faced by current and emerging metropoles, scholarly thought has hinged overwhelmingly on value-positive conceptions of informatics-centered design. From enhanced quality of services, to increased efficiency of resources, to improved communication between societal stakeholders, the smart city design is championed as a technological wellspring capable of providing answers to the systemic issues stymying a utopian image of the city. However, it is argued that this ‘techtopia’, has resulted in myopia within the discipline as to value-negative implications of such planning, such as weaknesses in practicality, scalability, social equity and affordability of solutions. In order to more carefully examine this observation - that ‘stupid’ represents an omitted variable bias in the study of ‘smart’ - this paper reviews critical cases of unsuccessful smart city developments. It is argued that also understanding the negative factors affiliated with the development processes is imperative for the advancement of theoretical foundations, policies, and strategies to further the smart city as an equitable, holistic urban innovation. What emerges from the process-tracing carried out in this study are distinctly negative lessons of smart city projects, the significance of which are vital for understanding how best to conceive smart urban planning in the 21st century.

Keywords: case study, city management, innovation system, negative lessons, smart city development

Procedia PDF Downloads 415
1492 Combine Resection of Talocalcaneal Tarsal Coalition and Calcaneal Lengthening Osteotomy. Short-to-Intermediate Term Results

Authors: Naum Simanovsky, Vladimir Goldman, Michael Zaidman

Abstract:

Background: The optimal algorithm for the management of symptomatic tarsal coalition is still under discussion in pediatric literature. It's debatable what surgical steps are essential to achieve the best outcome. Method: The investigators retrospectively reviewed the records of twelve patients with symptomatic tarsal coalition that were treated operatively between 2017 and 2019. Only painful flat feet were operated. Two patients were excluded from the study due to lack of sufficient follow-up. Ten of eleven feet were treated with the combination of calcaneal lengthening osteotomy (CLO) and resection of coalition (RC). Only one foot was operated with CLO alone. In half of our patients, Achilles lengthening was performed. For two children, medial plication was added. Short leg cast was applied to all children for 6-8 weeks, and soft shoe insoles for medial arch support were prescribed after. Demographic, clinical, and radiographic records were reviewed. The outcome was evaluated using American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results: There were seven boys and three girls. The mean age at the time of surgery was 13.9 (range 12 to 17) years, and the mean follow-up was 18 (range 8 to 34) months. The early complications included one superficial wound infection and dehiscence. Late complication includes two children with residual forefoot supination. None of our patients required additional operations during the follow-up period. All feet achieved complete deformity correction or dramatic improvement. In the last follow-up, seven feet were painless, and four children had some mild pain after intensive activities. All feet achieved excellent and good scoring on AOFAS. Conclusions: Many patients with talocalcaneal coalition also have rigid or stiff, painful, flat feet. For these patients, the resection of coalition with concomitant CLO can be safely recommended.

Keywords: Tarsal coalition, calcaneal lengthening osteotomy., flat foot, coalition resection

Procedia PDF Downloads 65
1491 Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application

Authors: Ahmad Umar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials.

Keywords: reduced graphene oxide, polyaniline, nanocomposites, supercapacitors, energy storage

Procedia PDF Downloads 59
1490 Cost Effective and Efficient Feeding: A Way Forward for Sustainable and Profitable Aquaculture

Authors: Pawan Kumar Sharma, J. Stephan Sampath Kumar, S. Anand, Chandana B. L.

Abstract:

Protein is the major component for the success in culture of shrimp and fishes. Apparently, excess dietary protein is undesirable, as it not only enhances the production cost but also leads to water quality deterioration. A field survey was conducted with aqua farmers of Kerala, India, a leading state in coastal aquaculture, to assess the role of protein component in feed that can be efficiently and effectively managed for sustainable aquaculture. The study showed an average feed amount of 13.55 ± 2.16 tonnes per hectare was being used by the farmers of Kerala. The average feed cost percentage of Rs. 57.76 ± 13.46 /kg was invested for an average protein level of 36.26 % ± 0.082 in the feed and Rs.78.95 ± 3.086 per kilogram of feed was being paid by the farmers. Study revealed that replacement of fish meal and fish oil within shrimp aquafeeds with alternative protein, and lipid sources can only be achieved if changes are made in the basic shrimp culturing practices, such as closed farming system through water recycling or zero-water exchange, and by maximizing in-situ, floc and natural food production within the culture system. The upshot of such production systems is that imports of high-quality feed ingredients and aqua feeds can eventually be eliminated, and the utilization of locally available feed ingredients from agricultural by-products can be greatly improved and maximized. The promotion of closed shrimp production systems would also greatly reduce water use and increase shrimp production per unit area but would necessitate the continuous provision of electricity for aeration during production. Alternative energy sources such as solar power might be used, and resource poor farming communities should also explore wind energy for use. The study concluded that farm made feed and closed farming systems are essential for the sustainability and profitability of the aquaculture industry.

Keywords: aqua feeds, floc, fish meal, protein, zero-water exchange

Procedia PDF Downloads 145
1489 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 325
1488 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 283
1487 Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium

Authors: Subodh Kumar, Sanjeev Kumar Sharma, Gaurav Kaushik, Pramod Avti, Phulen Sarma, Bikash Medhi, Krishan Lal Khanduja

Abstract:

Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium.

Keywords: cigarette smoke condensate, phospholipase A₂, oxidative stress, alveolar epithelium, bromoenol lactone

Procedia PDF Downloads 189
1486 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 79
1485 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms

Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano

Abstract:

In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.

Keywords: heuristic, MIP model, remedial course, school, timetabling

Procedia PDF Downloads 605
1484 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux

Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour

Abstract:

Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.

Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity

Procedia PDF Downloads 84
1483 Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil

Authors: Asma Abdullah, Awais Khan, Reem Al-Ghumlasi, Pritam Kumari, Yasir Nawaz

Abstract:

Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight.

Keywords: biplane, oblique wing, sweep angle, supercritical airfoil

Procedia PDF Downloads 278
1482 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 157
1481 Germination and Bulb Formation of Allium tuncelianum L. under in vitro Condition

Authors: Suleyman Kizil, Tahsin Sogut, Khalid M. Khawar

Abstract:

Genus Allium includes 600 to 750 species and most of these including Allium tuncelianum (Kollman) N. Ozhatay, B. Mathew & Siraneci; Syn; A. macrochaetum Boiss. and Hausskn. subsp. tuncelianum Kollman] or Tunceli garlic is endemic to Eastern Turkish Province of Tunceli and Munzur mountains. They are edible, bear attractive white-to-purple flowers and fertile black seeds with deep seed dormancy. This study aimed to break seed dormancy of Tunceli garlic and determine the conditions for induction of bulblets on these seeds and increase their diameter by culturing them on MS medium supplemented different strengths of KNO3. Tunceli garlic seeds were collected from field grown plants. They were germinated on MS medium with or without 20 g/l sucrose followed by their culture on 1 × 1900 mg/l, 2 × 1900 mg/l, 4 ×1900 mg/l and 6 × 1900 mg/l mg/l KNO3 supplemented with 20 g/l sucrose to increase bulb diameter. Improved seeds germination was noted on MS medium with and without sucrose but with variation compared to previous reports. The bulb development percentage on each of the sprouted seeds was not parallel to the percentage of seed germination. The results showed 34% and 28.5% bulb induction was noted on germinated seeds after 150 and 158 days on MS medium containing 20 g l-1 sucrose and no sucrose respectively showing a delay of 8 days on the latter compared to the former. The results emphatically noted role of cold stratification on agar solidified MS medium supplemented with sucrose to improve seed germination. The best increase in bulb diameter was noted on MS medium containing 1 × 1900 mg/l KNO3 after 178 days with bulblet diameter and bulblet weight of 0.54 cm and 0.048 g, respectively. Consequently, the bulbs induced on sucrose containing MS medium could be transferred to pots earlier. Increased (>1 × 1900 mg/l KNO3) strengths of KNO3 induced negative effect on growth and development of Tunceli garlic bulbs. The strategy of seed germination and bulblet induction reported in this study could be positively used for conservation of this endemic plant species.

Keywords: Tunceli garlic, seed, dormancy, bulblets, bulb growth

Procedia PDF Downloads 273
1480 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
1479 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study

Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.

Abstract:

Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.

Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist

Procedia PDF Downloads 110
1478 Integrating a Universal Forensic DNA Database: Anticipated Deterrent Effects

Authors: Karen Fang

Abstract:

Investigative genetic genealogy has attracted much interest in both the field of ethics and the public eye due to its global application in criminal cases. Arguments have been made regarding privacy and informed consent, especially with law enforcement using consumer genetic testing results to convict individuals. In the case of public interest, DNA databases have the strong potential to significantly reduce crime, which in turn leads to safer communities and better futures. With the advancement of genetic technologies, the integration of a universal forensic DNA database in violent crimes, crimes against children, and missing person cases is expected to deter crime while protecting one’s privacy. Rather than collecting whole genomes from the whole population, STR profiles can be used to identify unrelated individuals without compromising personal information such as physical appearance, disease risk, and geographical origin, and additionally, reduce cost and storage space. STR DNA profiling is already used in the forensic science field and going a step further benefits several areas, including the reduction in recidivism, improved criminal court case turnaround time, and just punishment. Furthermore, adding individuals to the database as early as possible prevents young offenders and first-time offenders from participating in criminal activity. It is important to highlight that DNA databases should be inclusive and tightly governed, and the misconception on the use of DNA based on crime television series and other media sources should be addressed. Nonetheless, deterrent effects have been observed in countries like the US and Denmark with DNA databases that consist of serious violent offenders. Fewer crimes were reported, and fewer people were convicted of those crimes- a favorable outcome, not even the death penalty could provide. Currently, there is no better alternative than a universal forensic DNA database made up of STR profiles. It can open doors for investigative genetic genealogy and fostering better communities. Expanding the appropriate use of DNA databases is ethically acceptable and positively impacts the public.

Keywords: bioethics, deterrent effects, DNA database, investigative genetic genealogy, privacy, public interest

Procedia PDF Downloads 149
1477 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units

Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro

Abstract:

In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.

Keywords: capacitated clustering, k-means, genetic algorithm, districting problems

Procedia PDF Downloads 198
1476 Effectiveness of the Community Health Assist Scheme in Reducing Market Failure in Singapore’s Healthcare Sector

Authors: Matthew Scott Lau

Abstract:

This study addresses the research question: How effective has the Community Health Assist Scheme (CHAS) been in reducing market failure in Singapore’s healthcare sector? The CHAS policy, introduced in 2012 in Singapore, aims to improve accessibility and affordability of healthcare by offering subsidies to low and middle-income groups and elderly individuals for general practice consultations and healthcare. The investigation was undertaken by acquiring and analysing primary and secondary research data from 3 main sources, including handwritten survey responses of 334 individuals who were valid CHAS subsidy recipients (CHAS cardholders) from 5 different locations in Singapore, interview responses from two established general practitioner doctors with working knowledge of the scheme, and information from literature available online. Survey responses were analysed to determine how CHAS has affected the affordability and consumption of healthcare, and other benefits or drawbacks for CHAS users. The interview responses were used to explain the benefits of healthcare consumption and provide different perspectives on the impacts of CHAS on the various parties involved. Online sources provided useful information on changes in healthcare consumerism and Singapore’s government policies. The study revealed that CHAS has been largely effective in reducing market failure as the subsidies granted to consumers have improved the consumption of healthcare. This has allowed for the external benefits of healthcare consumption to be realized, thus reducing market failure. However, the study also revealed that CHAS cannot be fully effective in reducing market failure as the scope of CHAS prevents healthcare consumption from fully reaching the socially optimal level. Hence, the study concluded that CHAS has been effective to a large extent in reducing market failure in Singapore’s healthcare sector, albeit with some benefits to third parties yet to be realised. There are certain elements of the investigation, which may limit the validity of the conclusion, such as the means used to determine the socially optimal level of healthcare consumption, and the survey sample size.

Keywords: healthcare consumption, health economics, market failure, subsidies

Procedia PDF Downloads 159