Search results for: water supply systems
17628 Sustainable Urban Sewer Systems as Stormwater Management and Control Mechanisms
Authors: Ezequiel Garcia-Rodriguez, Lenin Hernandez-Ferreyra, Luis Ochoa-Franco
Abstract:
The Sustainable Sewer Urban Systems (SSUS) are mechanisms integrated into the cities for manage rain water, reducing its runoff volume and velocity, enhancing the rain water quality and preventing flooding and other catastrophes associated to the rain, as well as improving the energy efficiency. The objective of SSUS is to mimic or to equal the runoff and infiltration natural conditions of the land before its urbanization, reducing runoff that may cause troubles within the houses, as well as flooding. At the same time, energy for warming homes and for pumping and treating water is reduced, contributing to the reduction of CO₂ emissions and therefore contributing to reduce the climate change. This paper contains an evaluation of the advantages that SSUS may offer within a zone of Morelia City, Mexico, applying support tools for decision making. The hydrological conditions prior to and after the urbanization of the study area were analyzed to propose the recommended SSUS. Different types of SSUS were proposed in this case study, assessing their effect on the rainwater flow behavior within the study area. SSUS usage in this case resulted, positively, in an important reduction of the magnitude and velocity of runoff, reducing therefore the risk of flooding. So that, it is recommended the implementation of SSUS in this case.Keywords: energy efficiency, morelia, sustainablesewer, urban systems
Procedia PDF Downloads 6317627 Factors Affecting Sustainable Water Management in Water-Challenged Societies: Case Study of Doha Qatar
Abstract:
Qatar is a desert country with scarce fresh water resources, low rainfall and very high evaporation rate. It meets the majority of its water requirement through desalination process which is very expensive. Pressures are expected to mount on account of high population growth rate and demands posed by being the venue for 2022 FIFA World cup. This study contributes towards advancing the knowledge of the factors affecting sustainable water consumption in water-challenged societies by examining the case of Doha, Qatar. Survey research methods have been predominantly used for this research. Surveys were conducted using self-administered questionnaires. Focused group interviews and personal interviews with Qatar’s residents were also used to obtain deeper insights. Salient socio-cultural factors that drive the water consumption behavior of the public and which in turn affect sustainable water management practices are determined. Suggestions for reducing water consumption as well as fiscal and punitive measures to curb overuse and misuse of water are also identified.Keywords: Middle East, Qatar, water consumption, water management, sustainability
Procedia PDF Downloads 24417626 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence
Authors: Srinivas Vangari
Abstract:
With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand
Procedia PDF Downloads 2117625 Planning a European Policy for Increasing Graduate Population: The Conditions That Count
Authors: Alice Civera, Mattia Cattaneo, Michele Meoli, Stefano Paleari
Abstract:
Despite the fact that more equal access to higher education has been an objective public policy for several decades, little is known about the effectiveness of alternative means for achieving such goal. Indeed, nowadays, high level of graduate population can be observed both in countries with the high and low level of fees, or high and low level of public expenditure in higher education. This paper surveys the extant literature providing some background on the economic concepts of the higher education market, and reviews key determinants of demand and supply. A theoretical model of aggregate demand and supply of higher education is derived, with the aim to facilitate the understanding of the challenges in today’s higher education systems, as well as the opportunities for development. The model is validated on some exemplary case studies describing the different relationship between the level of public investment and levels of graduate population and helps to derive general implications. In addition, using a two-stage least squares model, we build a macroeconomic model of supply and demand for European higher education. The model allows interpreting policies shifting either the supply or the demand for higher education, and allows taking into consideration contextual conditions with the aim of comparing divergent policies under a common framework. Results show that the same policy objective (i.e., increasing graduate population) can be obtained by shifting either the demand function (i.e., by strengthening student aid) or the supply function (i.e., by directly supporting higher education institutions). Under this theoretical perspective, the level of tuition fees is irrelevant, and empirically we can observe high levels of graduate population in both countries with high (i.e., the UK) or low (i.e., Germany) levels of tuition fees. In practice, this model provides a conceptual framework to help better understanding what are the external conditions that need to be considered, when planning a policy for increasing graduate population. Extrapolating a policy from results in different countries, under this perspective, is a poor solution when contingent factors are not addressed. The second implication of this conceptual framework is that policies addressing the supply or the demand function needs to address different contingencies. In other words, a government aiming at increasing graduate population needs to implement complementary policies, designing them according to the side of the market that is interested. For example, a ‘supply-driven’ intervention, through the direct financial support of higher education institutions, needs to address the issue of institutions’ moral hazard, by creating incentives to supply higher education services in efficient conditions. By contrast, a ‘demand-driven’ policy, providing student aids, need to tackle the students’ moral hazard, by creating an incentive to responsible behavior.Keywords: graduates, higher education, higher education policies, tuition fees
Procedia PDF Downloads 16617624 Application of Fuzzy Analytical Hierarchical Process in Evaluation Supply Chain Performance Measurement
Authors: Riyadh Jamegh, AllaEldin Kassam, Sawsan Sabih
Abstract:
In modern trends of market, organizations face high-pressure environment which is characterized by globalization, high competition, and customer orientation, so it is very crucial to control and know the weak and strong points of the supply chain in order to improve their performance. So the performance measurements presented as an important tool of supply chain management because it's enabled the organizations to control, understand, and improve their efficiency. This paper aims to identify supply chain performance measurement (SCPM) by using Fuzzy Analytical Hierarchical Process (FAHP). In our real application, the performance of organizations estimated based on four parameters these are cost parameter indicator of cost (CPI), inventory turnover parameter indicator of (INPI), raw material parameter (RMPI), and safety stock level parameter indicator (SSPI), these indicators vary in impact on performance depending upon policies and strategies of organization. In this research (FAHP) technique has been used to identify the importance of such parameters, and then first fuzzy inference (FIR1) is applied to identify performance indicator of each factor depending on the importance of the factor and its value. Then, the second fuzzy inference (FIR2) also applied to integrate the effect of these indicators and identify (SCPM) which represent the required output. The developed approach provides an effective tool for evaluation of supply chain performance measurement.Keywords: fuzzy performance measurements, supply chain, fuzzy logic, key performance indicator
Procedia PDF Downloads 14117623 A Reference Framework Integrating Lean and Green Principles within Supply Chain Management
Authors: M. Bortolini, E. Ferrari, F. G. Galizia, C. Mora
Abstract:
In the last decades, an increasing set of companies adopted lean philosophy to improve their productivity and efficiency promoting the so-called continuous improvement concept, reducing waste of time and cutting off no-value added activities. In parallel, increasing attention rises toward green practice and management through the spread of the green supply chain pattern, to minimise landfilled waste, drained wastewater and pollutant emissions. Starting from a review on contributions deepening lean and green principles applied to supply chain management, the most relevant drivers to measure the performance of industrial processes are pointed out. Specific attention is paid on the role of cost because it is of key importance and it crosses both lean and green principles. This analysis leads to figure out an original reference framework for integrating lean and green principles in designing and managing supply chains. The proposed framework supports the application, to the whole value chain or to parts of it, e.g. distribution network, assembly system, job-shop, storage system etc., of the lean-green integrated perspective. Evidences show that the combination of the lean and green practices lead to great results, higher than the sum of the performances from their separate application. Lean thinking has beneficial effects on green practices and, at the same time, methods allowing environmental savings generate positive effects on time reduction and process quality increase.Keywords: environmental sustainability, green supply chain, integrated framework, lean thinking, supply chain management
Procedia PDF Downloads 39417622 System Analysis on Compact Heat Storage in the Built Environment
Authors: Wilko Planje, Remco Pollé, Frank van Buuren
Abstract:
An increased share of renewable energy sources in the built environment implies the usage of energy buffers to match supply and demand and to prevent overloads of existing grids. Compact heat storage systems based on thermochemical materials (TCM) are promising to be incorporated in future installations as an alternative for regular thermal buffers. This is due to the high energy density (1 – 2 GJ/m3). In order to determine the feasibility of TCM-based systems on building level several installation configurations are simulated and analyzed for different mixes of renewable energy sources (solar thermal, PV, wind, underground, air) for apartments/multistore-buildings for the Dutch situation. Thereby capacity, volume and financial costs are calculated. The simulation consists of options to include the current and future wind power (sea and land) and local roof-attached PV or solar-thermal systems. Thereby, the compact thermal buffer and optionally an electric battery (typically 10 kWhe) form the local storage elements for energy matching and shaving purposes. Besides, electric-driven heat pumps (air / ground) can be included for efficient heat generation in case of power-to-heat. The total local installation provides both space heating, domestic hot water as well as electricity for a specific case with low-energy apartments (annually 9 GJth + 8 GJe) in the year 2025. The energy balance is completed with grid-supplied non-renewable electricity. Taking into account the grid capacities (permanent 1 kWe/household), spatial requirements for the thermal buffer (< 2.5 m3/household) and a desired minimum of 90% share of renewable energy per household on the total consumption the wind-powered scenario results in acceptable sizes of compact thermal buffers with an energy-capacity of 4 - 5 GJth per household. This buffer is combined with a 10 kWhe battery and air source heat pump system. Compact thermal buffers of less than 1 GJ (typically volumes 0.5 - 1 m3) are possible when the installed wind-power is increased with a factor 5. In case of 15-fold of installed wind power compact heat storage devices compete with 1000 L water buffers. The conclusion is that compact heat storage systems can be of interest in the coming decades in combination with well-retrofitted low energy residences based on the current trends of installed renewable energy power.Keywords: compact thermal storage, thermochemical material, built environment, renewable energy
Procedia PDF Downloads 24417621 Characterization of Mg/Sc System for X-Ray Spectroscopy in the Water Window Range
Authors: Hina Verma, Karine Le Guen, Mohammed H. Modi, Rajnish Dhawan, Philippe Jonnard
Abstract:
Periodic multilayer mirrors have potential application as optical components in X-ray microscopy, particularly working in the water window region. The water window range, located between the absorption edges of carbon (285 eV) and oxygen (530eV), along with the presence of nitrogen K absorption edge (395 eV), makes it a powerful method for imaging biological samples due to the natural optical contrast between water and carbon. We characterized bilayer, trilayer, quadrilayer, and multilayer systems of Mg/Sc with ZrC thin layers introduced as a barrier layer and capping layer prepared by ion beam sputtering. The introduction of ZrC as a barrier layer is expected to improve the structure of the Mg/Sc system. The ZrC capping layer also prevents the stack from oxidation. The structural analysis of the Mg/Sc systems was carried out by using grazing incidence X-ray reflectivity (GIXRR) to obtain non-destructively a first description of the structural parameters, thickness, roughness, and density of the layers. Resonant soft X-ray reflectivity measurements in the vicinity of Sc L-absorption edge were performed to investigate and quantify the atomic distribution of deposited layers. Near absorption edge, the atomic scattering factor of an element changes sharply depending on its chemical environment inside the structure.Keywords: buried interfaces, resonant soft X-ray reflectivity, X-ray optics, X-ray reflectivity
Procedia PDF Downloads 17717620 The Resistance of Fish Outside of Water Medium
Authors: Febri Ramadhan
Abstract:
Water medium is a vital necessity for the survival of fish. Fish can survive inside/outside of water medium within a certain time. By knowing the level of survival fish at outside of water medium, a person can transport the fish to a place with more efficiently. Transport of live fish from one place to another can be done with wet and dry media system. In this experiment the treatment-given the observed differences in fish species. This experiment aimed to test the degree of resilience of fish out of water media. Based on the ANOVA table is obtained, it can be concluded that the type of fish affects the level of resilience of fish outside the water (Fhit> Ftab).Keywords: fish, transport, retention rate, fish resiliance
Procedia PDF Downloads 33617619 Problems of Water Resources : Vulnerability to Climate Change, Modeling with Software WEAP 21 (Upper and Middle Cheliff)
Authors: Mehaiguene Madjid, Meddi Mohamed
Abstract:
The results of applying the model WEAP 21 or 'Water Evaluation and Planning System' in Upper and Middle Cheliff are presented in cartographic and graphic forms by considering two scenarios: -Reference scenario 1961-1990, -Climate change scenarios (low and high) for 2020 and 2050. These scenarios are presented together in the results and compared them to know the impact on aquatic systems and water resources. For the low scenario for 2050, a decrease in the rate of runoff / infiltration will be 81.4 to 3.7 Hm3 between 2010 and 2050. While for the high scenario for 2050, the reduction will be 87.2 to 78.9 Hm3 between 2010 and 2050. Comparing the two scenarios, shows that the water supplied will increase by 216.7 Hm3 to 596 Hm3 up to 2050 if we do not take account of climate change. Whereas, if climate change will decrease step by step: from 2010 to 2026: for the climate change scenario (high scenario) by 2050, water supplied from 346 Hm3 to 361 Hm3. That of the reference scenario (1961-1990) will increase to 379.7 Hm3 in 2050. This is caused by the increased demand (increased population, irrigated area, etc ). The balance water management basin is positive for the different Horizons and different situations. If we do not take account of climate change will be the outflow of 5881.4 Hm3. This excess at the basin can be used as part of a transfer for example.Keywords: balance water, management basin, climate change scenario, Upper and Middle Cheliff
Procedia PDF Downloads 31217618 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test
Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri
Abstract:
This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test
Procedia PDF Downloads 37917617 Assessment of Rooftop Rainwater Harvesting in Gomti Nagar, Lucknow
Authors: Rajkumar Ghosh
Abstract:
Water scarcity is a pressing issue in urban areas, even in smart cities where efficient resource management is a priority. This scarcity is mainly caused by factors such as lifestyle changes, excessive groundwater extraction, over-usage of water, rapid urbanization, and uncontrolled population growth. In the specific case of Gomti Nagar, Lucknow, Uttar Pradesh, India, the depletion of groundwater resources is particularly severe, leading to a water imbalance and posing a significant challenge for the region's sustainable development. The aim of this study is to address the water shortage in the Gomti Nagar region by focusing on the implementation of artificial groundwater recharge methods. Specifically, the research aims to investigate the effectiveness of rainwater collection through rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to reduce aquifer depletion and bridge the gap between groundwater recharge and extraction. The research methodology for this study involves the utilization of RTRWHs as the main method for collecting rainwater. This approach is considered effective in managing and conserving water resources in a sustainable manner. The focus is on implementing RTRWHs in residential and commercial buildings to maximize the collection of rainwater and its subsequent utilization for various purposes in the Gomti Nagar region. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage (0.04%) of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance of 24519 ML/yr in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. The findings of this study can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis. The data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. Statistical analysis and modelling techniques were employed to quantify the water imbalance and evaluate the effectiveness of RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. The study highlights the need for widespread adoption of RTRWHs in all buildings and emphasizes the importance of integrating such systems into the urban planning and development process. By doing so, smart cities like Gomti Nagar can achieve efficient water management, ensuring a better future with improved water availability for its residents.Keywords: rooftop rainwater harvesting, rainwater, water management, aquifer
Procedia PDF Downloads 9517616 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling
Procedia PDF Downloads 29817615 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas
Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu
Abstract:
Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.Keywords: climate change, water needs, balance sheet, water quality
Procedia PDF Downloads 7517614 Drought Stress and the Importance of Osmotic Adjustment
Authors: Hooman Rowshanaie
Abstract:
The majority of green plants have 70%-90% water, this amount depend on age of plants, species, tissues of plants and also the environmental conditions that plants growth and development on it. Because of intense plant demanding to achieve the available water for growing and developing, always plants need a water sources and also mechanisms to retention the water and reduction water loss under critical situation and water deficit conditions otherwise the yield of plants would be decreased. Decreasing the yield depend on genotypes, intense of water deficit and also growth stage. Recently the mechanisms and also compound that have major role to water stress adaption of plants would be consideration. Osmotic adjustment is one of the most important mechanisms in terms of this field that many valuable researches focused on it because the majority of organic and inorganic solutes directly or even indirectly have pivotal role in this phenomenon. The contribution of OA to prevent water loss in response to water deficit and resistance to water stress taken to consideration recently and also the organic and inorganic compounds to OA tended has a high rate of significant.Keywords: water deficit, drought stress, osmotic adjustment, organic compound, inorganic compound, solute
Procedia PDF Downloads 42017613 Brine Waste from Seawater Desalination in Malaysia
Authors: Cynthia Mahadi, Norhafezah Kasmuri
Abstract:
Water scarcity is a growing issue these days. As a result, saltwater is being considered a limitless supply of fresh water through the desalination process, which is likely to address the worldwide water crisis, including in Malaysia. This study aims to offer the best management practice for controlling brine discharge in Malaysia by comparing environmental regulations on brine waste management in other countries. Then, a survey was distributed to the public to acquire further information about their level of awareness of the harmful effects of brine waste and to find out their perspective on the proposed solutions to ensure the effectiveness of the measures. As a result, it has been revealed that Malaysia still lacks regulations regarding the disposal of brine waste. Thus, a recommendation based on practices in other nations has been put forth by this study. This study suggests that the government and Malaysia's environmental regulatory body should govern brine waste disposal in the Environmental Quality Act 1974. Also, to add the construction of a desalination plant in Schedule 1 of prescribed activities was necessary. Because desalination plants can harm the environment during both construction and operation, every proposal for the construction of a desalination plant should involve the submission of an environmental impact assessment (EIA).Keywords: seawater desalination, brine waste, environmental impact assessment, fuzzy Delphi method
Procedia PDF Downloads 8017612 The Competitive Power of Supply Chain Quality Management in Manufacturing Companies in Cameroon
Authors: Nicodemus Tiendem, Arrey Mbayong Napoleon
Abstract:
The heightening of competition and the quest for market share has left business persons and research communities re-examining and reinventing their competitive practices. A case in point is Porter’s generic strategy which has received a lot of criticism lately regarding its inability to maintain a company’s competitive power. This is because it focuses more on the organisation and ignores her external partners, who have a strong bearing on the company’s performance. This paper, therefore, sought to examine Porter’s generic strategies alongside supply chain quality management practices in terms of their effectiveness in building the competitive power of manufacturing companies in Cameroon. This was done with the use of primary data captured from a survey study across the supply chains of 20 manufacturing companies in Cameroon using a five-point Likert scale questionnaire. For each company, four 1st tier suppliers and four 1st tier distributors were carefully chosen to participate in the study alongside the companies themselves. In each case, attention was directed to persons involved in the supply chains of the companies. This gave a total of 180 entities comprising the supply chains of the 20 manufacturing companies involved in the study, making a total of 900 participants. The data was analysed using three multiple regression models to assess the effect of Porter’s generic strategy and supply chain quality management on the marketing performance of the companies. The findings proved that in such a competitive atmosphere, supply chain quality management is a better tool for marketing performance over Porter’s generic strategies and hence building the competitive power of the companies at all levels of the study. Although the study made use of convenience sampling, where sample selectivity biases the results, the findings aligned with many other recent developments in line with building the competitive power of manufacturing companies and thereby made the findings suitable for generalisation.Keywords: supply chain quality management, Porter’s generic strategies, competitive power, marketing performance, manufacturing companies, Cameroon
Procedia PDF Downloads 8817611 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model
Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki
Abstract:
As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China
Procedia PDF Downloads 28817610 Study on Ecological Water Demand Evaluation of Typical Mountainous Rivers in Zhejiang Province: Taking Kaihua River as an Example
Authors: Kaiping Xu, Aiju You, Lei Hua
Abstract:
In view of the ecological environmental problems and protection needs of mountainous rivers in Zhejiang province, a suitable ecological water demand evaluation system was established based on investigation and monitoring. Taking the Kaihua river as an example, the research on ecological water demand and the current situation evaluation were carried out. The main types of ecological water demand in Majin River are basic ecological flow and lake wetland outside the river, and instream flow and water demands for water quality in Zhongcun river. In the wet season, each ecological water demand is 18.05m3/s and 2.56m3 / s, and in the dry season is 3.00m3/s and 0.61m3/s. Three indexes of flow, duration and occurrence time are used to evaluate the ecological water demand. The degree of ecological water demand in the past three years is low level of satisfaction. Meanwhile, the existing problems are analyzed, and put forward reasonable and operable safeguards and suggestions.Keywords: Zhejiang province, mountainous river, ecological water demand, Kaihua river, evaluation
Procedia PDF Downloads 24117609 A Supply Chain Risk Management Model Based on Both Qualitative and Quantitative Approaches
Authors: Henry Lau, Dilupa Nakandala, Li Zhao
Abstract:
In today’s business, it is well-recognized that risk is an important factor that needs to be taken into consideration before a decision is made. Studies indicate that both the number of risks faced by organizations and their potential consequences are growing. Supply chain risk management has become one of the major concerns for practitioners and researchers. Supply chain leaders and scholars are now focusing on the importance of managing supply chain risk. In order to meet the challenge of managing and mitigating supply chain risk (SCR), we must first identify the different dimensions of SCR and assess its relevant probability and severity. SCR has been classified in many different ways, and there are no consistently accepted dimensions of SCRs and several different classifications are reported in the literature. Basically, supply chain risks can be classified into two dimensions namely disruption risk and operational risk. Disruption risks are those caused by events such as bankruptcy, natural disasters and terrorist attack. Operational risks are related to supply and demand coordination and uncertainty, such as uncertain demand and uncertain supply. Disruption risks are rare but severe and hard to manage, while operational risk can be reduced through effective SCM activities. Other SCRs include supply risk, process risk, demand risk and technology risk. In fact, the disorganized classification of SCR has created confusion for SCR scholars. Moreover, practitioners need to identify and assess SCR. As such, it is important to have an overarching framework tying all these SCR dimensions together for two reasons. First, it helps researchers use these terms for communication of ideas based on the same concept. Second, a shared understanding of the SCR dimensions will support the researchers to focus on the more important research objective: operationalization of SCR, which is very important for assessing SCR. In general, fresh food supply chain is subject to certain level of risks, such as supply risk (low quality, delivery failure, hot weather etc.) and demand risk (season food imbalance, new competitors). Effective strategies to mitigate fresh food supply chain risk are required to enhance operations. Before implementing effective mitigation strategies, we need to identify the risk sources and evaluate the risk level. However, assessing the supply chain risk is not an easy matter, and existing research mainly use qualitative method, such as risk assessment matrix. To address the relevant issues, this paper aims to analyze the risk factor of the fresh food supply chain using an approach comprising both fuzzy logic and hierarchical holographic modeling techniques. This novel approach is able to take advantage the benefits of both of these well-known techniques and at the same time offset their drawbacks in certain aspects. In order to develop this integrated approach, substantial research work is needed to effectively combine these two techniques in a seamless way, To validate the proposed integrated approach, a case study in a fresh food supply chain company was conducted to verify the feasibility of its functionality in a real environment.Keywords: fresh food supply chain, fuzzy logic, hierarchical holographic modelling, operationalization, supply chain risk
Procedia PDF Downloads 24317608 Erosion and Deposition of Terrestrial Soil Supplies Nutrients to Estuaries and Coastal Bays: A Flood Simulation Study of Sediment-Nutrient Flux
Authors: Kaitlyn O'Mara, Michele Burford
Abstract:
Estuaries and coastal bays can receive large quantities of sediment from surrounding catchments during flooding or high flow periods. Large river systems that feed freshwater into estuaries can flow through several catchments of varying geology. Human modification of catchments for agriculture, industry and urban use can contaminate soils with excess nutrients, trace metals and other pollutants. Land clearing, especially clearing of riparian vegetation, can accelerate erosion, mobilising, transporting and depositing soil particles into rivers, estuaries and coastal bays. In this study, a flood simulation experiment was used to study the flux of nutrients between soil particles and water during this erosion, transport and deposition process. Granite, sedimentary and basalt surface soils (as well as sub-soils of granite and sedimentary) were collected from eroding areas surrounding the Brisbane River, Australia. The <63 µm size fraction of each soil type was tumbled in freshwater for 3 days, to simulation flood erosion and transport, followed by stationary exposure to seawater for 4 weeks, to simulate deposition into estuaries. Filtered water samples were taken at multiple time points throughout the experiment and analysed for water nutrient concentrations. The highest rates of nutrient release occurred during the first hour of exposure to freshwater and seawater, indicating a chemical reaction with seawater that may act to release some nutrient particles that remain bound to the soil during turbulent freshwater transport. Although released at a slower rate than the first hour, all of the surface soil types showed continual ammonia, nitrite and nitrate release over the 4-week seawater exposure, suggesting that these soils may provide ongoing supply of these nutrients to estuarine waters after deposition. Basalt surface soil released the highest concentrations of phosphates and dissolved organic phosphorus. Basalt soils are found in much of the agricultural land surrounding the Brisbane River and contributed largely to the 2011 Brisbane River flood plume deposit in Moreton Bay, suggesting these soils may be a source of phosphate enrichment in the bay. The results of this study suggest that erosion of catchment soils during storm and flood events may be a source of nutrient supply in receiving waterways, both freshwater and marine, and that the amount of nutrient release following these events may be affected by the type of soil deposited. For example, flooding in different catchments of a river system over time may result in different algal and food web responses in receiving estuaries.Keywords: flood, nitrogen, nutrient, phosphorus, sediment, soil
Procedia PDF Downloads 18517607 Supply Chain Logistics Integration in Bahrain's Construction Industry
Authors: Randolf Von N. Salindo
Abstract:
The study was conducted to measure the logistics integration capabilities of selected companies in the Bahrain construction industry using the Supply Chain 2000 framework; and, determine the extent and direction of influence of these logistics capabilities and integration competencies on the supply chain performance of the firm. A total of 50 executive respondents (from supervisor to managing director level) from 22 construction and construction supplier firms participated in the study from September to November 2014. The results reveal that respondent Bahraini construction firms have significantly lower levels of logistics capabilities, but higher levels of logistics integration competencies compared to international benchmarks. Using stepwise multiple regression analysis, eight logistics capabilities of Bahraini constructions firms were identified to be positively associated with firm performance; with comprehensive metrics as the most positively dominant influential logistics capability. Activity based and total cost methodology is found to be the most negatively dominant influential logistics capability. In terms of logistics integration competencies, the study revealed that that customer integration, internal integration, and, measurement integration are negatively associated with firm performance. There was no logistics integration competency found to be positively associated with the supply chain performance among the companies who participated in the study. The research reveals that there are areas for improvement in supply chain capabilities and logistics integration competencies of the construction firms in the Kingdom of Bahrain to improve their supply chain performance to a global level.Keywords: comprehensive metrics, customer integration, logistics integration capabilities, logistics integration competencies
Procedia PDF Downloads 64217606 The Logistics Collaboration in Supply Chain of Orchid Industry in Thailand
Authors: Chattrarat Hotrawaisaya
Abstract:
This research aims to formulate the logistics collaborative model which is the management tool for orchid flower exporter. The researchers study logistics activities in orchid supply chain that stakeholders can collaborate and develop, including demand forecasting, inventory management, warehouse and storage, order-processing, and transportation management. The research also explores logistics collaboration implementation into orchid’s stakeholders. The researcher collected data before implementation and after model implementation. Consequently, the costs and efficiency were calculated and compared between pre and post period of implementation. The research found that the results of applying the logistics collaborative model to orchid exporter reduces inventory cost and transport cost. The model also improves forecasting accuracy, and synchronizes supply chain of exporter. This research paper contributes the uniqueness logistics collaborative model which value to orchid industry in Thailand. The orchid exporters may use this model as their management tool which aims in competitive advantage.Keywords: logistics, orchid, supply chain, collaboration
Procedia PDF Downloads 43717605 The Potential Impact of Big Data Analytics on Pharmaceutical Supply Chain Management
Authors: Maryam Ziaee, Himanshu Shee, Amrik Sohal
Abstract:
Big Data Analytics (BDA) in supply chain management has recently drawn the attention of academics and practitioners. Big data refers to a massive amount of data from different sources, in different formats, generated at high speed through transactions in business environments and supply chain networks. Traditional statistical tools and techniques find it difficult to analyse this massive data. BDA can assist organisations to capture, store, and analyse data specifically in the field of supply chain. Currently, there is a paucity of research on BDA in the pharmaceutical supply chain context. In this research, the Australian pharmaceutical supply chain was selected as the case study. This industry is highly significant since the right medicine must reach the right patients, at the right time, in right quantity, in good condition, and at the right price to save lives. However, drug shortages remain a substantial problem for hospitals across Australia with implications on patient care, staff resourcing, and expenditure. Furthermore, a massive volume and variety of data is generated at fast speed from multiple sources in pharmaceutical supply chain, which needs to be captured and analysed to benefit operational decisions at every stage of supply chain processes. As the pharmaceutical industry lags behind other industries in using BDA, it raises the question of whether the use of BDA can improve transparency among pharmaceutical supply chain by enabling the partners to make informed-decisions across their operational activities. This presentation explores the impacts of BDA on supply chain management. An exploratory qualitative approach was adopted to analyse data collected through interviews. This study also explores the BDA potential in the whole pharmaceutical supply chain rather than focusing on a single entity. Twenty semi-structured interviews were undertaken with top managers in fifteen organisations (five pharmaceutical manufacturers, five wholesalers/distributors, and five public hospital pharmacies) to investigate their views on the use of BDA. The findings revealed that BDA can enable pharmaceutical entities to have improved visibility over the whole supply chain and also the market; it enables entities, especially manufacturers, to monitor consumption and the demand rate in real-time and make accurate demand forecasts which reduce drug shortages. Timely and precise decision-making can allow the entities to source and manage their stocks more effectively. This can likely address the drug demand at hospitals and respond to unanticipated issues such as drug shortages. Earlier studies explore BDA in the context of clinical healthcare; however, this presentation investigates the benefits of BDA in the Australian pharmaceutical supply chain. Furthermore, this research enhances managers’ insight into the potentials of BDA at every stage of supply chain processes and helps to improve decision-making in their supply chain operations. The findings will turn the rhetoric of data-driven decision into a reality where the managers may opt for analytics for improved decision-making in the supply chain processes.Keywords: big data analytics, data-driven decision, pharmaceutical industry, supply chain management
Procedia PDF Downloads 10617604 Impact of Climate Change on Water Level and Properties of Gorgan Bay in the Southern Caspian Sea
Authors: Siamak Jamshidi
Abstract:
The Caspian Sea is the Earth's largest inland body of water. One of the most important issues related to the sea is water level changes. For measuring and recording Caspian Sea water level, there are at least three gauges and radar equipment in Anzali, Nowshahr and Amirabad Ports along the southern boundary of the Caspian Sea. It seems that evaporation, hotter surface air temperature, and in general climate change is the main reasons for its water level fluctuations. Gorgan Bay in the eastern part of the southern boundary of the Caspian Sea is one of the areas under the effect of water level fluctuation. Based on the results of field measurements near the Gorgan Bay mouth temperature ranged between 24°C–28°C and salinity was about 13.5 PSU in midsummer while temperature changed between 10-11.5°C and salinity mostly was 15-16.5 PSU in mid-winter. The decrease of Caspian Sea water level and rivers outflow are the two most important factors for the increase in water salinity of the Gorgan Bay. Results of field observations showed that, due to atmospheric factors, climate changes and decreasing of precipitation over the southern basin of the Caspian Sea during last decades, the water level of bay was reduced around 0.5 m.Keywords: Caspian Sea, Gorgan Bay, water level fluctuation, climate changes
Procedia PDF Downloads 17017603 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.Keywords: deep learning network, smart metering, water end use, water-energy data
Procedia PDF Downloads 30617602 Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain
Authors: Ahmed A. Elshami, Stephanie Bonnet, Abdelhafid Khelidj
Abstract:
Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain.Keywords: Zamzam water, corrosion inhibitor, rain water, simulated acid rain
Procedia PDF Downloads 39417601 Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems
Authors: Viktor Soprunyuk, Wilfried Schranz, Patrick Huber
Abstract:
In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36).Keywords: biological systems, liquids, glasses, amorphous systems, nanoporous materials, phase transition
Procedia PDF Downloads 23717600 Modeling a Closed Loop Supply Chain with Continuous Price Decrease and Dynamic Deterministic Demand
Authors: H. R. Kamali, A. Sadegheih, M. A. Vahdat-Zad, H. Khademi-Zare
Abstract:
In this paper, a single product, multi-echelon, multi-period closed loop supply chain is surveyed, including a variety of costs, time conditions, and capacities, to plan and determine the values and time of the components procurement, production, distribution, recycling and disposal specially for high-tech products that undergo a decreasing production cost and sale price over time. For this purpose, the mathematic model of the problem that is a kind of mixed integer linear programming is presented, and it is finally proved that the problem belongs to the category of NP-hard problems.Keywords: closed loop supply chain, continuous price decrease, NP-hard, planning
Procedia PDF Downloads 36417599 Characterization of Plunging Water Jets in Crossflows: Experimental and Numerical Studies
Authors: Mina Esmi Jahromi, Mehdi Khiadani
Abstract:
Plunging water jets discharging into turbulent crossflows are capable of providing efficient air water interfacial area, which is desirable for the process of mass transfer. Although several studies have been dedicated to the air entrainment by water jets impinging into stagnant water, very few studies have focused on the water jets in crossflows. This study investigates development of the two-phase flow as a result of the jet impingements into crossflows by means of image processing technique and CFD simulations. Investigations are also conducted on the oxygen transfer and a correlation is established between the aeration properties and the oxygenation capacity of water jets in crossflows. This study helps the optimal design and the effective operation of the industrial and the environmental equipment incorporating water jets in crossflows.Keywords: air entrainment, CFD simulation, image processing, jet in crossflow, oxygen transfer, two-phase flow
Procedia PDF Downloads 238