Search results for: web usage data
25610 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 30825609 Adsorption of Peppermint Essential Oil by Polypropylene Nanofiber
Authors: Duduku Krishnaiah, S. M. Anisuzzaman, Kumaran Govindaraj, Chiam Chel Ken, Zykamilia Kamin
Abstract:
Pure essential oil is highly demanded in the market since most of the so-called pure essential oils in the market contains alcohol. This is because of the usage of alcohol in separating oil and water mixture. Removal of pure essential oil from water without using any chemical solvent has become a challenging issue. Adsorbents generally have the properties of separating hydrophobic oil from hydrophilic mixture. Polypropylen nanofiber is a thermoplastic polymer which is produced from propylene. It was used as an adsorbent in this study. Based on the research, it was found that the polypropylene nanofiber was able to adsorb peppermint oil from the aqueous solution over a wide range of concentration. Based on scanning electron microscope (SEM), nanofiber has very small nano diameter fiber size in average before the adsorption and larger scaled average diameter of fibers after adsorption which indicates that smaller diameter of nanofiber enhances the adsorption process. The adsorption capacity of peppermint oil increases as the initial concentration of peppermint oil and amount of polypropylene nanofiber used increases. The maximum adsorption capacity of polypropylene nanofiber was found to be 689.5 mg/g at (T= 30°C). Moreover, the adsorption capacity of peppermint oil decreases as the temperature of solution increases. The equilibrium data of polypropylene nanofiber is best represented by Freundlich isotherm with the maximum adsorption capacity of 689.5 mg/g. The adsorption kinetics of polypropylene nanofiber was best represented by pseudo-second order model.Keywords: nanofiber, adsorption, peppermint essential oil, isotherms, adsorption kinetics
Procedia PDF Downloads 15925608 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40325607 An Empirical Study of the Impacts of Big Data on Firm Performance
Authors: Thuan Nguyen
Abstract:
In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient
Procedia PDF Downloads 24525606 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 40525605 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study
Authors: Ramanpreet, Gursatej Gandhi
Abstract:
Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter
Procedia PDF Downloads 15825604 Production and Leftovers Usage Policies to Minimize Food Waste under Uncertain and Correlated Demand
Authors: Esma Birisci, Ronald McGarvey
Abstract:
One of the common problems in food service industry is demand uncertainty. This research presents a multi-criteria optimization approach to identify the efficient frontier of points lying between the minimum-waste and minimum-shortfall solutions within uncertain demand environment. It also addresses correlation across demands for items (e.g., hamburgers are often demanded with french fries). Reducing overproduction food waste (and its corresponding environmental impacts) and an aversion to shortfalls (leave some customer hungry) need to consider as two contradictory objectives in an all-you-care-to-eat environment food service operation. We identify optimal production adjustments relative to demand forecasts, demand thresholds for utilization of leftovers, and percentages of demand to be satisfied by leftovers, considering two alternative metrics for overproduction waste: mass; and greenhouse gas emissions. Demand uncertainty and demand correlations are addressed using a kernel density estimation approach. A statistical analysis of the changes in decision variable values across each of the efficient frontiers can then be performed to identify the key variables that could be modified to reduce the amount of wasted food at minimal increase in shortfalls. We illustrate our approach with an application to empirical data from Campus Dining Services operations at the University of Missouri.Keywords: environmental studies, food waste, production planning, uncertain and correlated demand
Procedia PDF Downloads 37225603 Trends of Public-Private Partnership Infrastructure in Thailand
Authors: Wasaporn Techapeeraparnich
Abstract:
Bringing private investor involving in providing public infrastructure have been increasingly used worldwide, and there is no exception for developing countries like Thailand. Recently, there is a huge investment opportunity for public-private partnership (PPP) in Thailand, especially in the transportation sector. This paper analyses the development of the PPP since the early beginning of PPP in different service sectors. It also summarizes the development of PPP and its application in terms of usage, opportunities and trends particularly in the transport sector. The results are aimed to draw some lessons learned for future development.Keywords: case study, public-private partnership, transportation, Thailand
Procedia PDF Downloads 43425602 Factors Impeding Learners’ Use of the Blackboard System in Kingdom of Saudi Arabia
Authors: Omran Alharbi, Victor Lally
Abstract:
In recent decades, a number of educational institutions around the world have come to depend on technology such as the Blackboard system to improve their educational environment. On the other hand, there are many factors that delay the usage of this technology, especially in developing nations such as Saudi Arabia. The goal of this study was to investigate learner’s views of the use of Blackboard in one Saudi university in order to gain a comprehensive view of the factors that delay the implementation of technology in Saudi institutions. This study utilizes a qualitative approach, with data being collected through semi-structured interviews. Six participants from different disciplines took part in this study. The findings indicated that there are two levels of factors that affect students’ use of the Blackboard system. These are factors at the institutional level, such as lack of technical support and lack of training support, which lead to insufficient training related to the Blackboard system. The second level of factors is at the individual level, for example, a lack of teacher motivation and encouragement. In addition, students do not have sufficient levels of skills or knowledge related to how to use the Blackboard in their learning. Conclusion: learners confronted and faced two main types of factors (at the institution level and individual level) that delayed and impeded their learning. Institutions in KSA should take steps and implement strategies to remove or reduce these factors in order to allow students to benefit from the latest technology in their learning.Keywords: blackboard, factors, KSA, learners
Procedia PDF Downloads 21425601 The Perspective on Data Collection Instruments for Younger Learners
Authors: Hatice Kübra Koç
Abstract:
For academia, collecting reliable and valid data is one of the most significant issues for researchers. However, it is not the same procedure for all different target groups; meanwhile, during data collection from teenagers, young adults, or adults, researchers can use common data collection tools such as questionnaires, interviews, and semi-structured interviews; yet, for young learners and very young ones, these reliable and valid data collection tools cannot be easily designed or applied by the researchers. In this study, firstly, common data collection tools are examined for ‘very young’ and ‘young learners’ participant groups since it is thought that the quality and efficiency of an academic study is mainly based on its valid and correct data collection and data analysis procedure. Secondly, two different data collection instruments for very young and young learners are stated as discussing the efficacy of them. Finally, a suggested data collection tool – a performance-based questionnaire- which is specifically developed for ‘very young’ and ‘young learners’ participant groups in the field of teaching English to young learners as a foreign language is presented in this current study. The designing procedure and suggested items/factors for the suggested data collection tool are accordingly revealed at the end of the study to help researchers have studied with young and very learners.Keywords: data collection instruments, performance-based questionnaire, young learners, very young learners
Procedia PDF Downloads 9225600 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas
Authors: Thulane Paepae, Tumisang Seodigeng
Abstract:
This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.Keywords: attainable regions, dimethyl ether, optimal reaction network, GH Space
Procedia PDF Downloads 24025599 Implementation of Enhanced Recovery after Surgery (ERAS) Protocols in Laparoscopic Sleeve Gastrectomy (LSG); A Systematic Review and Meta-analysis
Authors: Misbah Nizamani, Saira Malik
Abstract:
Introduction: Bariatric surgery is the most effective treatment for patients suffering from morbid obesity. Laparoscopic sleeve gastrectomy (LSG) accounts for over 50% of total bariatric procedures. The aim of our meta-analysis is to investigate the effectiveness and safety of Enhanced Recovery After Surgery (ERAS) protocols for patients undergoing laparoscopic sleeve gastrectomy. Method: To gather data, we searched PubMed, Google Scholar, ScienceDirect, and Cochrane Central. Eligible studies were randomized controlled trials and cohort studies involving adult patients (≥18 years) undergoing bariatric surgeries, i.e., Laparoscopic sleeve gastrectomy. Outcome measures included LOS, postoperative narcotic usage, postoperative pain score, postoperative nausea and vomiting, postoperative complications and mortality, emergency department visits and readmission rates. RevMan version 5.4 was used to analyze outcomes. Results: Three RCTs and three cohorts with 1522 patients were included in this study. ERAS group and control group were compared for eight outcomes. LOS was reduced significantly in the intervention group (p=0.00001), readmission rates had borderline differences (p=0.35) and higher postoperative complications in the control group, but the result was non-significant (p=0.68), whereas postoperative pain score was significantly reduced (p=0.005). Total MME requirements became significant after performing sensitivity analysis (p= 0.0004). Postoperative mortality could not be analyzed on account of invalid data showing 0% mortality in two cohort studies. Conclusion: This systemic review indicated the effectiveness of the application of ERAS protocols in LSG in reducing the length of stay, post-operative pain and total MME requirements postoperatively, indicating the feasibility and assurance of its application.Keywords: eras protocol, sleeve gastrectomy, bariatric surgery, enhanced recovery after surgery
Procedia PDF Downloads 4025598 Game “EZZRA” as an Innovative Solution
Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan
Abstract:
There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation
Procedia PDF Downloads 7625597 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 3225596 A Corpus-Based Diachronic Study on Indefinite Pronominal Anaphora in English
Authors: Qiong Hu
Abstract:
From old English to modern English, the gender category has changed from grammatical gender system to natural gender system. The word classes that reflected gender has changed from pronouns, adjectives, and numerals in old English to only pronouns in modern English. In present-day English, the third person singular pronouns are the only paradigm that keeps an intact gender. 'He' and 'they' used as epicene pronouns are one of the two commonest phenomena of gender disagreement (the other being those against the natural gender). Considering the convenience of corpus concordance, epicene pronoun usage is selected in this study in which the anaphors are restricted to possessives (eg. his, their), and the antecedents are restricted to compound indefinite pronouns (eg. someone, somebody). Factors like writing form (eg. someone vs. some one), the semantics of the prefixes (eg. some- vs. any-), and suffixes (eg. -one vs. -body), as well as frequency, are taken into consideration. Statistics indicate that 'their' is increasingly used as the epicene pronoun compared with the decline of 'his' (when both writing forms are considered). This is influenced by social factors such as feminist movement, as well as the semantics and frequency of antecedents. Their (plural) used in anaphoric reference to various indefinite pronouns (singular in form) can also be treated as number variation in third person pronouns, and the trend that 'their' in place of his can also be treated as a change in number category. Among different candidates for the gender-neutral function, 'their' is proven to be the most promising one based on the diachronic data. This does not reject any new competitors in the future which still remains to be seen.Keywords: language variation and change, epicene pronouns, gender, number
Procedia PDF Downloads 18625595 The Storm in Us All: An Etymological Study of Tempest
Authors: David N. Prihoda
Abstract:
This paper charts the history of the English word Tempest from its origins in Proto-Indo European to its modern usage as a term for storms, both literal and metaphorical. It does so by way of considering the word’s morphology, semiotics, and phonetics. It references numerous language studies and dictionaries to chronicle the word’s many steps along that path, from demarcation of measurement to assessment of time, all the way to an observation about the weather or the human psyche. The conclusive findings show that tempest has undergone numerous changes throughout its history, and these changes interestingly parallel its connotations as a symbol for both chaotic weather and the chaos of the human spiritKeywords: Tempest, etymology, language origins, English
Procedia PDF Downloads 11425594 An Empirical Analysis of the Effects of Corporate Derivatives Use on the Underlying Stock Price Exposure: South African Evidence
Authors: Edson Vengesai
Abstract:
Derivative products have become essential instruments in portfolio diversification, price discovery, and, most importantly, risk hedging. Derivatives are complex instruments; their valuation, volatility implications, and real impact on the underlying assets' behaviour are not well understood. Little is documented empirically, with conflicting conclusions on how these instruments affect firm risk exposures. Given the growing interest in using derivatives in risk management and portfolio engineering, this study examines the practical impact of derivative usage on the underlying stock price exposure and systematic risk. The paper uses data from South African listed firms. The study employs GARCH models to understand the effect of derivative uses on conditional stock volatility. The GMM models are used to estimate the effect of derivatives use on stocks' systematic risk as measured by Beta and on the total risk of stocks as measured by the standard deviation of returns. The results provide evidence on whether derivatives use is instrumental in reducing stock returns' systematic and total risk. The results are subjected to numerous controls for robustness, including financial leverage, firm size, growth opportunities, and macroeconomic effects.Keywords: derivatives use, hedging, volatility, stock price exposure
Procedia PDF Downloads 10825593 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts
Authors: Mindaugas Zavalis
Abstract:
Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability
Procedia PDF Downloads 6825592 Preliminary Experience in Multiple Green Health Hospital Construction
Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang
Abstract:
Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.Keywords: energy efficiency, environmental education, green hospital, sustainable development
Procedia PDF Downloads 7925591 Characteristic Function in Estimation of Probability Distribution Moments
Authors: Vladimir S. Timofeev
Abstract:
In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation
Procedia PDF Downloads 50425590 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 9425589 Types of Taboo Expressions in Igbo Society
Authors: Christian Nwaoha
Abstract:
This study investigates taboo expressions and classifications in Igbo discourse, their socio-cultural factors affecting their usage. The study classifies Linguistic taboo expressions by their discourse into five categories: morality-related taboo, veneration-related, decorum-related, religion-related and fear-related taboo expressions. This study argues that while religion-related and decorum-related taboos are unmentioned and have no euphemistic synonyms is because they are closely tied to various Igbo deities and objects, while morality, veneration, and fear-related have permissible alternatives. A descriptive research design was adopted and the data collection was by questionnaire and oral interview. The result of the research proves that aside of the categories of taboos in Igbo, socially, the styles of discourse have some levels of gender, age and class-connected taboos, which for instance, in gender-connected taboos, women in Igbo are forbidden to use style of discourse that are connected with genital organs in social gathering comprising men and women. The same has to do with class-connected where much younger men can use some certain expressions that are taboo, but in much older men gathering such expressions would be tagged forbidden in the context. The study further reveals that there are occasions in which these taboos can be used with reasons. The research concludes that using these taboos in literary text can enhance clear understanding of Igbo taboos to the users and learners of Igbo language.Keywords: taboo expressions, classifications, Igbo, socio-cultural factors, discourse
Procedia PDF Downloads 23025588 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 11325587 Circulating Public Perception on Agroforestry: Discourse Networks Analysis Using Social Media and Online News Media in Four Countries of the Sahel Region
Authors: Luisa Müting, Wisnu Harto Adiwijoyo
Abstract:
Agroforestry systems transform the agricultural landscapes in the Sahel region of Africa, providing food and farming products consumed for subsistence or sold for income. In the incrementally dry climate of the Sahel region, the spreading of agroforestry practices is integral for policymaker efforts to counteract land degradation and provide soil restoration in the region. Several measures on agroforestry practices have been implemented in the region by governmental and non-governmental institutions in recent years. However, despite the efforts, past research shows that awareness of how policies and interventions are being consumed and perceived by the public remains low. Therefore, interpreting public policy dilemmas by analyzing the public perception regarding agroforestry concepts and practices is necessary. Public perceptions and discourses can be an essential driver or constraint for the adoption of agroforestry practices in the region. Thus, understanding the public discourse behavior of crucial stakeholders could assist policymakers in developing inclusive and contextual policies that are relevant to the context of agroforestry adoption in Sahel region. To answer how information about agroforestry spreads and is perceived by the public. As internet usage increased drastically over the past decade, reaching a share of 33 percent of the population being connected to the internet, this research is based on online conversation data. Social media data from Facebook are gathered daily between April 2021 and April 2022 in Djibouti, Senegal, Mali, and Nigeria based on their share of active internet users compared to other countries in the Sahel region. A systematic methodology was applied to the extracted social media using discourse network analysis (DNA). This study then clustered the data by the types of agroforestry practices, sentiments, and country. Additionally, this research extracted the text data from online news media during the same period to pinpoint events related to the topic of agroforestry. The preliminary result indicates that tree management, crops, and livestock integration, diversifying species and genetic resources, and focusing on interactions and productivity across the agricultural system; are the most notable keywords in agroforestry-related conversations within the four countries in the Sahel region. Additionally, approximately 84 percent of the discussions were still dominated by big actors, such as NGO or government actors. Furthermore, as a subject of communication within agroforestry discourse, the Great Green Wall initiative generates almost 60 percent positive sentiment within the captured social media data, effectively having a more significant outreach than general agroforestry topics. This study provides an understanding for scholars and policymakers with a springboard for further research or policy design on agroforestry in the four countries of the Sahel region with systematically uncaptured novel data from the internet.Keywords: sahel, djibouti, senegal, mali, nigeria, social networks analysis, public discourse analysis, sentiment analysis, content analysis, social media, online news, agroforestry, land restoration
Procedia PDF Downloads 10225586 Using Equipment Telemetry Data for Condition-Based maintenance decisions
Authors: John Q. Todd
Abstract:
Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.Keywords: condition based maintenance, equipment data, metrics, alerts
Procedia PDF Downloads 18825585 Maximizing the Efficiency of Knowledge Management Systems
Authors: Tori Reddy Dodla, Laura Ann Jones
Abstract:
The objective of this study was to propose strategies to improve the efficiency of Knowledge Management Systems (KMS). This study highlights best practices from various industries to create an overall summary of Knowledge Management (KM) and efficiency in organizational performance. Results indicated eleven best practices for maximizing the efficiency of organizational KMS that can be divided into four categories: Designing the KMS, Identifying Case Studies, Implementing the KMS, and Promoting adoption and usage. Our findings can be used as a foundation for scholars to conduct further research on KMS efficiency.Keywords: artificial intelligence, knowledge management efficiency, knowledge management systems, organizational performance
Procedia PDF Downloads 11325584 Ethics Can Enable Open Source Data Research
Authors: Dragana Calic
Abstract:
The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions
Procedia PDF Downloads 28425583 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis
Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks
Abstract:
Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol
Procedia PDF Downloads 52225582 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Authors: Maciej Jedrzejczyk, Karolina Marzantowicz
Abstract:
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids
Procedia PDF Downloads 30025581 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 465