Search results for: sensing ability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5397

Search results for: sensing ability

4647 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 188
4646 Optics Meets Microfluidics for Highly Sensitive Force Sensing

Authors: Iliya Dimitrov Stoev, Benjamin Seelbinder, Elena Erben, Nicola Maghelli, Moritz Kreysing

Abstract:

Despite the revolutionizing impact of optical tweezers in materials science and cell biology up to the present date, trapping has so far extensively relied on specific material properties of the probe and local heating has limited applications related to investigating dynamic processes within living systems. To overcome these limitations while maintaining high sensitivity, here we present a new optofluidic approach that can be used to gently trap microscopic particles and measure femtoNewton forces in a contact-free manner and with thermally limited precision.

Keywords: optofluidics, force measurements, microrheology, FLUCS, thermoviscous flows

Procedia PDF Downloads 174
4645 Improving Graduate Student Writing Skills: Best Practices and Outcomes

Authors: Jamie Sundvall, Lisa Jennings

Abstract:

A decline in writing skills and abilities of students entering graduate school has become a focus for university systems within the United States. This decline has become a national trend that requires reflection on the intervention strategies used to address the deficit and unintended consequences as outcomes in the profession. Social work faculty is challenged to increase written scholarship within the academic setting. However, when a large number of students in each course have writing deficits, there is a shift from focus on content, ability to demonstrate competency, and application of core social work concepts. This qualitative study focuses on the experiences of online faculty who support increasing scholarship through writing and are following best practices preparing students academically to see improvements in written presentation in classroom work. This study outlines best practices to improve written academic presentation, especially in an online setting. The research also highlights how a student’s ability to show competency and application of concepts may be overlooked in the online setting. This can lead to new social workers who are prepared academically, but may unable to effectively advocate and document thought presentation in their writing. The intended progression of writing across all levels of higher education moves from summary, to application, and into abstract problem solving. Initial findings indicate that it is important to reflect on practices used to address writing deficits in terms of academic writing, competency, and application. It is equally important to reflect on how these methods of intervention impact a student post-graduation. Specifically, for faculty, it is valuable to assess a social worker’s ability to engage in continuity of documentation and advocacy at micro, mezzo, macro, and international levels of practice.

Keywords: intervention, professional impact, scholarship, writing

Procedia PDF Downloads 140
4644 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 624
4643 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 239
4642 Investigation of Textile Laminates Structure and Electrical Resistance

Authors: A. Gulbiniene, V. Jankauskaite

Abstract:

Textile laminates with breathable membranes are used extensively in protective footwear. Such polymeric membranes act as a barrier to liquid water and soil entry from the environment, but are sufficiently permeable to water vapour to allow significant amounts of sweat to evaporate and affect the comfort of the wearer. In this paper the influence of absorbed humidity amount on the electrical properties of textiles lining laminates with and without polymeric membrane is presented. It was shown that textile laminate structure and its layers have a great influence on the water vapour absorption. Laminates with polyurethane foam layers show lower ability to absorb water vapour. Semi-permeable membrane increases absorbed humidity amount. The increase of water vapour absorption ability decreases textile laminates' electrical resistance. However, the intensity of the decrease in electrical resistance depends on the textile laminate layers' nature. Laminates with polyamide layers show significantly lower electrical resistance values.

Keywords: electrical resistance, humid atmosphere, textiles laminate, water vapour absorption

Procedia PDF Downloads 245
4641 Strategies for Building Resilience of 15-Minute Community Life Circles From the Perspective of Infectious Diseases

Authors: Siyuan Cai

Abstract:

COVID-19 has triggered the planning circles to think about how to improve the city's ability to respond to public health emergencies. From the perspective of the community, this article reviews the risk cases in Wuhan Chenjiadun Community and other communities under the epidemic, and analyzes the response to public health emergencies such as infectious disease outbreaks in the excellent cases of resilient epidemic prevention communities. Then, combined with the planning of the living circle, it demonstrates the necessity of integrating the concept of resilience into the 15-minute community living circle to make up for the shortcomings of infectious disease prevention. Finally, it is proposed to strictly control the source and tail of the epidemic in the layout of the living circle, daily health and epidemic emergency should be taken into account in planning, community medical resources should be decentralized in management, and the application of smart technologies in the planning of living circle should be fully emphasized, so as to improve the community's ability to respond to public health emergencies.

Keywords: pandemic, resilient cities, resilient community, 15-minute community life circle

Procedia PDF Downloads 74
4640 Utility of Executive Function Training in Typically Developing Adolescents and Special Populations: A Systematic Review of the Literature

Authors: Emily C. Shepard, Caroline Sweeney, Jessica Grimm, Sophie Jacobs, Lauren Thompson, Lisa L. Weyandt

Abstract:

Adolescence is a critical phase of development in which individuals are prone to more risky behavior while also facing potentially life-changing decisions. The balance of increased behavioral risk and responsibility indicates the importance of executive functioning ability. In recent years, executive function training has emerged as a technique to enhance this cognitive ability. The aim of the present systematic review was to discuss the reported efficacy of executive functioning training techniques among adolescents. After reviewing 3110 articles, a total of 24 articles were identified which examined the role of executive functioning training techniques among adolescents (age 10-19). Articles retrieved demonstrated points of comparison across psychiatric and medical diagnosis, location of training, and stage of adolescence. Typically developing samples, as well as those with attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), conduct disorder, and physical health concerns were found, allowing for the comparison of the efficacy of techniques considering physical and psychological heterogeneity. Among typically developing adolescents, executive functioning training yielded nonsignificant or low effect size improvements in executive functioning, and in some cases executive functioning ability was decreased following the training. In special populations, including those with ADHD, (ASD), conduct disorder, and physical health concerns significant differences and larger effect sizes in executive functioning were seen following treatment, particularly among individuals with ADHD. Future research is needed to identify the long-term efficacy of these treatments, as well as their generalizability to real-world conditions.

Keywords: adolescence, attention-deficit hyperactivity disorder, executive function, executive function training, traumatic brain injury

Procedia PDF Downloads 192
4639 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: system set-up, near field communication, smartphone, android

Procedia PDF Downloads 340
4638 Application of GIS Techniques for Analysing Urban Built-Up Growth of Class-I Indian Cities: A Case Study of Surat

Authors: Purba Biswas, Priyanka Dey

Abstract:

Worldwide rapid urbanisation has accelerated city expansion in both developed and developing nations. This unprecedented urbanisation trend due to the increasing population and economic growth has caused challenges for the decision-makers in city planning and urban management. Metropolitan cities, class-I towns, and major urban centres undergo a continuous process of evolution due to interaction between socio-cultural and economic attributes. This constant evolution leads to urban expansion in all directions. Understanding the patterns and dynamics of urban built-up growth is crucial for policymakers, urban planners, and researchers, as it aids in resource management, decision-making, and the development of sustainable strategies to address the complexities associated with rapid urbanisation. Identifying spatio-temporal patterns of urban growth has emerged as a crucial challenge in monitoring and assessing present and future trends in urban development. Analysing urban growth patterns and tracking changes in land use is an important aspect of urban studies. This study analyses spatio-temporal urban transformations and land-use and land cover changes using remote sensing and GIS techniques. Built-up growth analysis has been done for the city of Surat as a case example, using the GIS tools of NDBI and GIS models of the Built-up Urban Density Index and Shannon Entropy Index to identify trends and the geographical direction of transformation from 2005 to 2020. Surat is one of the fastest-growing urban centres in both the state and the nation, ranking as the 4th fastest-growing city globally. This study analyses the dynamics of urban built-up area transformations both zone-wise and geographical direction-wise, in which their trend, rate, and magnitude were calculated for the period of 15 years. This study also highlights the need for analysing and monitoring the urban growth pattern of class-I cities in India using spatio-temporal and quantitative techniques like GIS for improved urban management.

Keywords: urban expansion, built-up, geographic information system, remote sensing, Shannon’s entropy

Procedia PDF Downloads 78
4637 Investigation of the Influencing Factors of Functional Communication Assessment for Adults with Aphasia

Authors: Yun-Ching Tu, Yu-Chun Chih

Abstract:

People with aphasia (PWA) may have communicative difficulties in their daily lives, but research on functional communication in aphasia is still limited in Taiwan. The aim of the study was to investigate the impact of aphasia-related factors on functional communication assessment. This study adopted a convenience sampling method. Thirty aphasic participants participated in the study. During the test, the examiner would ask questions that are encountered in daily life and record the participant‘s responses. Some questions would provide pictures to simulate situations in daily life. The results showed that the non-fluent aphasia group performed significantly worse than the fluent aphasia group. In addition, patients with severe aphasia performed significantly lower scores than patients with moderate aphasia and mild aphasia. However, group differences in the chronic stage and acute stage were not significant. In sum, since communication in daily life is diverse and language is still needed in the communication process, patients with aphasia who have better language ability may have relatively better functional communication. In contrast, the more severely impaired the language ability of a patient with aphasia is, the more functional communication will be affected, resulting in poor communication performance in daily life.

Keywords: adult, aphasia, assessment, functional communication

Procedia PDF Downloads 81
4636 Moral Obligation as a Governor to Skeptical Theism's Relativism

Authors: Peter J. Morgan

Abstract:

In response to evidential arguments from evil, Stephen Wykstra presents CORNEA (Condition of Reasonable Epistemic Access) as a foundational principle for Skeptical Theism which urges one to think in terms of what can be expected in a given situation. The use of CORNEA results in skepticism regarding the ability of human ken to know divine levels of knowledge in instances of intense evil. However, William Rowe presents a critique of Skeptical Theism that questions its ability to argue successfully for theism. Rowe contends that siding with Skeptical Theism is akin to boarding a trolley car that does not stop. Contra Wykstra, Rowe observes that, for all that can be known, there could be greater amounts of evils than goods, and the goods that are seen may not be the best possible goods. This amounts to a mortally challenging critique of Skeptical Theism. However, there is a brake on Rowe’s Trolley. This paper makes the argument that the ubiquitous presence of Moral Obligation (MO) serves as a braking system for Rowe’s Trolley. When the rider begins to feel lost in an epistemic stalemate of good and evil it is MO that turns the tide: MO serves as evidence towards the good on a basic human level, and it is a reminder that God’s character will result in actions towards the good.

Keywords: CORNEA, moral obligation, problem of evil, skeptical theism

Procedia PDF Downloads 205
4635 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 137
4634 Graduates Construction of Knowledge and Ability to Act on Employable Opportunities

Authors: Martabolette Stecher

Abstract:

Introductory: How is knowledge and ability to act on employable opportunities constructed among students and graduates at higher educations? This question have been drawn much attention by researchers, governments and universities in Denmark, since there has been an increases in the rate of unemployment among graduates from higher education. The fact that more than ten thousand graduates from higher education without the opportunity to get a job in these years has a tremendous impact upon the social economy in Denmark. Every time a student graduate from higher education and become unemployed, it is possible to trace upon the person´s chances to get a job many years ahead. This means that the tremendous rate of graduate unemployment implies a decrease in employment and lost prosperity in Denmark within a billion Danish Kroner scale. Basic methodologies: The present study investigates the construction of knowledge and ability to act upon employable opportunities among students and graduates at higher educations in Denmark in a literature review as well as a preliminary study of students from Aarhus University. 15 students from the candidate of drama have been engaging in an introductory program at the beginning of their candidate study, which included three workshops focusing upon the more personal matters of their studies and life. They have reflected upon this process during the intervention and afterwards in a semi-structured interview. Concurrently a thorough literature review has delivered key concepts for the exploration of the research question. Major findings of the study: It is difficult to find one definition of what employability encompasses, hence the overall picture of how to incorporate the concept is difficult. The present theory of employability has been focusing upon the competencies, which students and graduates are going to develop in order to become employable. In recent years there has been an emphasis upon the mechanism which supports graduates to trust themselves and to develop their self-efficacy in terms of getting a sustainable job. However, there has been little or no focus in the literature upon the idea of how students and graduates from higher education construct knowledge about and ability to act upon employable opportunities involving network of actors both material and immaterial network and meaningful relations for students and graduates in developing their enterprising behavior to achieve employment. The Act-network-theory combined with theory of entrepreneurship education suggests an alternative strategy to focus upon when explaining sustainable ways of creating employability among graduates. The preliminary study also supports this theory suggesting that it is difficult to emphasize a single or several factors of importance rather highlighting the effect of a multitude network. Concluding statement: This study is the first step of a ph.d.-study investigating this problem in Denmark and the USA in the period 2015 – 2019.

Keywords: employablity, graduates, action, opportunities

Procedia PDF Downloads 201
4633 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 154
4632 Source Separation for Global Multispectral Satellite Images Indexing

Authors: Aymen Bouzid, Jihen Ben Smida

Abstract:

In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.

Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images

Procedia PDF Downloads 406
4631 Thermal Analysis of a Graphite Calorimeter for the Measurement of Absorbed Dose for Therapeutic X-Ray Beam

Authors: I.J. Kim, B.C. Kim, J.H. Kim, C.-Y. Yi

Abstract:

Heat transfer in a graphite calorimeter is analyzed by using the finite elements method. The calorimeter is modeled in 3D geometry. Quasi-adiabatic mode operation is realized in the simulation and the temperature rise by different sources of the ionizing radiation and electric heaters is compared, directly. The temperature distribution caused by the electric power was much different from that by the ionizing radiation because of its point-like localized heating. However, the temperature rise which was finally read by sensing thermistors agreed well to each other within 0.02 %.

Keywords: graphite calorimeter, finite element analysis, heat transfer, quasi-adiabatic mode

Procedia PDF Downloads 431
4630 An Artificial Neural Network Model Based Study of Seismic Wave

Authors: Hemant Kumar, Nilendu Das

Abstract:

A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.

Keywords: ANN, Bayesion class, earthquakes, IMD

Procedia PDF Downloads 129
4629 Digital Rehabilitation for Navigation Impairment

Authors: Milan N. A. Van Der Kuil, Anne M. A. Visser-Meily, Andrea W. M. Evers, Ineke J. M. Van Der Ham

Abstract:

Navigation ability is essential for autonomy and mobility in daily life. In patients with acquired brain injury, navigation impairment is frequently impaired; however, in this study, we tested the effectiveness of a serious gaming training protocol as a tool for cognitive rehabilitation to reduce navigation impairment. In total, 38 patients with acquired brain injury and subjective navigation complaints completed the experiment, with a partially blind, randomized control trial design. An objective navigation test was used to construct a strengths and weaknesses profile for each patient. Subsequently, patients received personalized compensation training that matched their strengths and weaknesses by addressing an egocentric or allocentric strategy or a strategy aimed at minimizing the use of landmarks. Participants in the experimental condition received psychoeducation and a home-based rehabilitation game with a series of exercises (e.g., map reading, place finding, and turn memorization). The exercises were developed to stimulate the adoption of more beneficial strategies, according to the compensatory approach. Self-reported navigation ability (wayfinding questionnaire), participation level, and objective navigation performance were measured before and after 1 and 4 weeks after completing the six-week training program. Results indicate that the experimental group significantly improved in subjective navigation ability both 1 and 4 weeks after completion of the training, in comparison to the score before training and the scores of the control group. Similarly, goal attainment showed a significant increase after the first and fourth week after training. Objective navigation performance was not affected by the training. This navigation training protocol provides an effective solution to address navigation impairment after acquired brain injury, with clear improvements in subjective performance and goal attainment of the participants. The outcomes of the training should be re-examined after implementation in a clinical setting.

Keywords: spatial navigation, cognitive rehabilitation, serious gaming, acquired brain injury

Procedia PDF Downloads 181
4628 Cognitive Control Moderates the Concurrent Effect of Autistic and Schizotypal Traits on Divergent Thinking

Authors: Julie Ramain, Christine Mohr, Ahmad Abu-Akel

Abstract:

Divergent thinking—a cognitive component of creativity—and particularly the ability to generate unique and novel ideas, has been linked to both autistic and schizotypal traits. However, to our knowledge, the concurrent effect of these trait dimensions on divergent thinking has not been investigated. Moreover, it has been suggested that creativity is associated with different types of attention and cognitive control, and consequently how information is processed in a given context. Intriguingly, consistent with the diametric model, autistic and schizotypal traits have been associated with contrasting attentional and cognitive control styles. Positive schizotypal traits have been associated with reactive cognitive control and attentional flexibility, while autistic traits have been associated with proactive cognitive control and the increased focus of attention. The current study investigated the relationship between divergent thinking, autistic and schizotypal traits and cognitive control in a non-clinical sample of 83 individuals (Males = 42%; Mean age = 22.37, SD = 2.93), sufficient to detect a medium effect size. Divergent thinking was evaluated in an adapted version of-of the Figural Torrance Test of Creative Thinking. Crucially, since we were interested in testing divergent thinking productivity across contexts, participants were asked to generate items from basic shapes in four different contexts. The variance of the proportion of unique to total responses across contexts represented a measure of context adaptability, with lower variance indicating increased context adaptability. Cognitive control was estimated with the Behavioral Proactive Index of the AX-CPT task, with higher scores representing the ability to actively maintain goal-relevant information in a sustained/anticipatory manner. Autistic and schizotypal traits were assessed with the Autism Quotient (AQ) and the Community Assessment of Psychic Experiences (CAPE-42). Generalized linear models revealed a 3-way interaction of autistic and positive schizotypal traits, and proactive cognitive control, associated with increased context adaptability. Specifically, the concurrent effect of autistic and positive schizotypal traits on increased context adaptability was moderated by the level of proactive control and was only significant when proactive cognitive control was high. Our study reveals that autistic and positive schizotypal traits interactively facilitate the capacity to generate unique ideas across various contexts. However, this effect depends on cognitive control mechanisms indicative of the ability to proactively maintain attention when needed. The current results point to a unique profile of divergent thinkers who have the ability to respectively tap both systematic and flexible processing modes within and across contexts. This is particularly intriguing as such combination of phenotypes has been proposed to explain the genius of Beethoven, Nash, and Newton.

Keywords: autism, schizotypy, creativity, cognitive control

Procedia PDF Downloads 141
4627 Least Support Orthogonal Matching Pursuit (LS-OMP) Recovery Method for Invisible Watermarking Image

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

In this paper, first, we propose least support orthogonal matching pursuit (LS-OMP) algorithm to improve the performance, of the OMP (orthogonal matching pursuit) algorithm. LS-OMP algorithm adaptively chooses optimum L (least part of support), at each iteration. This modification helps to reduce the computational complexity significantly and performs better than OMP algorithm. Second, we give the procedure for the invisible image watermarking in the presence of compressive sampling. The image reconstruction based on a set of watermarked measurements is performed using LS-OMP.

Keywords: compressed sensing, orthogonal matching pursuit, restricted isometry property, signal reconstruction, least support orthogonal matching pursuit, watermark

Procedia PDF Downloads 339
4626 Promoting Visual Literacy from Primary to Tertiary Levels through Literature

Authors: Mohd Nazri Latiff Azmi, Mairas Abd Rahman

Abstract:

Traditionally, literacy has been commonly defined as the ability to read and write at an adequate level of proficiency that is necessary for communication. However, as time goes by, literacy has started to refer to reading and writing at a level adequate for communication, or at a level that lets one understand and communicate ideas in a literate society, so as to take part in that society. Meanwhile, visual literacy is a set of abilities that enables an individual to effectively find, interpret, evaluate, use, and create images and visual media. This study aims to investigate the collaboration between visual literacy and literature, eventually to determine how visual literacy can enhance learner’s ability to comprehend literary texts such as poems and short stories and develop his intellectuality, especially critical and creative thinking skills, and also to find out the different impacts of literature in visual literacy at four levels of education: pre-school, primary and secondary schools and university. This study is based on Malaysian environment and involves a qualitative method consisting of observation and interviews. The initial findings show that people with different levels of education grasp visual literacy differently but all levels show outstanding impacts of using literature.

Keywords: visual literacy, literature, language studies, higher education

Procedia PDF Downloads 376
4625 Pavement Roughness Prediction Systems: A Bump Integrator Approach

Authors: Manish Pal, Rumi Sutradhar

Abstract:

Pavement surface unevenness plays a pivotal role on roughness index of road which affects on riding comfort ability. Comfort ability refers to the degree of protection offered to vehicle occupants from uneven elements in the road surface. So, it is preferable to have a lower roughness index value for a better riding quality of road users. Roughness is generally defined as an expression of irregularities in the pavement surface which can be measured using different equipment like MERLIN, Bump integrator, Profilometer etc. Among them Bump Integrator is quite simple and less time consuming in case of long road sections. A case study is conducted on low volume roads in West District in Tripura to determine roughness index (RI) using Bump Integrator at the standard speed of 32 km/h. But it becomes too tough to maintain the requisite standard speed throughout the road section. The speed of Bump Integrator (BI) has to lower or higher in some distinctive situations. So, it becomes necessary to convert these roughness index values of other speeds to the standard speed of 32 km/h. This paper highlights on that roughness index conversional model. Using SPSS (Statistical Package of Social Sciences) software a generalized equation is derived among the RI value at standard speed of 32 km/h and RI value at other speed conditions.

Keywords: bump integrator, pavement distresses, roughness index, SPSS

Procedia PDF Downloads 249
4624 Cloning and Expression of Azurin: A Protein Having Antitumor and Cell Penetrating Ability

Authors: Mohsina Akhter

Abstract:

Cancer has become a wide spread disease around the globe and takes many lives every year. Different treatments are being practiced but all have potential side effects with somewhat less specificity towards target sites. Pseudomonas aeruginosa is known to secrete a protein azurin with special anti-cancer function. It has unique cell penetrating peptide comprising of 18 amino acids that have ability to enter cancer cells specifically. Reported function of Azurin is to stabilize p53 inside the tumor cells and induces apoptosis through Bax mediated cytochrome c release from mitochondria. At laboratory scale, we have made recombinant azurin through cloning rpTZ57R/T-azu vector into E.coli strain DH-5α and subcloning rpET28-azu vector into E.coli BL21-CodonPlus (DE3). High expression was ensured with IPTG induction at different concentrations then optimized high expression level at 1mM concentration of IPTG for 5 hours. Purification has been done by using Ni+2 affinity chromatography. We have concluded that azurin can be a remarkable improvement in cancer therapeutics if it produces on a large scale. Azurin does not enter into the normal cells so it will prove a safe and secure treatment for patients and prevent them from hazardous anomalies.

Keywords: azurin, pseudomonas aeruginosa, cancer, therapeutics

Procedia PDF Downloads 317
4623 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 154
4622 Design of a Remote Radiation Sensing Module Based on Portable Gamma Spectrometer

Authors: Young Gil Kim, Hye Min Park, Chan Jong Park, Koan Sik Joo

Abstract:

A personal gamma spectrometer has to be sensitive, pocket-sized, and carriable on the users. To serve these requirements, we developed the SiPM-based portable radiation detectors. The prototype uses a Ce:GAGG scintillator coupled to a silicon photomultiplier and a radio frequency(RF) module to measure gamma-ray, and can be accessed wirelessly or remotely by mobile equipment. The prototype device consumes roughly 4.4W, weighs about 180g (including battery), and measures 5.0 7.0. It is able to achieve 5.8% FWHM energy resolution at 662keV.

Keywords: Ce:GAGG, gamma-ray, radio frequency, silicon photomultiplier

Procedia PDF Downloads 337
4621 Training Program for Kindergarden Teachers on Learning through Project Approach

Authors: Dian Hartiningsih, Miranda Diponegoro, Evita Eddie Singgih

Abstract:

In facing the 21st century, children need to be prepared in reaching their optimum development level which encompasses all aspect of growth and to achieve the learning goals which include not only knowledge and skill, but also disposition and feeling. Teachers as the forefront of education need to be equipped with the understanding and skill of a learning method which can prepare the children to face this 21st century challenge. Project approach is an approach which utilizes active learning which is beneficial for the children. Subject to this research are kindergarten teachers at Dwi Matra Kindergarten and Kirana Preschool. This research is a quantitative research using before and after study design. The result suggest that through preliminary training program on learning with project approach, the kindergarten teachers ability to explain project approach including understanding, benefit and stages of project approach have increased significantly, the teachers ability to design learning with project approach have also improved significantly. The result of learning design that the teachers had made shows a remarkable result for the first stage of the project approach; however the second and third design result was not as optimal. Challenges faced in the research will be elaborated further in the research discussion.

Keywords: project approach, teacher training, learning method, kindergarten

Procedia PDF Downloads 338
4620 Review on Effective Texture Classification Techniques

Authors: Sujata S. Kulkarni

Abstract:

Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.

Keywords: compressed sensing, feature extraction, image classification, texture analysis

Procedia PDF Downloads 442
4619 Investigation the Impact of Flipped Learning on Developing Meta-Cognitive Ability in Chemistry Courses of Science Education Students

Authors: R. Herscu-Kluska

Abstract:

The rise of the flipped or inverted classroom meet the conceptual needs of our time. The evidence of increased student satisfaction and course grades improvement promoted the flipped learning approach. Due to the successful outcomes of the inverted classroom, the flipped learning became a pedagogy and educational rising strategy among all education sciences. The aim of this study is to analyze the effect of flipped classroom on higher order learning in chemistry courses since it has been suggested that in higher education courses, class time should focus on knowledge application. The results of this study indicate improving meta-cognitive thinking and learning skills. The students showed better ability to cope with higher order learning assignments during the actual class time, using inverted classroom strategy. These results suggest that flipped learning can be used as an effective pedagogy and educational strategy for developing higher order thinking skills, proved to contribute to building lifelong learning.

Keywords: chemistry education, flipped classroom, flipped learning, inverted classroom, science education

Procedia PDF Downloads 344
4618 Behavior of Castellated Beam Column Due to Cyclic Loads

Authors: Junus Mara, Herman Parung, Jhony Tanijaya, Rudy Djamaluddin

Abstract:

The purpose of this study is to determine the behavior of beam-column sub-assemblages castella due to cyclic loading. Knowing these behaviors can if be analyzed the effectiveness of the concrete filler to reduce the damage and improve capacity of beam castella. Test beam consists of beam castella fabricated from normal beam (CB), castella beams with concrete filler between the flange (CCB) and normal beam (NB) as a comparison. Results showed castella beam (CB) has the advantage to increase the flexural capacity and energy absorption respectively 100.5% and 74.3%. Besides advantages, castella beam has the disadvantage that lowering partial ductility and full ductility respectively 12.6% and 18.1%, decrease resistance ratio 29.5% and accelerate the degradation rate of stiffness ratio 31.4%. By the concrete filler between the beam flange to improve the ability of castella beam, then the beam castella have the ability to increase the flexural capacity of 184.78 %, 217.1% increase energy absorption, increase ductility partial and full ductility respectively 27.9 % and 26 %, increases resistance ratio 52.5% and slow the rate of degradation of the stiffness ratio 55.1 %.

Keywords: steel, castella, column beams, cyclic load

Procedia PDF Downloads 463