Search results for: experimental and numerical modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11117

Search results for: experimental and numerical modelling

3287 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base

Procedia PDF Downloads 507
3286 Development of an NIR Sorting Machine, an Experimental Study in Detecting Internal Disorder and Quality of Apple Fruitpple Fruit

Authors: Eid Alharbi, Yaser Miaji

Abstract:

The quality level for fresh fruits is very important for the fruit industries. In presents study, an automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.

Keywords: mechatronics, NIR, fruit quality, spectroscopic technology, mechatronic design

Procedia PDF Downloads 380
3285 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology

Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache

Abstract:

The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.

Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation

Procedia PDF Downloads 42
3284 Extractive Desulfurization of Fuels Using Choline Chloride-Based Deep Eutectic Solvents

Authors: T. Zaki, Fathi S. Soliman

Abstract:

Desulfurization process is required by most, if not all refineries, to achieve ultra-low sulfur fuel, that contains less than 10 ppm sulfur. A lot of research works and many effective technologies have been studied to achieve deep desulfurization process in moderate reaction environment, such as adsorption desulfurization (ADS), oxidative desulfurization (ODS), biodesulfurization and extraction desulfurization (EDS). Extraction desulfurization using deep eutectic solvents (DESs) is considered as simple, cheap, highly efficient and environmentally friend process. In this work, four DESs were designed and synthesized. Choline chloride (ChCl) was selected as typical hydrogen bond acceptors (HBA), and ethylene glycol (EG), glycerol (Gl), urea (Ur) and thiourea (Tu) were selected as hydrogen bond donors (HBD), from which a series of deep eutectic solvents were synthesized. The experimental data showed that the synthesized DESs showed desulfurization affinities towards the thiophene species in cyclohexane solvent. Ethylene glycol molecules showed more affinity to create hydrogen bond with thiophene instead of choline chloride. Accordingly, ethylene glycol choline chloride DES has the highest extraction efficiency.

Keywords: DES, desulfurization, green solvent, extraction

Procedia PDF Downloads 262
3283 Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode

Authors: Illyas Md Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II).

Keywords: chemically modified electrode, Cu(II), square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 256
3282 Evaluation of Capacity of Bed Planted with Macrophytes for Wastewater Treatment of Biskra City, Algeria

Authors: Mimeche Leila, Debabeche Mahmoud

Abstract:

It is question to study and to value the possibility of settling the process of purification by plants (constructed wetland) to treat the domestic waste water of Biskra, city in a semi-arid environment with grave problems of. According to the bibliography, the process of treatment by plants is considered as more advantageous than the classic techniques. It is the use of beds with macrophytes where the purification is made by the combined action of plants and micro-organisms in a filtering bed. The micro-organisms which are aerobic bacteria and\or anaerobic have for main function to degrade the polluting materials. Plants in the macrophytes beds have for function to serve as support in the development of bacteria and to favour also their development. In this study, we present a preliminary experimental analysis of the potentialities of treatment of some macrpohytes plants, implanted in basins filled of gravel. Analyses physico chemical and bacteriological of the waste water indicate a good elimination of the polluting materials, and put in evidence the purifier power of these plants, in association with bacteria. The obtained results seem to be interesting and encourage deepening the study for other types of plants in other conditions.

Keywords: constructed wetlands, macrophytes, sewage treatment, wastewater

Procedia PDF Downloads 385
3281 Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars

Authors: Mohammad R. Irshidat, Rami H. Haddad, Hanadi Al-Mahmoud

Abstract:

Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority.

Keywords: concrete beams, FRP rebar, flexural behavior, heat-damaged

Procedia PDF Downloads 429
3280 An Optimized Approach to Generate the Possible States of Football Tournaments Final Table

Authors: Mouslem Damkhi

Abstract:

This paper focuses on possible states of a football tournament final table according to the number of participating teams. Each team holds a position in the table with which it is possible to determine the highest and lowest points for that team. This paper proposes an optimized search space based on the minimum and maximum number of points which can be gained by each team to produce and enumerate the possible states for a football tournament final table. The proposed search space minimizes producing the invalid states which cannot occur during a football tournament. The generated states are filtered by a validity checking algorithm which seeks to reach a tournament graph based on a generated state. Thus, the algorithm provides a way to determine which team’s wins, draws and loses values guarantee a particular table position. The paper also presents and discusses the experimental results of the approach on the tournaments with up to eight teams. Comparing with a blind search algorithm, our proposed approach reduces generating the invalid states up to 99.99%, which results in a considerable optimization in term of the execution time.

Keywords: combinatorics, enumeration, graph, tournament

Procedia PDF Downloads 108
3279 Solvent Dependent Triazole-Appended Glucofuranose-Based Fluorometric Sensor for Detection of Au³⁺ Ions

Authors: Samiul Islam Hazarika, Domngam Boje, Ananta Kumar Atta

Abstract:

It is well familiar that solvents play a significant role in modern chemistry. Solvents can change the reactivity and physicochemical properties of molecules in a solution. Keeping this in mind, we have designed and synthesized a mono-triazolyl-linked pyrenyl-appended xylofuranose derivative for the detection of metal ions with changing solvent systems. The incorporation of a sugar backbone in the sensor increases the water solubility and biocompatibility. The experimental study revealed that the xylofuranose-based fluorescence probe did not exhibit any specific selectivity towards metal ions in acetonitrile (CH₃CN) solvent. Whereas, we revealed that triazole-linked pyrenyl-appended xylofuranose-based fluorescent sensor would exhibit high selectivity and sensitivity towards Au³⁺ ions in CH₃CN-H₂O (1/1, v/v) system. This observation might be explained by the viscosity and polarity differences of CH₃CN and CH₃CN-H₂O solvent systems. The formation of the sensor-Au³⁺ complex was also established by high-resolution mass spectrometry (HRMS) data of the complex.

Keywords: triazole, furanose, fluorometric, solvent dependent

Procedia PDF Downloads 107
3278 Quasi-Static Resistance Function Quantification for Lightweight Sandwich Panels: Experimental Study

Authors: Yasser A. Khalifa, Michael J. Tait, A. M. Asce, Wael W. El-Dakhakhni, M. Asce

Abstract:

The quasi-static resistance functions for orthogonal corrugated core sandwich panels were determined experimentally. According to the American and Canadian codes for blast resistant designs of buildings UFC 3-340-02, ASCE/SEI 59-11, and CSA/ S850-12 the dynamic behavior is related to the static behavior under uniform loading. The target was to design a lightweight, relatively cheap, and quick sandwich panel to be employed as a sacrificial cladding for important buildings. For that an available corrugated cold formed steel sheet profile in North America was used as a core for the sandwich panel, in addition to using a quick, relatively low cost fabrication technique in the construction process. Six orthogonal corrugated core sandwich panels were tested and the influence of core sheet gauge on the behavior of the sandwich panels was explored using two different gauges. Failure modes, yield forces, ultimate forces, and corresponding deformations were determined and discussed.

Keywords: cold formed steel, lightweight structure, sandwich panel, sacrificial cladding, uniform loading

Procedia PDF Downloads 474
3277 Utilizing Quicklime (Calcium Oxide) for Self-Healing Properties in Innovation of Coconut Husk Fiber Bricks

Authors: Christian Gabriel Mariveles, Darelle Jay Gallardo, Leslie Dayaoen, Laurenz Paul Diaz

Abstract:

True experimental research with descriptive analysis was conducted. Utilizing Quicklime (Calcium Oxide) for self-healing properties of coconut husk fibre concrete brick. There are 2 setups established: the first one has the 1:1:2 ratio of calcium oxide, cement and sand, and the second one has a 2:1:2 ratio of the same variables. The bricks are made from the residences along Barangay Greater Lagro. The mixture of sand and cement is mixed with coconut husk fibers and then molded with different ratios in the molder. After the drying of cement, the researchers tested the bricks in the laboratory for compressive strength. The brick with the highest PSI is picked by the researchers to drop into freefall testing, and it makes remarkable remarks as it is deformed after dropping to different heights with a maximum of 20 feet. Unfortunately, the self-healing capabilities were not observed during the 12 weeks of monitoring. However, the brick was weighed after 12 weeks of monitoring, and it increased in weight by 0.030 kg. from 1.833 kg. to 1.863 kg. meaning that this ratio 2 has the potential to self-heal, but 12 weeks of monitoring by the researchers is not enough to conclude that it has a significant difference.

Keywords: self healing, coconut husk bricks, research, calcium oxide, utilizing quicklime

Procedia PDF Downloads 33
3276 Characteristics of Middle Grade Students' Solution Strategies While Reasoning the Correctness of the Statements Related to Numbers

Authors: Ayşegül Çabuk, Mine Işıksal

Abstract:

Mathematics is a sense-making activity so that it requires meaningful learning. Hence based on this idea, meaningful mathematical connections are necessary to learn mathematics. At that point, the major question has become that which educational methods can provide opportunities to provide mathematical connections and to understand mathematics. The amalgam of reasoning and proof can be the one of the methods that creates opportunities to learn mathematics in a meaningful way. However, even if reasoning and proof should be included from prekindergarten to grade 12, studies in literature generally include secondary school students and pre-service mathematics teachers. With the light of the idea that the amalgam of reasoning and proof has significant effect on middle school students' mathematical learning, this study aims to investigate middle grade students' tendencies while reasoning the correctness of statements related to numbers. The sample included 272 middle grade students, specifically 69 of them were sixth grade students (25.4%), 101 of them were seventh grade students (37.1%) and 102 of them were eighth grade students (37.5%). Data was gathered through an achievement test including 2 essay types of problems about algebra. The answers of two items were analyzed both quantitatively and qualitatively in terms of students' solutions strategies while reasoning the correctness of the statements. Similar on the findings in the literature, most of the students, in all grade levels, used numerical examples to judge the statements. Moreover the results also showed that the majority of these students appear to believe that providing one or more selected examples is sufficient to show the correctness of the statement. Hence based on the findings of the study, even students in earlier ages have proving and reasoning abilities their reasoning's generally based on the empirical evidences. Therefore, it is suggested that examples and example-based reasoning can be a fundamental role on to generate systematical reasoning and proof insight in earlier ages.

Keywords: reasoning, mathematics learning, middle grade students

Procedia PDF Downloads 410
3275 Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth

Authors: Bouzidi Yassine

Abstract:

This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner.

Keywords: initial absorption, cover concrete, compressive strength, carbonation depth

Procedia PDF Downloads 320
3274 Fengqiao: An Ongoing Experiment with 'UrbanMemory' Theory in an Ancient Town and ItsDesign Experience

Authors: Yibei Ye, Lei Xu, Zhenyu Cao

Abstract:

Ancient town is a unique carrier of urban culture, maintaining the core culture of a region and continuing the urban context. Fengqiao, a nearly 2000-year-old town was on the brink of dilapidation in the past few decades. The town faced such problems as poor construction quality, environmental degeneration, inadequate open space, cultural characteristics and industry vitality. Therefore, the research upholds the principle of ‘organic renewal’ and puts forward three practical updated strategies which are ‘Repair Old as Ever,' ‘Activate Function’ and ‘Fill in with The New’. Also as a participant in updating the design, the author aims to ‘keep the memory of the history and see the development of the present’ as the goal of updating the design and regards the process of town renewal as the experimental venue for realizing this purpose. The research will sum up innovations on the designing process and the engineering progress in the past two years, and find out the innovation experiment and the effect of its implementation on the methodological level of the organic renewal design in Fengqiao ancient town. From here, we can also enjoy the very characteristic development trend presented by China in the design practice of the organic renewal in the ancient town.

Keywords: characteristic town, Fengqiao, organic renewal, urban memory

Procedia PDF Downloads 147
3273 Robust Data Image Watermarking for Data Security

Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan

Abstract:

In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.

Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms

Procedia PDF Downloads 495
3272 Quantification of Lawsone and Adulterants in Commercial Henna Products

Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen

Abstract:

The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.

Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone

Procedia PDF Downloads 444
3271 Characterization of Vegetable Wastes and Its Potential Use for Hydrogen and Methane Production via Dark Anaerobic Fermentation

Authors: Ajay Dwivedi, M. Suresh Kumar, A. N. Vaidya

Abstract:

The problem of fruit and vegetable waste management is a grave one and with ever increasing need to feed the exponentially growing population, more and more solid waste in the form of fruit and vegetables waste are generated and its management has become one of the key issues in protection of environment. Energy generation from fruit and vegetables waste by dark anaerobic fermentation is a recent an interesting avenue effective management of solid waste as well as for generating free and cheap energy. In the present study 17 vegetables were characterized for their physical as well as chemical properties, these characteristics were used to determine the hydrogen and methane potentials of vegetable from various models, and also lab scale batch experiments were performed to determine their actual hydrogen and methane production capacity. Lab scale batch experiments proved that vegetable waste can be used as effective substrate for bio hydrogen and methane production, however the expected yield of bio hydrogen and methane was much lower than predicted by models, this was due to the fact that other vital experimental parameters such as pH, total solids content, food to microorganism ratio was not optimized.

Keywords: vegetable waste, physico-chemical characteristics, hydrogen, methane

Procedia PDF Downloads 413
3270 3D Frictionless Contact Case between the Structure of E-Bike and the Ground

Authors: Lele Zhang, Hui Leng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improved safety structure of e-bike will be confirmed with experimental data.

Keywords: frictionless contact, penalty method, e-bike, finite element

Procedia PDF Downloads 263
3269 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 172
3268 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 359
3267 Erosion Modeling of Surface Water Systems for Long Term Simulations

Authors: Devika Nair, Sean Bellairs, Ken Evans

Abstract:

Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.

Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems

Procedia PDF Downloads 71
3266 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area

Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos

Abstract:

Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area make it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors, and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East. This publication was made possible by a NPRP award [NPRP 7-649-2-241] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: particulate matter, emissions, fugitive, construction, air pollution

Procedia PDF Downloads 338
3265 Thermal Neutron Detection Efficiency as a Function of Film Thickness for Front and Back Irradiation Detector Devices Coated with ¹⁰B, ⁶LiF, and Pure Li Thin Films

Authors: Vedant Subhash

Abstract:

This paper discusses the physics of the detection of thermal neutrons using thin-film coated semiconductor detectors. The thermal neutron detection efficiency as a function of film thickness is calculated for the front and back irradiation detector devices coated with ¹⁰B, ⁶LiF, and pure Li thin films. The detection efficiency for back irradiation devices is 4.15% that is slightly higher than that for front irradiation detectors, 4.0% for ¹⁰B films of thickness 2.4μm. The theoretically calculated thermal neutron detection efficiency using ¹⁰B film thickness of 1.1 μm for the back irradiation device is 3.0367%, which has an offset of 0.0367% from the experimental value of 3.0%. The detection efficiency values are compared and proved consistent with the given calculations.

Keywords: detection efficiency, neutron detection, semiconductor detectors, thermal neutrons

Procedia PDF Downloads 118
3264 Seismic Performance of Micropiles in Sand with Predrilled Oversized Holes

Authors: Cui Fu, Yi-Zhou Zhuang, Sheng-Zhi Wang

Abstract:

Full scale tests of six micropiles with different predrilled-hole parameters under low frequency cyclic lateral loading in-sand were carried out using the MTS hydraulic loading system to analyze the seismic performance of micropiles. Hysteresis curves, skeleton curves, energy dissipation capacity and ductility of micropiles were investigated. The experimental results show the hysteresis curves appear like plump bows in the elastic–plastic stage and failure stage which exhibit good hysteretic characteristics without pinching phenomena and good energy dissipating capacities. The ductility coefficient varies from 2.51 to 3.54 and the depth and loose backfill of oversized holes can improve ductility, but the diameter of predrilled-hole has a limited effect on enhancing its ductility. These findings and conclusions could make contribution to the practical application of the semi-integral abutment bridges and provide a reference for the predrilled oversized hole technology in integral abutment bridges.

Keywords: ductility, energy dissipation capacity, micropile with predrilled oversized hole, seismic performance, semi-integral abutment bridge

Procedia PDF Downloads 423
3263 Effect of Problem Based Learning (PBL) Activities to Thai Undergraduate Student Teachers Attitude and Their Achievement

Authors: Thanawit Tongmai, Chatchawan Saewor

Abstract:

Learning management is very important for students’ development. To promote students’ potential, the teacher should design appropriate learning activity that brings their students potential out. Problem based learning has been using worldwide and it has presented numerous of success. This research aims to study third year students’ attitude and their achievement in scientific research course. To find the results, mix method was used to design research conduction. The researcher used PBL and reflection activity in the class. The students had to choose a topic, reviewed information, designed experimental, wrote academic report and presented their research by themselves. The researcher was only a facilitator. Reflection activity was used to progressing and consulting their research. The data was collected along with research conduction by questionnaire and test, including attitude, opinion and their achievement. The result of this study showed that 74.71% from all of students (n = 87) benefited from PBL and reflection activity, while 25.19% were just satisfied. 100% of students had a positive reflection toward PBL activity and they believed that PBL was the best pedagogy method for scientific research course. The achievements of these students were higher than the previous study (P < 0.05). The student’s learning achievement, A, B+ and B, was 48.28, 28.74 and 22.98% respectively. Therefore, it can conclude that PBL activity is appropriate for scientific research course and it can also promote student’s achievement.

Keywords: reflection, attitude, learning, achievement, PBL

Procedia PDF Downloads 272
3262 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar

Abstract:

The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.

Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW

Procedia PDF Downloads 395
3261 Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates

Authors: Jiawei Chen, Jia Qu, Dianwei Ju

Abstract:

316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety.

Keywords: impact stretch, 316L stainless steel, strain rate, real stress-strain, normalization

Procedia PDF Downloads 265
3260 Verification of Space System Dynamics Using the MATLAB Identification Toolbox in Space Qualification Test

Authors: Yuri V. Kim

Abstract:

This article presents a new approach to the Functional Testing of Space Systems (SS). It can be considered as a generic test and used for a wide class of SS that from the point of view of System Dynamics and Control may be described by the ordinary differential equations. Suggested methodology is based on using semi-natural experiment- laboratory stand that doesn’t require complicated, precise and expensive technological control-verification equipment. However, it allows for testing system as a whole totally assembled unit during Assembling, Integration and Testing (AIT) activities, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data is then inserted in laboratory PC where it is post-experiment processed by Matlab/Simulink Identification Toolbox. It allows for estimating system dynamics in form of estimation of system differential equations by the experimental way and comparing them with expected mathematical model prematurely verified by mathematical simulation during the design process.

Keywords: system dynamics, space system ground tests and space qualification, system dynamics identification, satellite attitude control, assembling, integration and testing

Procedia PDF Downloads 146
3259 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition

Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria

Abstract:

Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.

Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses

Procedia PDF Downloads 144
3258 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.

Keywords: molecular dynamics, high-intensity, nanosecond, electroporation

Procedia PDF Downloads 100