Search results for: vortex structures in liquids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4564

Search results for: vortex structures in liquids

3814 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 81
3813 Modelling the Effects of External Factors Affecting Concrete Carbonation

Authors: Abhishek Mangal, Kunal Tongaria, S. Mandal, Devendra Mohan

Abstract:

Carbonation of reinforced concrete structures has emerged as one of the major challenges for Civil engineers across the world. With increasing emissions from various activities, carbon dioxide concentration in the atmosphere has been eve rising, enhancing its penetration in porous concrete, reaching steel bars and ultimately leading to premature failure. Several literatures have been published dealing with the various interdependent variables related to carbonation. However, with innumerable variability a generalization of these data proves to be a troublesome task. This paper looks into this carbonation anomaly in concrete structures caused by various external variables such as relative humidity, concentration of CO2, curing period and ambient temperature. Significant discussions and comparisons have been presented on the basis of various studies conducted with an aim to predict the depth of carbonation as a function of these multidimensional parameters using various numerical and statistical modelling techniques.

Keywords: carbonation, curing, exposure conditions, relative humidity

Procedia PDF Downloads 254
3812 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 437
3811 Ultra High Performance Concrete Using Special Aggregates for Irregular Structures (the New Concrete Technology)

Authors: Arjun, A. D. Singh

Abstract:

Concrete the basic material using in construction across the global these days. The purpose of this special concrete is to provide extra strength and stability for irregular structure where the center of gravity is disturbed. In this paper an effort has been made to use different type of material aggregates has been discussed. We named As "STAR Aggregates" which has qualities to resist Shear, tension and compression forces. We have been divided into coarse aggregates and fine aggregates according to their sizes. Star Aggregates has interlocking behavior and cutting edge technology. Star aggregates had been draft and deign in Auto CAD and then analysis in ANSYS software. by using special aggregates we deign concrete grade of M40 for mega structures and irregular structure. This special concrete with STAR aggregates use in construction for irregular structure like Bridges, Skyscrapers or in deigned buildings.

Keywords: star aggregates, high performance concrete, material aggregates, interlocking

Procedia PDF Downloads 568
3810 Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures

Authors: Egor Stadnichuk

Abstract:

Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds.

Keywords: terrestrial Gamma-ray flashes, thunderstorm ground enhancement, relativistic runaway electron avalanches, gamma-rays, high-energy atmospheric physics, TGF, TGE, thunderstorm, relativistic feedback, reactor feedback, reactor model

Procedia PDF Downloads 172
3809 Numerical Simulation of Structured Roughness Effect on Fluid Flow Characteristics and Heat Transfer in Minichannels

Authors: R. Chouatah, E. G. Filali, B. Zouzou

Abstract:

It has been well established that there are no differences between microscale and macroscale flows of incompressible liquids. However, surface roughness has been known to impact the transport phenomena. The effect of structured roughness on the dynamics and heat transfer of water flowing through minichannel was numerically investigated in this study. Our study consists in characterizing the dynamic field and heat transfer aspect of a flow in circular minichannel equipped with structured roughness using CFD software, CFX. The study is performed to understand the effect of various roughness elements (rectangular, triangular), roughness height and roughness pitch on the friction factor and heat transfer coefficient. Our work focuses on a water flow inside a circular mini-channel of 1 mm in diameter and 10 cm in length. The speed entry into the mini-channel varies from 0.1 m/s to 25 m/s. The wall of the mini-channel is submitted to a constant heat flux; q=100,000 W/m². The simulations results are compared to those obtained with smooth minichannel and the existing experimental and numerical results in the literature.

Keywords: heat transfer, laminar and turbulent flow, minichannel, structured roughness

Procedia PDF Downloads 343
3808 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow

Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez

Abstract:

Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.

Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n

Procedia PDF Downloads 283
3807 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test

Authors: Gee-Cheol Kim, Joo-Won Kang

Abstract:

Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.

Keywords: arch structure, seismic response, shaking table, spatial structure

Procedia PDF Downloads 367
3806 Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads

Authors: W. Badla

Abstract:

A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures.

Keywords: seismic design, RC frames, infill panels, non linear dynamic analysis

Procedia PDF Downloads 546
3805 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.

Keywords: instability, torsion, flexural, buckling, modified newmark method stability

Procedia PDF Downloads 360
3804 Investigation of Water Absorption and Compressive Strength of Resin Coated Mortar

Authors: Yasir Ali, Zain Ul Abdin, Muhammad Wisal Khattak

Abstract:

Nowadays various advanced techniques are used to enhance the performance of materials in the field of construction engineering. Structures exposed to an aggressive, humid and hostile environment are experiencing severe negative impacts which lead to premature failure. Polyester resin is one of the advanced material used for improving performance of structural materials especially for repair/ refurbish purpose of structures and protection from contaminated environmental effect/ hazards. This study investigated the aptness of the polyester resin as coating agent on the mortar and assessed its performance in an ambient environment of Pakistan. Cubical specimens of mortar were fabricated. These specimens were tested for water absorption and compressive strength after one day and sixty days. These tests were performed under different exposure conditions (ambient environment and submerged in water). The specimens were coated with one, two and three layers and results were compared to control (no/ zero resin layer) specimens. Test results indicated that there is a significant decrease in water absorption of mortar coated with resin when compared to controlled specimens. The compressive strength test results revealed that resin coated specimen had higher strength when compared to controlled specimens. The results suggested that resin is a promising material and can be used effectively in structures which are exposed to high temperatures. The study would be helpful in improving performance of the structural material in a hazardous environment.

Keywords: ambient environment, coating, mortar, polyester resin

Procedia PDF Downloads 358
3803 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures

Authors: Anne Lemnitzer, Eric Tavarez

Abstract:

The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.

Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures

Procedia PDF Downloads 127
3802 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂

Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang

Abstract:

CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.

Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces

Procedia PDF Downloads 278
3801 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock

Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon

Abstract:

The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.

Keywords: energy efficiency, heritage, historical building, renovation

Procedia PDF Downloads 295
3800 Vision and Challenges of Developing VR-Based Digital Anatomy Learning Platforms and a Solution Set for 3D Model Marking

Authors: Gizem Kayar, Ramazan Bakir, M. Ilkay Koşar, Ceren U. Gencer, Alperen Ayyildiz

Abstract:

Anatomy classes are crucial for general education of medical students, whereas learning anatomy is quite challenging and requires memorization of thousands of structures. In traditional teaching methods, learning materials are still based on books, anatomy mannequins, or videos. This results in forgetting many important structures after several years. However, more interactive teaching methods like virtual reality, augmented reality, gamification, and motion sensors are becoming more popular since such methods ease the way we learn and keep the data in mind for longer terms. During our study, we designed a virtual reality based digital head anatomy platform to investigate whether a fully interactive anatomy platform is effective to learn anatomy and to understand the level of teaching and learning optimization. The Head is one of the most complicated human anatomy structures, with thousands of tiny, unique structures. This makes the head anatomy one of the most difficult parts to understand during class sessions. Therefore, we developed a fully interactive digital tool with 3D model marking, quiz structures, 2D/3D puzzle structures, and VR support so as to integrate the power of VR and gamification. The project has been developed in Unity game engine with HTC Vive Cosmos VR headset. The head anatomy 3D model has been selected with full skeletal, muscular, integumentary, head, teeth, lymph, and vein system. The biggest issue during the development was the complexity of our model and the marking of it in the 3D world system. 3D model marking requires to access to each unique structure in the counted subsystems which means hundreds of marking needs to be done. Some parts of our 3D head model were monolithic. This is why we worked on dividing such parts to subparts which is very time-consuming. In order to subdivide monolithic parts, one must use an external modeling tool. However, such tools generally come with high learning curves, and seamless division is not ensured. Second option was to integrate tiny colliders to all unique items for mouse interaction. However, outside colliders which cover inner trigger colliders cause overlapping, and these colliders repel each other. Third option is using raycasting. However, due to its own view-based nature, raycasting has some inherent problems. As the model rotate, view direction changes very frequently, and directional computations become even harder. This is why, finally, we studied on the local coordinate system. By taking the pivot point of the model into consideration (back of the nose), each sub-structure is marked with its own local coordinate with respect to the pivot. After converting the mouse position to the world position and checking its relation with the corresponding structure’s local coordinate, we were able to mark all points correctly. The advantage of this method is its applicability and accuracy for all types of monolithic anatomical structures.

Keywords: anatomy, e-learning, virtual reality, 3D model marking

Procedia PDF Downloads 100
3799 On Compression Properties of Honeycomb Structures Using Flax/PLA Composite as Core Material

Authors: S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishaks

Abstract:

Sandwich structures based on cellular cores are increasingly being utilized as energy-absorbing components in the industry. However, determining ideal structural configurations remains challenging. This chapter compares the compression properties of flax fiber-reinforced polylactic acid (PLA) of empty honeycomb core, foam-filled honeycomb and double cell wall square interlocking core sandwich structure under quasi-static compression loading. The square interlocking core is fabricated through a slotting technique, whereas the honeycomb core is made using a corrugated mold that was initially used to create the corrugated core composite profile, which is then cut into corrugated webs and assembled to form the honeycomb core. The sandwich structures are tested at a crosshead displacement rate of 2 mm/min. The experimental results showed that honeycomb outperformed the square interlocking core in terms of their strength capability and SEA by around 14% and 34%, respectively. It is observed that the foam-filled honeycomb collapse in a progressive mode, exhibiting noticeable advantages over the empty honeycomb; this is attributed to the interaction between the honeycomb wall and foam filler. Interestingly, the average SEAs of foam-filled and empty honeycomb cores have no significant difference, around 8.7kJ/kg and 8.2kJ/kg, respectively. In contrast, its strength capability is clearly pronounced, in which the foam-filled core outperforms the empty counterparts by around 33%. Finally, the results for empty and foam-filled cores were significantly superior to aluminum cores published in the literature.

Keywords: compressive strength, flax, honeycomb core, specific energy absorption

Procedia PDF Downloads 84
3798 Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters

Authors: J. García-Pérez

Abstract:

An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables.

Keywords: importance factors, optimum parameters, seismic losses, seismic risk, total cost

Procedia PDF Downloads 285
3797 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 68
3796 Conserved Stem-Loop Structure at the End of Short Interspersed Nuclear Elements (SINE) and Long Interspersed Nuclear Elements (LINE) Pairs of Different Species

Authors: Daria Grechishnikova, Maria Poptsova

Abstract:

Transposable elements play an important role in the evolution of various species from bacteria to human. Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs) are two major classes of retrotransposons that occupy a considerable part of any genome and their copy numbers can range form several hundreds to a million. Both LINEs and SINEs multiply through a copy-and-paste mechanism. LINEs encode proteins, which make them capable of self-propagation while SINEs are parasitic and require the machinery of LINEs to multiply. The mechanisms how LINE and SINE RNA is recognized by the LINE-encoded reverse transcriptase (RT) remain unclear. For some SINE-LINE pairs, it was shown that they share a common 3’-end with a stem-loop structure. Majority of the SINE-LINE pairs do not have a common 3’-end. Recently we have shown that in the human genome Alu-L1 pairs have structurally similar stem-loop structure at the 3’-end. Here we extended our analysis to a wide range of species and analyzed LINEs from 161 different species from Repbase and 217 SINE sequences from SINEBase. It appeared that all of the analyzed sequences contained stem-loop structures at the 3’-end. Here we conclude that it is very likely that a common evolutionary mechanism of transposon RNA recognition requires the presence of stem-loop structures at their 3’-end.

Keywords: LINE, SINE, mechanisms of retrotransposition, retrotransposons, stem-loop, stem-loop structures, transposons

Procedia PDF Downloads 353
3795 Electronic and Optical Properties of Li₂S Antifluorite Material

Authors: Brahim Bahloul, Khatir Babesse, Azzedine Dkhira, Yacine Bahloul, Dalila Hammoutene

Abstract:

In this paper, we investigate with ab initio calculations some structural and optoelectronic properties of Li₂S compound. The structural and electronic properties of the Li₂S antifluorite structure have been studied by first-principles calculations within the density functional theory (DFT), whereas the optical properties have been obtained using empirical relationships such as the modified Moss relation. Our calculated lattice parameters are in good agreement with the experimental data and other theoretical calculations. The electronic band structures and density of states were obtained. The anti-fluorite Li₂S present an indirect band gap of 3.388 eV at equilibrium. The top of the valence bands reflects the p electronic character for both structures. The calculated energy gaps and optical constants are in good agreement with experimental measurements.

Keywords: Ab initio calculations, antifluorite, electronic properties, optical properties

Procedia PDF Downloads 290
3794 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology

Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao

Abstract:

With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.

Keywords: optimisation, plate, sensor effectiveness, vibration control

Procedia PDF Downloads 234
3793 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Authors: František Včelař, Zuzana Pátíková

Abstract:

Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.

Keywords: fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity

Procedia PDF Downloads 281
3792 Half-Metallic Ferromagnetism in CdCoTe and CdMnTe: Ab-Initio Study

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Using the first-principles method, we investigate the structural, electronic, and magnetic properties of the diluted magnetic semiconductors CdCoTe and CdMnTe in the zinc blende phase with 12.5% of Cr. The calculations are performed by a developed full potential augmented plane wave (FP-L/APW) method within the spin density functional theory (DFT). As exchange–correlation potential, we used the new generalized gradient approximation GGA. Structural properties are determined from the total energy calculations and we found that these compounds are stable in the ferromagnetic phase. We discuss the electronic structures, total and partial densities of states and local moments. Finally, CdCoTe and CdMnTe in the zinc-blend phase show the half-metallic ferromagnetic nature and are expected to be potential materials for spintronic devices.

Keywords: DFT, GGA, band structures, half-metallic, spintronics

Procedia PDF Downloads 453
3791 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 273
3790 Lubricant-Impregnated Nanoporous Surfaces for Biofilm Prevention

Authors: Yuen Yee Li Sip, Lei Zhai

Abstract:

Biofilms are formed by the attachment of microorganisms onto substrates via self-synthesized extracellular polymeric substances. They have been observed in the International Space Stations (ISS), in which biofilms can jeopardize the performance of key equipment and can pose health threats to the astronauts. This project aims at building conformal nanoporous surfaces that are infused with lubricant and decorated with antimicrobial nanoparticles while simultaneously evaluating their efficacy in preventing biofilm formation. Lubricant-impregnated surfaces (LIS) are fabricated by using a layer-by-layer assembly of silica nanoparticles to generate conformal nanoporous coatings on substrates and fill the films with fluorinated fluids. LIS has demonstrated excellent repellency to a broad range of liquids, preventing microbe adhesion (anti-biofouling). Silver or copper nanoparticles were deposited on the coatings prior to lubricant infusion in order to provide antimicrobial characteristics to the coating. Surface morphology and biofilm growth were characterized to understand how the coating morphology affects the LIS stability and anti-biofouling behaviors (stationary and in a flow).

Keywords: biofilm, coatings, nanoporous, antifouling

Procedia PDF Downloads 100
3789 A Fundamental Functional Equation for Lie Algebras

Authors: Ih-Ching Hsu

Abstract:

Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?

Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions

Procedia PDF Downloads 225
3788 Simulation of Internal Flow Field of Pitot-Tube Jet Pump

Authors: Iqra Noor, Ihtzaz Qamar

Abstract:

Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.

Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence

Procedia PDF Downloads 160
3787 Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement

Authors: Can Otuzbir

Abstract:

It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies.

Keywords: glass fiber polymer reinforcement, steel fiber concrete, ultra high performance concrete, bending, GFRP

Procedia PDF Downloads 129
3786 Method for Predicting the Deformation of a Swelling Clay of the Region of N’Gaous (Batna, in Algeria)

Authors: Ferrah F., Baheddi M.

Abstract:

This study relates to how water content in some clay soils affects their structure by increasing or decreasing the volume. These cyclic phenomena of swelling-shrinkage cause parasitic stresses in structures and at the foundation. These stresses create damage in buildings, highways, pavements, airports and structures lightly loaded. This study was conducted on soil from a site near the hospital of N'gaous (Batna), whose soil is at the origin of cracks in the filler walls of the hospital. After a few years of exploitation, and according to the findings of experts in subdivision of construction and urbanism (SUCH), cracks appeared just after the heavy rains that the region experienced in 1987. Our study shows the need to become aware of the importance of damages occasioned by swellings by adopting construction techniques to solve this problem. The study is to determine a methodology to take into account the effects of swelling in calculating long-term foundations.

Keywords: clay, swelling, shrinkage, swelling pressure, compressibility

Procedia PDF Downloads 33
3785 Features of Composites Application in Shipbuilding

Authors: Valerii Levshakov, Olga Fedorova

Abstract:

Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.

Keywords: fiberglass, infusion, polymeric composites, winding

Procedia PDF Downloads 238