Search results for: 3d finite element model
11348 A Proposal of Multi-modal Teaching Model for College English
Authors: Huang Yajing
Abstract:
Multimodal discourse refers to the phenomenon of using various senses such as hearing, vision, and touch to communicate through various means and symbolic resources such as language, images, sounds, and movements. With the development of modern technology and multimedia, language and technology have become inseparable, and foreign language teaching is becoming more and more modal. Teacher-student communication resorts to multiple senses and uses multiple symbol systems to construct and interpret meaning. The classroom is a semiotic space where multimodal discourses are intertwined. College English multi-modal teaching is to rationally utilize traditional teaching methods while mobilizing and coordinating various modern teaching methods to form a joint force to promote teaching and learning. Multimodal teaching makes full and reasonable use of various meaning resources and can maximize the advantages of multimedia and network environments. Based upon the above theories about multimodal discourse and multimedia technology, the present paper will propose a multi-modal teaching model for college English in China.Keywords: multimodal discourse, multimedia technology, English education, applied linguistics
Procedia PDF Downloads 7411347 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator
Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin
Abstract:
Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification
Procedia PDF Downloads 32811346 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx
Procedia PDF Downloads 21911345 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 41611344 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 47911343 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique
Authors: M. A. Ansari, A. Hussain, A. Uddin
Abstract:
A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir
Procedia PDF Downloads 16311342 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation
Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formulaKeywords: Semi-Lagrangian method, iteration free method, nonlinear advection-diffusion equation, second-order backward difference formula
Procedia PDF Downloads 32411341 Steady State Charge Transport in Quantum Dots: Nonequilibrium Green's Function (NEGF) vs. Single Electron Analysis
Authors: Mahesh Koti
Abstract:
In this paper, we present a quantum transport study of a quantum dot in steady state in the presence of static gate potential. We consider a quantum dot coupled to the two metallic leads. The quantum dot under study is modeled through Anderson Impurity Model (AIM) with hopping parameter modulated through voltage drop between leads and the central dot region. Based on the Landauer's formula derived from Nonequilibrium Green's Function and Single Electron Theory, the essential ingredients of transport properties are revealed. We show that the results out of two approaches closely agree with each other. We demonstrate that Landauer current response derived from single electron approach converges with non-zero interaction through gate potential whereas Landauer current response derived from Nonequilibrium Green's Function (NEGF) hits a pole.Keywords: Anderson impurity model (AIM), nonequilibrium Green's function (NEGF), Landauer's formula, single electron analysis
Procedia PDF Downloads 47711340 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan
Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou
Abstract:
This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve
Procedia PDF Downloads 29611339 Evaluating Oman's Green Transition: A Dynamic Stochastic General Equilibrium Analysis of Climate Policy Effects
Authors: Mohamed Chakroun
Abstract:
In this paper, we analyze the macroeconomic impacts of Oman’s strategy to transition to a green economy by 2050. Our objective is to determine the most effective climate policy instrument to facilitate this transition. By utilizing a Dynamic Stochastic General Equilibrium (DSGE) model, we assess the effectiveness of three climate policy tools: a carbon tax, subsidies to green assets, and taxes on brown assets. Our results indicate that a combination of a carbon tax, along with differentiated taxes and subsidies on green and brown assets, proves to the most effective policy in reducing emissions while maintaining macroeconomic stability. The findings of this study demonstrate the need for policymakers to balance the immediate goals of reducing emissions with the economic costs involved. Implementing a gradual transition strategy may be preferable as it allows for mitigating the negative economic impacts while facilitating the shift towards a green economy.Keywords: green economy, carbon tax, DSGE model, climate policy, sustainable growth
Procedia PDF Downloads 3911338 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 51711337 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications
Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R
Abstract:
Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays
Procedia PDF Downloads 8211336 Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat
Authors: Saurabh Chanana, Monika Arora
Abstract:
Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand.Keywords: demand response, home energy management, programmable communicating thermostat, thermostatically controlled appliances
Procedia PDF Downloads 61311335 Logical-Probabilistic Modeling of the Reliability of Complex Systems
Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia
Abstract:
The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element
Procedia PDF Downloads 7711334 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 35111333 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network
Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib
Abstract:
The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.Keywords: heat exchanger network, synthesis, NLP, optimization
Procedia PDF Downloads 16911332 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.Keywords: identification, neural networks, predictive control, transient stability, UPFC
Procedia PDF Downloads 37911331 Development of an Information System Based on the Establishment and Evaluation of Performance Rating by Application Part/Type of Remodeling Element Technologies
Authors: Sungwon Jung
Abstract:
The percentage of 20 years or older apartment houses in South Korea is approximately 20% (1.55 million houses), and the explosive increase of aged houses is expected around the first planned new towns. Accordingly, we should prepare for social issues such as difficulty of housing lease and degradation of housing performance. The improvement of performance of aged houses is essential for achieving the national energy and carbon reduction goals, and we should develop techniques to respond to the changing construction environment. Furthermore, we should develop a performance evaluation system that is appropriate for the demands of residents such as the improvement of remodeling floor plan by performance improvement in line with the residence type of the housing vulnerable groups such as low-income group and elderly people living alone. For this purpose, remodeling techniques and business models optimized for the target complexes must be spread through the development of various business models. In addition, it is necessary to improve the remodeling business by improving the laws and systems related to the improvement of the residential performance and to prepare techniques to respond to the increasing business demands. In other words, performance improvement and evaluation and knowledge systems need to be researched as new issues related to remodeling that has not been addressed in the existing research.Keywords: remodelling, performance evaluation, web-based system, big data
Procedia PDF Downloads 23011330 Improving Carbon Fiber Structural Battery Performance with Polymer Interface
Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint
Abstract:
This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries
Procedia PDF Downloads 11411329 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 19111328 An Empirical Study for the Data-Driven Digital Transformation of the Indian Telecommunication Service Providers
Authors: S. Jigna, K. Nanda Kumar, T. Anna
Abstract:
Being a major contributor to the Indian economy and a critical facilitator for the country’s digital India vision, the Indian telecommunications industry is also a major source of employment for the country. Since the last few years, the Indian telecommunication service providers (TSPs), however, are facing business challenges related to increasing competition, losses, debts, and decreasing revenue. The strategic use of digital technologies for a successful digital transformation has the potential to equip organizations to meet these business challenges. Despite an increased focus on digital transformation, the telecom service providers globally, including Indian TSPs, have seen limited success so far. The purpose of this research was thus to identify the factors that are critical for the digital transformation and to what extent they influence the successful digital transformation of the Indian TSPs. The literature review of more than 300 digital transformation-related articles, mostly from 2013-2019, demonstrated a lack of an empirical model consisting of factors for the successful digital transformation of the TSPs. This study theorizes a research framework grounded in multiple theories, and a research model consisting of 7 constructs that may be influencing business success during the digital transformation of the organization was proposed. The questionnaire survey of senior managers in the Indian telecommunications industry was seeking to validate the research model. Based on 294 survey responses, the validation of the Structural equation model using the statistical tool ADANCO 2.1.1 was found to be robust. Results indicate that Digital Capabilities, Digital Strategy, and Corporate Level Data Strategy in that order has a strong influence on the successful Business Performance, followed by IT Function Transformation, Digital Innovation, and Transformation Management respectively. Even though Digital Organization did not have a direct significance on Business Performance outcomes, it had a strong influence on IT Function Transformation, thus affecting the Business Performance outcomes indirectly. Amongst numerous practical and theoretical contributions of the study, the main contribution for the Indian TSPs is a validated reference for prioritizing the transformation initiatives in their strategic roadmap. Also, the main contribution to the theory is the possibility to use the research framework artifact of the present research for quantitative validation in different industries and geographies.Keywords: corporate level data strategy, digital capabilities, digital innovation, digital strategy
Procedia PDF Downloads 13311327 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 8411326 Micro-CT Assessment of Fracture Healing with Targeted Delivery of Tocotrienol in Osteoporosis Model
Authors: Ahmad Nazrun Shuid, Isa Naina Mohamed, Nurul Izzah Ibrahim, Norazlina Mohamed
Abstract:
Studies have shown that oral tocotrienol, a potent vitamin E, promoted fracture healing of osteoporotic bone. In this study, tocotrienol was combined with a polymer carrier (PLGA), and injected to the fracture site. The slow and constant release of tocotrienol particles would promote fracture healing of post-menopausal osteoporosis rat model. Fracture healing was assessed using micro-CT. Twenty-four Sprague-Dawley rats were ovariectomised or sham-operated and the left tibiae were fractured and fixed with plate and screws. The fractures were created at the upper third of the left tibiae. The rats were divided into 3 groups: sham-operated (SO), ovariectomised-control (OVxC) and PLGA-incorporated tocotrienol treatment (OVx + TT) groups. After 4 weeks, the OVx + TT group showed significantly better callus fracture healing than the OVxC group. In conclusion, tocotrienol-incorporated PLGA was able to promote fracture healing of osteoporotic bone.Keywords: osteoporosis, micro-CT, tocotrienol, PLGA, fracture
Procedia PDF Downloads 67011325 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system
Procedia PDF Downloads 35411324 Cluster Analysis of Retailers’ Benefits from Their Cooperation with Manufacturers: Business Models Perspective
Authors: M. K. Witek-Hajduk, T. M. Napiórkowski
Abstract:
A number of studies discussed the topic of benefits of retailers-manufacturers cooperation and coopetition. However, there are only few publications focused on the benefits of cooperation and coopetition between retailers and their suppliers of durable consumer goods; especially in the context of business model of cooperating partners. This paper aims to provide a clustering approach to segment retailers selling consumer durables according to the benefits they obtain from their cooperation with key manufacturers and differentiate the said retailers’ in term of the business models of cooperating partners. For the purpose of the study, a survey (with a CATI method) collected data on 603 consumer durables retailers present on the Polish market. Retailers are clustered both, with hierarchical and non-hierarchical methods. Five distinctive groups of consumer durables’ retailers are (based on the studied benefits) identified using the two-stage clustering approach. The clusters are then characterized with a set of exogenous variables, key of which are business models employed by the retailer and its partnering key manufacturer. The paper finds that the a combination of a medium sized retailer classified as an Integrator with a chiefly domestic capital and a manufacturer categorized as a Market Player will yield the highest benefits. On the other side of the spectrum is medium sized Distributor retailer with solely domestic capital – in this case, the business model of the cooperating manufactrer appears to be irreleveant. This paper is the one of the first empirical study using cluster analysis on primary data that defines the types of cooperation between consumer durables’ retailers and manufacturers – their key suppliers. The analysis integrates a perspective of both retailers’ and manufacturers’ business models and matches them with individual and joint benefits.Keywords: benefits of cooperation, business model, cluster analysis, retailer-manufacturer cooperation
Procedia PDF Downloads 26011323 Engineering Method to Measure the Impact Sound Improvement with Floor Coverings
Authors: Katarzyna Baruch, Agata Szelag, Jaroslaw Rubacha, Bartlomiej Chojnacki, Tadeusz Kamisinski
Abstract:
Methodology used to measure the reduction of transmitted impact sound by floor coverings situated on a massive floor is described in ISO 10140-3: 2010. To carry out such tests, the standardised reverberation room separated by a standard floor from the second measuring room are required. The need to have a special laboratory results in high cost and low accessibility of this measurement. The authors propose their own engineering method to measure the impact sound improvement with floor coverings. This method does not require standard rooms and floor. This paper describes the measurement procedure of proposed engineering method. Further, verification tests were performed. Validation of the proposed method was based on the analytical model, Statistical Energy Analysis (SEA) model and empirical measurements. The received results were related to corresponding ones obtained from ISO 10140-3:2010 measurements. The study confirmed the usefulness of the engineering method.Keywords: building acoustic, impact noise, impact sound insulation, impact sound transmission, reduction of impact sound
Procedia PDF Downloads 32811322 Comparing Practices of Swimming in the Netherlands against a Global Model for Integrated Development of Mass and High Performance Sport: Perceptions of Coaches
Authors: Melissa de Zeeuw, Peter Smolianov, Arnold Bohl
Abstract:
This study was designed to help and improve international performance as well increase swimming participation in the Netherlands. Over 200 sources of literature on sport delivery systems from 28 Australasian, North and South American, Western and Eastern European countries were analyzed to construct a globally applicable model of high performance swimming integrated with mass participation, comprising of the following seven elements and three levels: Micro level (operations, processes, and methodologies for development of individual athletes): 1. Talent search and development, 2. Advanced athlete support. Meso level (infrastructures, personnel, and services enabling sport programs): 3. Training centers, 4. Competition systems, 5. Intellectual services. Macro level (socio-economic, cultural, legislative, and organizational): 6. Partnerships with supporting agencies, 7. Balanced and integrated funding and structures of mass and elite sport. This model emerged from the integration of instruments that have been used to analyse and compare national sport systems. The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. It has recently been accepted as a model for further understanding North American sport systems, including (in chronological order of publications) US rugby, tennis, soccer, swimming and volleyball. The above model was used to design a questionnaire of 42 statements reflecting desired practices. The statements were validated by 12 international experts, including executives from sport governing bodies, academics who published on high performance and sport development, and swimming coaches and administrators. In this study both a highly structured and open ended qualitative analysis tools were used. This included a survey of swim coaches where open responses accompanied structured questions. After collection of the surveys, semi-structured discussions with Federation coaches were conducted to add triangulation to the findings. Lastly, a content analysis of Dutch Swimming’s website and organizational documentation was conducted. A representative sample of 1,600 Dutch Swim coaches and administrators was collected via email addresses from Royal Dutch Swimming Federation' database. Fully completed questionnaires were returned by 122 coaches from all key country’s regions for a response rate of 7,63% - higher than the response rate of the previously mentioned US studies which used the same model and method. Results suggest possible enhancements at macro level (e.g., greater public and corporate support to prepare and hire more coaches and to address the lack of facilities, monies and publicity at mass participation level in order to make swimming affordable for all), at meso level (e.g., comprehensive education for all coaches and full spectrum of swimming pools particularly 50 meters long), and at micro level (e.g., better preparation of athletes for a future outside swimming and better use of swimmers to stimulate swimming development). Best Dutch swimming management practices (e.g., comprehensive support to most talented swimmers who win Olympic medals) as well as relevant international practices available for transfer to the Netherlands (e.g., high school competitions) are discussed.Keywords: sport development, high performance, mass participation, swimming
Procedia PDF Downloads 20811321 In-Vivo Association of Multivalent 11 Zinc Fingers Transcriptional Factors CTCF and Boris to YB-1 in Multiforme Glioma-RGBM Cell Line
Authors: Daruliza Kernain, Shaharum Shamsuddin, See Too Wei Cun
Abstract:
CTCF is a unique, highly conserved and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple target sites. It is able to bind to various target sequences to perform different regulatory roles including promoter activation or repression, creating hormone-responsive gene silencing element, and functional block of enhancer-promoter interactions. The binding of CTCF to the essential binding site is through the combination of different ZF domain. On the other hand, BORIS for brother of the regulator of imprinted sites, which expressed only in the testis and certain cancer cell line is homology to CTCF 11 ZF domains. Since both transcriptional factors share the same ZF domains hence there is a possibility for both to bind to the same target sequences. In this study, the interaction of these two proteins to multi-functional Y-box DNA/RNA-binding factor, YB-1 was determined. The protein-protein interaction between CTCF/YB-1 and BORIS/YB-1 were discovered by Co-immuno-precipitation (CO-IP) technique through reciprocal experiment from RGBM total cell lysate. The results showed that both CTCF and BORIS were able to interact with YB-1 in Glioma RGBM cell line. To the best of our knowledge, this is the first findings demonstrating the ability of BORIS and YB-1 to form a complex in vivo.Keywords: immunoprecipitation, CTCF/BORIS/YB-1, transcription factor, molecular medicine
Procedia PDF Downloads 26811320 Transformative Leadership and Learning Management Systems Implementation: Leadership Practices in Instructional Design for Online Learning
Authors: Felix Brito
Abstract:
With the growth of online learning, several higher education institutions have attempted to incorporate technology in their curriculum. Successful technology implementation projects really on technology infrastructure and on the acceptance of education professionals towards innovation. This research study is aimed at illustrating the relevance of the human component in technology implementation projects in higher education by describing the Learning Management System implementation project executed by instructional designers working for a higher education institution in the southeast region of the United States. An analysis of the Transformative Leadership Theory, the Technology Acceptance Model, and the Diffusion of Innovation Process provide the support for a solid understanding of this issue and address recommendations for future technology implementation projects in higher education institutions.Keywords: diffusion of innovation process, instructional design, leadership, learning management systems, online learning, technology acceptance model, transformative leadership theory
Procedia PDF Downloads 33811319 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 49