Search results for: cloud service models
2700 Adsorption Performance of Hydroxyapatite Powder in the Removal of Dyes in Wastewater
Authors: Aderonke A. Okoya, Oluwaseun A. Somoye, Omotayo S. Amuda, Ifeanyi E. Ofoezie
Abstract:
This study assessed the efficiency of Hydroxyapatite Powder (HAP) in the removal of dyes in wastewater in comparison with Commercial Activated Carbon (CAC). This was with a view to developing cost effective method that could be more environment friendly. The HAP and CAC were used as adsorbent while Indigo dye was used as the adsorbate. The batch adsorption experiment was carried out by varying initial concentrations of the indigo dye, contact time and adsorbent dosage. Adsorption efficiency was classified by adsorption Isotherms using Langmuir, Freundlich and D-R isotherm models. Physicochemical parameters of a textile industry wastewater were determined before and after treatment with the adsorbents. The results from the batch experiments showed that at initial concentration of 125 mg/L of adsorbate in simulated wastewater, 0.9276 ± 0.004618 mg/g and 3.121 ± 0.006928 mg/g of indigo adsorbed per unit time (qt) of HAP and CAC respectively. The ratio of HAP to CAC required for the removal of indigo dye in simulated wastewater was 2:1. The isotherm model of the simulated wastewater fitted well to Freundlich model, the adsorption intensity (1/n) presented 1.399 and 0.564 for HAP and CAC, respectively. This revealed that the HAP had weaker bond than the electrostatic interactions which were present in CAC. The values of some physicochemical parameters (acidity, COD, Cr, Cd) of textile wastewater when treated with HAP decreased. The study concluded that HAP, an environment-friendly adsorbent, could be effectively used to remove dye from textile industrial wastewater with added advantage of being regenerated.Keywords: adsorption isotherm, commercial activated carbon, hydroxyapatite powder, indigo dye, textile wastewater
Procedia PDF Downloads 2452699 Corn Production in the Visayas: An Industry Study from 2002-2019
Authors: Julie Ann L. Gadin, Andrearose C. Igano, Carl Joseph S. Ignacio, Christopher C. Bacungan
Abstract:
Corn production has become an important and pervasive industry in the Visayas for many years. Its role as a substitute commodity to rice heightens demand for health-particular consumers. Unfortunately, the corn industry is confronted with several challenges, such as weak institutions. Considering these issues, the paper examined the factors that influence corn production in the three administrative regions in the Visayas, namely, Western Visayas, Central Visayas, and Eastern Visayas. The data used was retrieved from a variety of publicly available data sources such as the Philippine Statistics Authority, the Department of Agriculture, the Philippine Crop Insurance Corporation, and the International Disaster Database. Utilizing a dataset from 2002 to 2019, the indicators were tested using three multiple linear regression (MLR) models. Results showed that the land area harvested (p=0.02), and the value of corn production (p=0.00) are statistically significant variables that influence corn production in the Visayas. Given these findings, it is suggested that the policy of forest conversion and sustainable land management should be effective in enabling farmworkers to obtain land to grow corn crops, especially in rural regions. Furthermore, the Biofuels Act of 2006, the Livestock Industry Restructuring and Rationalization Act, and supported policy, Senate Bill No. 225, or an Act Establishing the Philippine Corn Research Institute and Appropriating Funds, should be enforced inclusively in order to improve the demand for the corn-allied industries which may lead to an increase in the value and volume of corn production in the Visayas.Keywords: corn, industry, production, MLR, Visayas
Procedia PDF Downloads 2212698 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features
Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han
Abstract:
Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction
Procedia PDF Downloads 2442697 Bayesian Semiparametric Geoadditive Modelling of Underweight Malnutrition of Children under 5 Years in Ethiopia
Authors: Endeshaw Assefa Derso, Maria Gabriella Campolo, Angela Alibrandi
Abstract:
Objectives:Early childhood malnutrition can have long-term and irreversible effects on a child's health and development. This study uses the Bayesian method with spatial variation to investigate the flexible trends of metrical covariates and to identify communities at high risk of injury. Methods: Cross-sectional data on underweight are collected from the 2016 Ethiopian Demographic and Health Survey (EDHS). The Bayesian geo-additive model is performed. Appropriate prior distributions were provided for scall parameters in the models, and the inference is entirely Bayesian, using Monte Carlo Markov chain (MCMC) stimulation. Results: The results show that metrical covariates like child age, maternal body mass index (BMI), and maternal age affect a child's underweight non-linearly. Lower and higher maternal BMI seem to have a significant impact on the child’s high underweight. There was also a significant spatial heterogeneity, and based on IDW interpolation of predictive values, the western, central, and eastern parts of the country are hotspot areas. Conclusion: Socio-demographic and community- based programs development should be considered compressively in Ethiopian policy to combat childhood underweight malnutrition.Keywords: bayesX, Ethiopia, malnutrition, MCMC, semi-parametric bayesian analysis, spatial distribution, P- splines
Procedia PDF Downloads 972696 Lovely, Lyrical, Lilting: Kubrick’s Translation of Lolita’s Voice
Authors: Taylor La Carriere
Abstract:
“What I had madly possessed was not she, but my own creation, another, fanciful Lolita perhaps, more real than Lolita; overlapping, encasing he and having no will, no consciousness indeed, no life of her own,” Vladimir Nabokov writes in his seminal work, Lolita. Throughout Nabokov’s novel, the eponymous character is rendered nonexistent through unreliable narrator Humbert Humbert’s impenetrable narrative, infused with lyrical rationalization. Instead, Lolita is “safely solipsised,” as Humbert muses, solidifying the potential for the erasure of Lolita’s agency and identity. In this literary work, Lolita’s voice is reduced to a nearly invisible presence, only seen through the eyes of her captor. However, in Stanley Kubrick’s film adaptation of Lolita (1962), the “nymphet,” as Nabokov coins, reemerges with a voice of her own, fueled by a lyric impulse, that displaces Humbert’s first-person narration. The lyric, as defined by Catherine Ing, is the voice of the invisible; it is also characterized by performance, the concentrated utterance of individual emotion, and the appearance of spontaneity. The novel’s lyricism is largely in the service of Humbert’s “seductive” voice, while the film reorients it more to Lolita’s subjectivity. Through a close analysis of Kubrick’s cinematic techniques, this paper examines the emergence and translation of Lolita’s voice in contrast with Humbert’s attempts to silence her in Nabokov’s Lolita, hypothesizing that Kubrick translates Lolita’s presence into a visual and aural voice with lyrical attributes, exemplified through the establishment of an altered power dynamic, Sue Lyon’s transformative performance as the titular character, Nelson Riddle and Bob Harris’ musical score, and the omission of Humbert’s first-person point-of-view. In doing so, the film reclaims Lolita’s agency by taking instances of Lolita’s voice in the novel as depicted in the last half of the work and expanding upon them in a way only cinematic depictions could allow. The results of this study suggest that Lolita’s voice in Kubrick’s adaptation functions without disrupting the lyricism present in Nabokov’s source text, materializing through the actions, expressions, and performance of Sue Lyon in the film. This voice, fueled by a lyric impulse of its own, refutes the silence bestowed upon the titular character and enables its ultimate reclamation upon the silver screen.Keywords: cinema, adaptation, Lolita, lyric voice
Procedia PDF Downloads 1972695 Developing a South African Model of Neuropsychological Rehabilitation for Adults After Acquired Brain Injury
Authors: Noorjehan Joosub-Vawda
Abstract:
Objectives: The aim of this poster presentation is to examine cultural contextual understandings of ABI that could aid conceptualisation and the development of a model for neuropsychological rehabilitation in this context. Characteristics of the South African context that make the implementation of international NR practices difficult include socioeconomic disparities, sociocultural influences, lack of accessibility to healthcare services, and poverty and unemployment levels. NR services in the developed world have characteristics such as low staff-to-patient ratios and interdisciplinary teams that make them unsuitable for the resource-constrained South African context. Methods: An exploratory, descriptive research design based on programme theory is being followed in the development of a South African model of neuropsychological rehabilitation. Results: The incorporation of African traditional understandings and practices, such as beliefs about ancestral spirits in the etiology of Acquired Brain Injury are relevant to the planning of rehabilitation interventions. Community-Based Rehabilitation workers, psychoeducation, and cooperation among the different systemic levels especially in rural settings is also needed to improve services offered to patients living with ABI. Conclusions. The preliminary model demonstrated in this poster will attempt to build on the strengths of South African communities, incorporating valuable evidence from international models to serve those affected with brain injury in this context.Keywords: neuropsychological rehabilitation, South Africa, acquired brain injury, developing context
Procedia PDF Downloads 3262694 Minority Language Policy and Planning in Manchester, Britain
Authors: Mohamed F. Othman
Abstract:
Manchester, Britain has become the destination of immigrants from different parts of the world. As a result, it is currently home to over 150 different ethnic languages. The present study investigates minority language policy and planning at the micro-level of the city. In order to get an in-depth investigation of such a policy, it was decided to cover it from two angles: the first is the policy making process. This was aimed at getting insights on how decisions regarding the provision of government services in minority languages are taken and what criteria are employed. The second angle is the service provider; i.e. the different departments in Manchester City Council (MCC), the NHS, the courts, and police, etc., to obtain information on the actual provisions of services. Data was collected through semi-structured interviews with different personnel representing different departments in MCC, solicitors, interpreters, etc.; through the internet, e.g. the websites of MCC, NHS, courts, and police, etc.; and via personal observation of provisions of community languages in government services. The results show that Manchester’s language policy is formulated around two concepts that work simultaneously: one is concerned with providing services in community languages in order to help minorities manage their life until they acquire English, and the other with helping the integration of minorities through encouraging them to learn English. In this regard, different government services are provided in community languages, though to varying degrees, depending on the numerical strength of each individual language. Thus, it is concluded that there is awareness in MCC and other government agencies working in Manchester of the linguistic diversity of the city and there are serious attempts to meet this diversity in their services. It is worth mentioning here that providing such services in minority languages are not meant to support linguistic diversity, but rather to maintain the legal right to equal opportunities among the residents of Manchester and to avoid any misunderstanding that may result due to the language barrier, especially in such areas as hospitals, courts, and police. There is actually no explicitly-mentioned language policy regarding minorities in Manchester; rather, there is an implied or covert policy resulting from factors that are not explicitly documented. That is, there are guidelines from the central government, which emphasize the principle of equal opportunities; then the implementation of such guidelines requires providing services in the different ethnic languages.Keywords: community language, covert language policy, micro-language policy and planning, minority language
Procedia PDF Downloads 2702693 DPED Trainee Teachers' Views and Practice on Mathematics Lesson Study in Bangladesh
Authors: Mihir Halder
Abstract:
The main aim and objective of the eighteen-month long Diploma in Primary Education (DPED) teacher education training course for in-service primary teachers in Bangladesh is to acquire professional knowledge as well as make them proficient in professional practice. The training, therefore, introduces a variety of theoretical and practical approaches as well as some professional development activities—lesson study being one of them. But, in the field of mathematics teaching, even after implementing the lesson study method, the desired practical teaching skills of the teachers have not been developed. In addition, elementary students also remain quite raw in mathematics. Although there have been various studies to solve the problem, the need for the teachers' views on mathematical ideas has not been taken into consideration. The researcher conducted the research to find out the cause of the discussed problem. In this case, two teams of nine DPED trainee teachers and two instructors conducted two lesson studies in two schools located in the city and town of Khulna Province, Bangladesh. The researcher observed group lesson planning by trainee teachers, followed by a trainee teacher teaching the planned lesson plan to an actual mathematics classroom, and finally, post-teaching reflective discussion in each lesson study. Two DPED instructors acted as mentors in the lesson study. DPED trainee teachers and instructors were asked about mathematical concepts and classroom practices through questionnaires as well as videotaped mathematics classroom teaching. For this study, the DPED mathematics course, curriculum, and assessment activities were analyzed. In addition, the mathematics lesson plans prepared by the trainee teachers for the lesson study and their pre-teaching and post-teaching reflective discussions were analyzed by some analysis categories and rubrics. As a result, it was found that the trainee teachers' views of mathematics are not mature, and therefore, their mathematics teaching practice is not appropriate. Therefore, in order to improve teachers' mathematics teaching, the researcher recommended including some action-oriented aspects in each phase of mathematics lesson study in DPED—for example, emphasizing mathematics concepts of the trainee teachers, preparing appropriate teaching materials, presenting lessons using the problem-solving method, using revised rubrics for assessing mathematics lesson study, etc.Keywords: mathematics lesson study, knowledge of mathematics, knowledge of teaching mathematics, teachers' views
Procedia PDF Downloads 752692 Transforming Enterprise Contract Management: AI-Driven Recommendations, Blockchain Integration, and Smart Contracting
Authors: Jeffery Dickerson, Thaija Dickerson
Abstract:
Enterprise contract management faces persistent challenges, including inefficiencies, limited adaptability, and fragmented compliance processes. This research proposes a unified framework leveraging artificial intelligence (AI), blockchain technology, and smart contracts to transform the contract lifecycle. AI-driven probabilistic models enable predictive insights, automated compliance checks, and negotiation optimization, while blockchain enhances security and transparency through cryptographic workflows and decentralized approvals. The framework bridges centralized architectures of Web 2.0 with Web 3.0 technologies, which leverage blockchain for decentralized, trustless operations, ensuring seamless transformation and operational continuity. Smart contracts automate routine processes, enabling dynamic, programmable agreements. Validation through simulations demonstrates significant improvements, including up to a 60% reduction in contract cycle times under simulated conditions and enhanced compliance rates. Designed for scalability and adaptability, the framework supports industries such as procurement, supply chain, and finance, where secure, efficient contract management is critical. By incorporating human validation loops and aligning with sustainability goals, this study offers a scalable, innovative approach to the digital transformation of contract management.Keywords: contract lifecycle management, artificial intelligence, blockchain, smart contracts
Procedia PDF Downloads 42691 A Study on the Effect of Different Climate Conditions on Time of Balance of Bleeding and Evaporation in Plastic Shrinkage Cracking of Concrete Pavements
Authors: Hasan Ziari, Hassan Fazaeli, Seyed Javad Vaziri Kang Olyaei, Asma Sadat Dabiri
Abstract:
The presence of cracks in concrete pavements is a place for the ingression of corrosive substances, acids, oils, and water into the pavement and reduces its long-term durability and level of service. One of the causes of early cracks in concrete pavements is the plastic shrinkage. This shrinkage occurs due to the formation of negative capillary pressures after the equilibrium of the bleeding and evaporation rates at the pavement surface. These cracks form if the tensile stresses caused by the restrained shrinkage exceed the tensile strength of the concrete. Different climate conditions change the rate of evaporation and thus change the balance time of the bleeding and evaporation, which changes the severity of cracking in concrete. The present study examined the relationship between the balance time of bleeding and evaporation and the area of cracking in the concrete slabs using the standard method ASTM C1579 in 27 different environmental conditions by using continuous video recording and digital image analyzing. The results showed that as the evaporation rate increased and the balance time decreased, the crack severity significantly increased so that by reducing the balance time from the maximum value to its minimum value, the cracking area increased more than four times. It was also observed that the cracking area- balance time curve could be interpreted in three sections. An examination of these three parts showed that the combination of climate conditions has a significant effect on increasing or decreasing these two variables. The criticality of a single factor cannot cause the critical conditions of plastic cracking. By combining two mild environmental factors with a severe climate factor (in terms of surface evaporation rate), a considerable reduction in balance time and a sharp increase in cracking severity can be prevented. The results of this study showed that balance time could be an essential factor in controlling and predicting plastic shrinkage cracking in concrete pavements. It is necessary to control this factor in the case of constructing concrete pavements in different climate conditions.Keywords: bleeding and cracking severity, concrete pavements, climate conditions, plastic shrinkage
Procedia PDF Downloads 1492690 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1132689 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads
Authors: Kayijuka Idrissa
Abstract:
This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.Keywords: statistical methods, traffic flow, Poisson distribution, car moving technics
Procedia PDF Downloads 2832688 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 5492687 Efficiency of Membrane Distillation to Produce Fresh Water
Authors: Sabri Mrayed, David Maccioni, Greg Leslie
Abstract:
Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently, two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting a thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. In order to determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 %, and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However, it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.Keywords: desalination, exergy, membrane distillation, second law efficiency
Procedia PDF Downloads 3672686 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows
Authors: Imen Boudali, Marwa Ragmoun
Abstract:
The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO
Procedia PDF Downloads 4162685 The Recovery Experience Study of People with Bipolar Disorder
Authors: Sudkhanoung Ritruechai, Somrak Choovanichwong, Kruawon Tiengtom, Peanchanan Leeudomwong
Abstract:
The purposes of this qualitative research were to study the recovery experience of people with bipolar disorder and also to propose a development approach to the Bipolar Friends Club. The participants were eight people with bipolar disorder for six to twenty years (four women and four men). They have been members of the Bipolar Friends Club for two to ten years. They have no mental symptoms in order to provide sufficient information about their recovery experiences and have returned to everyday life with their family, community, and work. The data were collected by doing an in-depth interview. Two interviews were done, each from 45-90 minutes and four to five weeks apart. The researcher sent the results of the preliminary data analysis to the participants two to three days beforehand. Confirmation of the results of the preliminary data analysis from the first interview was done at the second interview. The research study found that the participants had a positive experience of being a Bipolar Club member. The club continued its activities following Recovery Oriented Service: ROS to the participants. As a result, they recovered in eight areas as follows. 1) Intellectual: The wisdom of joining the group has brought knowledge and experiences from an exchange with others in self-care as well as a positive thinking in life. 2) Social: The participants have set up a group to take care of each other and to do activities which have brought warmth. Their social network which was normally little has also been increased. 3) Spiritual: The concept of religion has been used to lead the life of the participants. 4) Occupational: One participant is a student while the others do work. All of them have done well. 5) Environmental: The participants would be able to adapt to the environment and cope with their problems better. 6) Physical: Most female participants have difficulties with losing weight which leads them saying that they are ‘not fully recovered’. 7) Emotional: The participants feel calmer than before entering the club. They have also developed more tolerance to problems. 8) Financial: The participants would be able to control their spending by themselves and with the help of their family members. The people with bipolar disorder have suggested that the services of the club are perfect and should be continued. The results of the study encourage the Bipolar Friends Club, as well as other clubs/associations that support the recovery of patients. Consideration of the recovery has highlighted the need for ongoing and various life-enhancing programs for the caregivers and their loved ones with bipolar disorder. Then, they would be able to choose the program that suits their needs to improve their life.Keywords: people with bipolar disorder, recovery, club, experience
Procedia PDF Downloads 3752684 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform
Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu
Abstract:
Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform
Procedia PDF Downloads 702683 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 212682 A Realist Review of Interventions Targeting Maternal Health in Low- and Middle-income Countries
Authors: Julie Mariam Abraham, G. J. Melendez-Torres
Abstract:
Background. Maternal mortality is disproportionately higher in low- and middle- income countries (LMICs) compared to other parts of the world. At the current pace of progress, the Sustainable Development Goals for maternal mortality rate will not be achieved by 2030. A variety of factors influence the increased risk of maternal complications in LMICs. These are exacerbated by socio-economic and political factors, including poverty, illiteracy, and gender inequality. This paper aims to use realist synthesis to identify the contexts, mechanisms, and outcomes (CMOs) of maternal health interventions conducted in LMICs to inform evidence-based practice for future maternal health interventions. Methods. In May 2022, we searched four electronic databases for systematic reviews of maternal health interventions in LMICs published in the last five years. We used open and axial coding of CMOs to develop an explanatory framework for intervention effectiveness. Results. After eligibility screening and full-text analysis, 44 papers were included. The intervention strategies and measured outcomes varied within reviews. Healthcare system level contextual factors were the most frequently reported, and infrastructural capacity was the most reported context. The most prevalent mechanism was increased knowledge and awareness. Discussion. Health system infrastructure must be considered in interventions to ensure effective implementation and sustainability. Healthcare-seeking behaviours are embedded within social and cultural norms, environmental conditions, family influences, and provider attitudes. Therefore, effective engagement with communities and families is important to create new norms surrounding pregnancy and delivery. Future research should explore community mobilisation and involvement to enable tailored interventions with optimal contextual fit.Keywords: maternal mortality, service delivery and organisation, realist synthesis, sustainable development goals, overview of reviews
Procedia PDF Downloads 822681 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding
Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez
Abstract:
Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement
Procedia PDF Downloads 1992680 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling
Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar
Abstract:
The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling
Procedia PDF Downloads 2252679 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood
Authors: Renate Gericke, Carol Long
Abstract:
Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.Keywords: attachment, children at risk, middle childhood, non-western context
Procedia PDF Downloads 1992678 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame
Authors: Saeed Javaherzadeh, Babak Dindar Safa
Abstract:
Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history
Procedia PDF Downloads 4432677 Akt: Isoform-Specific Regulation of Cellular Signaling in Cancer
Authors: Bhumika Wadhwa, Fayaz Malik
Abstract:
The serine/threonine protein kinase B (PKB) also known as Akt, is one of the multifaceted kinase in human kinome, existing in three isoforms. Akt plays a vital role in phosphoinositide 3-kinase (PI3K) mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. The functional significance of an individual isoform of Akt is not redundant in cancer cell proliferation and metastasis instead Akt isoforms play distinct roles during metastasis; thereby regulating EMT. This study aims to determine isoform specific functions of Akt in cancer. The results obtained suggest that Akt1 restrict tumor invasion, whereas Akt2 promotes cell migration and invasion by various techniques like MTT, wound healing and invasion assay. Similarly, qRT-PCR also revealed that Akt3 has shown promising results in promoting cancer cell migration. Contrary to pro-oncogenic properties attributed to Akt, it is to be understood how various isoforms of Akt compensates each other in the regulation of common pathways during cancer progression and drug resistance. In conclusion, this study aims to target selective isoforms which is essential to inhibit cancer. However, the question now is whether, and how much, Akt inhibition will be tolerated in the clinic remains to be answered and the experiments will have to address the question of which combinations of newly devised Akt isoform specific inhibitors exert a favourable therapeutic effect in in vivo models of cancer to provide the therapeutic window with minimal toxicity.Keywords: Akt isoforms, cancer, drug resistance, epithelial mesenchymal transition
Procedia PDF Downloads 2612676 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration
Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan
Abstract:
Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins
Procedia PDF Downloads 1242675 Seismic Integrity Determination of Dams in Urban Areas
Authors: J. M. Mayoral, M. Anaya
Abstract:
The urban and economic development of cities demands the construction of water use and flood control infrastructure. Likewise, it is necessary to determine the safety level of the structures built with the current standards and if it is necessary to define the reinforcement actions. The foregoing is even more important in structures of great importance, such as dams, since they imply a greater risk for the population in case of failure or undesirable operating conditions (e.g., seepage, cracks, subsidence). This article presents a methodology for determining the seismic integrity of dams in urban areas. From direct measurements of the dynamic properties using geophysical exploration and ambient seismic noise measurements, the seismic integrity of the concrete-faced rockfill dam selected as a case of study is evaluated. To validate the results, two accelerometer stations were installed (e.g., free field and crest of the dam). Once the dynamic properties were determined, three-dimensional finite difference models were developed to evaluate the dam seismic performance for different intensities of movement, considering the site response and soil-structure interaction effects. The seismic environment was determined from the uniform hazard spectra for several return periods. Based on the results obtained, the safety level of the dam against different seismic actions was determined, and the effectiveness of ambient seismic noise measurements in dynamic characterization and subsequent evaluation of the seismic integrity of urban dams was evaluated.Keywords: risk, seismic, soil-structure interaction, urban dams
Procedia PDF Downloads 1242674 Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)
Authors: Erika K. Méndez, Carlos E. Orrego, Diana L. Manrique, Juan D. Gonzalez, Doménica Vallejo
Abstract:
High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays.Keywords: banana, drying, effective diffusivity, guava, mango, ultrasound
Procedia PDF Downloads 5382673 A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System
Authors: Niaz Gharavi, Hexin Zhang
Abstract:
In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus.Keywords: shear field test method, BS EN 408, timber shear modulus, photogrammetry approach
Procedia PDF Downloads 2162672 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode
Authors: Girish Chavadappanavar
Abstract:
The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).Keywords: climate impact, regression analysis, yield and forecast model, sugar models
Procedia PDF Downloads 762671 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator
Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski
Abstract:
Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.Keywords: human robot interaction, drones, gestures, robotics
Procedia PDF Downloads 162