Search results for: seasonal forecasting
237 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 238236 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 107235 Host Cell Membrane Lipid Rafts Are Required for Influenza A Virus Adsorption to Host Cell Surface
Authors: Dileep K. Verma, Sunil K. Lal
Abstract:
Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Previous studies suggest that influenza hemagglutinin is essential for viral attachment to host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Studies also reported selective nature of Influenza virus to utilize rafts micro-domain for efficient virus assembly and budding. However, the detailed mechanism of Influenza A Virus (IAV) binding to host cell membrane and entry inside the host remains elusive. In the present study, we investigated if host membrane lipid rafts play any significant role in early life cycle events of influenza A virus. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol and Methyl-β-Cyclodextrin was used to remove membrane cholesterol. We observed co-localization of Influenza A Virus to lipid rafts by visualization of known lipid raft marker GM1 on host cell membrane. Co-localization suggest direct involvement of these micro-domain in initiation of IAV life cycle. We found significant reduction in influenza A virus adsorption in raft disrupted target host cells indicating poor binding and attachment in absence of coherent membrane rafts. Taken together, the results of present study provide evidence for critical involvement of host lipid rafts and its constituents in adsorption process of Influenza A Virus and suggests crucial involvement in other early events of IAV life cycle. The present study opens a new domain to study influenza virus-host interaction and to combat flu at the very early steps of viral life cycle.Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1
Procedia PDF Downloads 297234 Assessing the Cumulative Impact of PM₂.₅ Emissions from Power Plants by Using the Hybrid Air Quality Model and Evaluating the Contributing Salient Factor in South Taiwan
Authors: Jackson Simon Lusagalika, Lai Hsin-Chih, Dai Yu-Tung
Abstract:
Particles with an aerodynamic diameter of 2.5 meters or less are referred to as "fine particulate matter" (PM₂.₅) are easily inhaled and can go deeper into the lungs than other particles in the atmosphere, where it may have detrimental health consequences. In this study, we use a hybrid model that combined CMAQ and AERMOD as well as initial meteorological fields from the Weather Research and Forecasting (WRF) model to study the impact of power plant PM₂.₅ emissions in South Taiwan since it frequently experiences higher PM₂.₅ levels. A specific date of March 3, 2022, was chosen as a result of a power outage that prompted the bulk of power plants to shut down. In some way, it is not conceivable anywhere in the world to turn off the power for the sole purpose of doing research. Therefore, this catastrophe involving a power outage and the shutdown of power plants offers a great occasion to evaluate the impact of air pollution driven by this power sector. As a result, four numerical experiments were conducted in the study using the Continuous Emission Data System (CEMS), assuming that the power plants continued to function normally after the power outage. The hybrid model results revealed that power plants have a minor impact in the study region. However, we examined the accumulation of PM₂.₅ in the study and discovered that once the vortex at 925hPa was established and moved to the north of Taiwan's coast, the study region experienced higher observed PM₂.₅ concentrations influenced by meteorological factors. This study recommends that decision-makers take into account not only control techniques, specifically emission reductions, but also the atmospheric and meteorological implications for future investigations.Keywords: PM₂.₅ concentration, powerplants, hybrid air quality model, CEMS, Vorticity
Procedia PDF Downloads 76233 A Comprehensive Comparative Study on Seasonal Variation of Parameters Involved in Site Characterization and Site Response Analysis by Using Microtremor Data
Authors: Yehya Rasool, Mohit Agrawal
Abstract:
The site characterization and site response analysis are the crucial steps for reliable seismic microzonation of an area. So, the basic parameters involved in these fundamental steps are required to be chosen properly in order to efficiently characterize the vulnerable sites of the study region. In this study, efforts are made to delineate the variations in the physical parameter of the soil for the summer and monsoon seasons of the year (2021) by using Horizontal-to-Vertical Spectral Ratios (HVSRs) recorded at five sites of the Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India. The data recording at each site was done in such a way that less amount of anthropogenic noise was recorded at each site. The analysis has been done for five seismic parameters like predominant frequency, H/V ratio, the phase velocity of Rayleigh waves, shear wave velocity (Vs), compressional wave velocity (Vp), and Poisson’s ratio for both the seasons of the year. From the results, it is observed that these parameters majorly vary drastically for the upper layers of soil, which in turn may affect the amplification ratios and probability of exceedance obtained from seismic hazard studies. The HVSR peak comes out to be higher in monsoon, with a shift in predominant frequency as compared to the summer season of the year 2021. Also, the drastic reduction in shear wave velocity (up to ~10 m) of approximately 7%-15% is also perceived during the monsoon period with a slight decrease in compressional wave velocity. Generally, the increase in the Poisson ratios is found to have higher values during monsoon in comparison to the summer period. Our study may be very beneficial to various agricultural and geotechnical engineering projects.Keywords: HVSR, shear wave velocity profile, Poisson ratio, microtremor data
Procedia PDF Downloads 90232 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 152231 A Case Study of Rainfall Derived Inflow/Infiltration in a Separate Sewer System in Gwangju, Korea
Authors: Bumjo Kim, Hyun Jin Kim, Joon Ha Kim
Abstract:
The separate sewer system is that collects the wastewater as a sewer pipe and rainfall as a stormwater pipe separately, and then sewage is treated in the wastewater treatment plant, the stormwater is discharged to rivers or lakes through stormwater drainage pipes. Unfortunately, even for separate sewer systems, it is not possible to prevent Rainfall Driven Inflow/Infiltration(RDII) completely to the sewer pipe. Even if the sewerage line is renovated, there is an ineluctable RDII due to the combined sewer system in the house or the difficulty of sewage maintenance in private areas. The basic statistical analysis was performed using environmental data including rainfall, sewage, water qualities and groundwater level in the strict of Gwangju in South Korea. During rainfall in the target area, RDII showed an increased rate of 13.4 ~ 53.0% compared to that of a clear day and showed a rapid hydrograph response of 0.3 ~ 3.0 hr. As a result of water quality analysis, BOD5 concentration decreased by 17.3 % and salinity concentration decreased by 8.8 % at the representative spot in the project area compared to the sunny day during rainfall. In contrast to the seasonal fluctuation range of 0.38 m ~ 0.55 m in groundwater in Gwangju area and 0.58 m ~ 0.78 m in monthly fluctuation range, while the difference between groundwater level and the depth of sewer pipe laying was 2.70 m on average, which is larger than the range of fluctuation. Comprehensively, it can be concluded that the increasing of flowrate at sewer line is due to not infiltration water caused by groundwater level rise, construction failure, cracking due to joint failure or conduit deterioration, rainfall was directly inflowed into the sewer line rapidly. Acknowledgements: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: ground water, rainfall, rainfall driven inflow/infiltration, separate sewer system
Procedia PDF Downloads 159230 Real-Time Radar Tracking Based on Nonlinear Kalman Filter
Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed
Abstract:
To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment
Procedia PDF Downloads 146229 Effect of Supplementing Ziziphus Spina-Christi Leaf Meal to Natural Pasture Hay on Feed Intake, Body Weight Gain, Digestibility, and Carcass Characteristics of Tigray Highland Sheep
Authors: Abrha Reta, Ajebu Nurfeta, Genet Mengistu, Mohammed Beyan
Abstract:
Fodder trees such as Ziziphus spina-christi have the potential to enhance the utilization of natural grazing resources and also to mitigate seasonal feed shortages. The experiment was conducted with the objective of evaluating the effect of supplementing Ziziphus spina-christi leaf meal (ZSCLM) to natural pasture hay on feed intake, body weight gain, digestibility, and carcass characteristics of Tigray highland sheep. A randomized complete block design was employed with 5 blocks based on initial body weight, and sheep were randomly assigned to five treatments. Treatments were: 100g concentrate mix + ad libtum natural pasture hay (T1), T1+ 100g ZSCLM (T2), T1 + 200g ZSCLM (T3), T1 + 300g ZSCLM (T4), and T1 + 400g ZSCLM (T5) on dry matter (DM) basis. Dry matter intake was greater (P<0.05) in sheep on T5 compared to T3 and T1, while the total DM intake among T2, T4, and T5 were similar. Crude protein and metabolizable energy intake differed (P<0.05) among treatments with highest and lowest values in T5 and T1, respectively. Average daily gain was higher (P<0.05) in sheep kept on T2, T3, and T4 diets than T1. Higher (P<0.05) DM digestibility was found in T4 and T5 than T1. The highest (P<0.05) OM and CP digestibility was observed in sheep fed T3, T4, and T5 diets. Rib eye muscle area was higher (P<0.05) for T4 than T1 and T2. Dressing percentage was similar (P>0.05) among treatments. The current study indicated that supplementation of Tigray highland sheep with 200g air-dried Ziziphus spina-christi leaf meal leaves with 100g of concentrate mixture in their diet significantly increased feed intake and apparent digestibility, body weight gain, hot carcass weight, and rib eye muscle area by improving feed conversion efficiency.Keywords: body weight, carcass, digestibility, and ziziphus spina-christi leaf meal
Procedia PDF Downloads 111228 Theory of Negative Trigger: The Contract between Oral Probiotics and Immune System
Authors: Cliff Shunsheng Han
Abstract:
Identifying the direct allergy cause that can be easily mitigated is the foundation to stop the allergy epidemic that has been started in the seventies. It has confirmed that the personal and social hygiene practices are associated with the allergy prevalence. But direct causes have been found, and proposed translational measures have not been effective. This study, assisted by a particular case of allergies, has seen the direct cause of allergies, developed a valid test resulted in lasting relief for allergies, and constructed theory describing general relationship between microbiota and host immune system. Saliva samples were collected from a subject for three years during which time the person experienced yearlong allergy, seasonal allergy, and remission of allergy symptoms. Bacterial DNA was extracted and 16S rRNA genes were profiled with Illumina sequencing technology. The analyzing results indicate that the possible direct cause of allergy is the lacking probiotic bacteria in the oral cavity, such as genera Streptococcus and Veilonella, that can produce metabolites to pacify immune system. Targeted promotion of those bacteria with a compound designed for them, has led to lasting remissions of allergic rhinitis. During the development of the translational measure, the subject's oral biofilm was completely destructed by a moderate fever due to an unrelated respiratory infection. The incident not only facilitated the development of the heat based microbiota reseeding procedure but also indicated a possible natural switch that subsequently increases the efficacy of the immune system previously restrained by metabolites from microbiota. These results lead to the proposal of a Theory of Negative Trigger (TNT) to describe the relationship between oral probiotics and immune system, in which probiotics are the negative trigger that will release the power of immune system when removed by fever or modern lifestyles. This study could open doors leading to further understanding of how the immune system functions under the influence of microbiota as well as validate simple traditional practices for healthy living.Keywords: oral microbiome, allergy, immune system, infection
Procedia PDF Downloads 131227 Derivation of Bathymetry Data Using Worldview-2 Multispectral Images in Shallow, Turbid and Saline Lake Acıgöl
Authors: Muhittin Karaman, Murat Budakoglu
Abstract:
In this study, derivation of lake bathymetry was evaluated using the high resolution Worldview-2 multispectral images in the very shallow hypersaline Lake Acıgöl which does not have a stable water table due to the wet-dry season changes and industrial usage. Every year, a great part of the lake water budget has been consumed for the industrial salt production in the evaporation ponds, which are generally located on the south and north shores of Lake Acıgöl. Therefore, determination of the water level changes from a perspective of remote sensing-based lake water by bathymetry studies has a great importance in the sustainability-control of the lake. While the water table interval is around 1 meter between dry and wet season, dissolved ion concentration, salinity and turbidity also show clear differences during these two distinct seasonal periods. At the same time, with the satellite data acquisition (June 9, 2013), a field study was conducted to collect the salinity values, Secchi disk depths and turbidity levels. Max depth, Secchi disk depth and salinity were determined as 1,7 m, 0,9 m and 43,11 ppt, respectively. Eight-band Worldview-2 image was corrected for atmospheric effects by ATCOR technique. For each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 pixel reflectance neighborhoods were calculated separately. A unique image has been derivated for each matrix resolution. Spectral values and depth relation were evaluated for these distinct resolution images. Correlation coefficients were determined for the 1x1 matrix: 0,98, 0,96, 0,95 and 0,90 for the 724 nm, 831 nm, 908 nm and 659 nm, respectively. While 15x5 matrix characteristics with 0,98, 0,97 and 0,97 correlation values for the 724 nm, 908 nm and 831 nm, respectively; 51x51 matrix shows 0,98, 0,97 and 0,96 correlation values for the 724 nm, 831 nm and 659 nm, respectively. Comparison of all matrix resolutions indicates that RedEdge band (724 nm) of the Worldview-2 satellite image has the best correlation with the saline shallow lake of Acıgöl in-situ depth.Keywords: bathymetry, Worldview-2 satellite image, ATCOR technique, Lake Acıgöl, Denizli, Turkey
Procedia PDF Downloads 447226 Climate Change and Dengue Transmission in Lahore, Pakistan
Authors: Sadia Imran, Zenab Naseem
Abstract:
Dengue fever is one of the most alarming mosquito-borne viral diseases. Dengue virus has been distributed over the years exponentially throughout the world be it tropical or sub-tropical regions of the world, particularly in the last ten years. Changing topography, climate change in terms of erratic seasonal trends, rainfall, untimely monsoon early or late and longer or shorter incidences of either summer or winter. Globalization, frequent travel throughout the world and viral evolution has lead to more severe forms of Dengue. Global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. In recent years, Pakistan experienced a deadly outbreak of the disease. The reason could be that they have the maximum exposure outdoors. Public organizations have observed that changing climate, especially lower average summer temperature, and increased vegetation have created tropical-like conditions in the city, which are suitable for Dengue virus growth. We will conduct a time-series analysis to study the interrelationship between dengue incidence and diurnal ranges of temperature and humidity in Pakistan, Lahore being the main focus of our study. We have used annual data from 2005 to 2015. We have investigated the relationship between climatic variables and dengue incidence. We used time series analysis to describe temporal trends. The result shows rising trends of Dengue over the past 10 years along with the rise in temperature & rainfall in Lahore. Hence this seconds the popular statement that the world is suffering due to Climate change and Global warming at different levels. Disease outbreak is one of the most alarming indications of mankind heading towards destruction and we need to think of mitigating measures to control epidemic from spreading and enveloping the cities, countries and regions.Keywords: Dengue, epidemic, globalization, climate change
Procedia PDF Downloads 233225 Characteristics of Aerosols Properties Over Different Desert-Influenced Aeronet Sites
Authors: Abou Bakr Merdji, Alaa Mhawish, Xiaofeng Xu, Chunsong Lu
Abstract:
The characteristics of optical and microphysical properties of aerosols near deserts are analyzed using 11 AErosol RObotic NETwork (AERONET) sites located in 6 major desert areas (the Sahara, Arabia, Thar, Karakum, Taklamakan, and Gobi) between 1998 and 2021. The regional mean of Aerosol Optical Depth (AOD) (coarse AOD (CAOD)) are 0.44 (0.187), 0.38 (0.26), 0.35 (0.24), 0.23 (0.11), 0.20 (0.14), 0.10 (0.05) in the Thar, Arabian, Sahara, Karakum, Taklamakan and Gobi Deserts respectively, while an opposite for AE and Fine Mode Fraction (FMF). Higher extinctions are associated with larger particles (dust) over all the main desert regions. This is shown by the almost inversely proportional variations of AOD and CAOD compared with AE and FMF. Coarse particles contribute the most to the total AOD over the Sahara Desert compared to those in the other deserts all year round. Related to the seasonality of dust events, the maximum AOD (CAOD) generally appears in summer and spring, while the minimum is in winter. The mean values of absorbing AOD (AAOD), Absorbing AE (AAE), and the Single Scattering Albedo (SSA) for all sites ranged from 0.017 to 0.037, from 1.16 to 2.81 and from 0.844 to 0.944, respectively. Generally, the highest absorbing aerosol load are observed over the Thar, followed by the Karakum, the Sahara, the Gobi, and then the Taklamakan Deserts, while the largest absorbing particles are observed in the Sahara followed by Arabia, Thar, Karakum, Gobi, and the smallest over the Taklamakan Desert. Similar absorption qualities are observed over the Sahara, Arabia, Thar, and Karakum Deserts, with SSA values varying between 0.90 and 0.91, whereas the most and least absorbing particles are observed at the Taklamakan and the Gobi Deserts, respectively. The seasonal AAODs are distinctly different over the deserts, with parts of Sahara and Arabia, and the Dalanzadgad sites experiencing the maximum in summer, the Southern Sahara, Western Arabia, Jaipur, and Dushanbe in winter, while the Eastern Arabia and the Muztagh Ata in autumn. AAOD and SSA spectra are consistent with dust-dominated conditions that resulted from aerosol typing (dust and polluted dust) at most deserts, with a possible presence of other absorbing particles apart from dust at Arabia, the Taklamakan, and the Gobi Desert sites.Keywords: sahara, AERONET, desert, dust belt, aerosols, optical properties
Procedia PDF Downloads 84224 Demand Forecasting to Reduce Dead Stock and Loss Sales: A Case Study of the Wholesale Electric Equipment and Part Company
Authors: Korpapa Srisamai, Pawee Siriruk
Abstract:
The purpose of this study is to forecast product demands and develop appropriate and adequate procurement plans to meet customer needs and reduce costs. When the product exceeds customer demands or does not move, it requires the company to support insufficient storage spaces. Moreover, some items, when stored for a long period of time, cause deterioration to dead stock. A case study of the wholesale company of electronic equipment and components, which has uncertain customer demands, is considered. The actual purchasing orders of customers are not equal to the forecast provided by the customers. In some cases, customers have higher product demands, resulting in the product being insufficient to meet the customer's needs. However, some customers have lower demands for products than estimates, causing insufficient storage spaces and dead stock. This study aims to reduce the loss of sales opportunities and the number of remaining goods in the warehouse, citing 30 product samples of the company's most popular products. The data were collected during the duration of the study from January to October 2022. The methods used to forecast are simple moving averages, weighted moving average, and exponential smoothing methods. The economic ordering quantity and reorder point are used to calculate to meet customer needs and track results. The research results are very beneficial to the company. The company can reduce the loss of sales opportunities by 20% so that the company has enough products to meet customer needs and can reduce unused products by up to 10% dead stock. This enables the company to order products more accurately, increasing profits and storage space.Keywords: demand forecast, reorder point, lost sale, dead stock
Procedia PDF Downloads 121223 Analysis of Real Time Seismic Signal Dataset Using Machine Learning
Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.
Abstract:
Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection
Procedia PDF Downloads 124222 Trend of Foot and Mouth Disease and Adopted Control Measures in Limpopo Province during the Period 2014 to 2020
Authors: Temosho Promise Chuene, T. Chitura
Abstract:
Background: Foot and mouth disease is a real challenge in South Africa. The disease is a serious threat to the viability of livestock farming initiatives and affects local and international livestock trade. In Limpopo Province, the Kruger National Park and other game reserves are home to the African buffalo (Syncerus caffer), a notorious reservoir of the picornavirus, which causes foot and mouth disease. Out of the virus’s seven (7) distinct serotypes, Southern African Territories (SAT) 1, 2, and 3 are commonly endemic in South Africa. The broad objective of the study was to establish the trend of foot and mouth disease in Limpopo Province over a seven-year period (2014-2020), as well as the adoption and comprehensive reporting of the measures that are taken to contain disease outbreaks in the study area. Methods: The study used secondary data from the World Organization for Animal Health (WOAH) on reported cases of foot and mouth disease in South Africa. Descriptive analysis (frequencies and percentages) and Analysis of variance (ANOVA) were used to present and analyse the data. Result: The year 2020 had the highest prevalence of foot and mouth disease (3.72%), while 2016 had the lowest prevalence (0.05%). Serotype SAT 2 was the most endemic, followed by SAT 1. Findings from the study demonstrated the seasonal nature of foot and mouth disease in the study area, as most disease cases were reported in the summer seasons. Slaughter of diseased and at-risk animals was the only documented disease control strategy, and information was missing for some of the years. Conclusion: The study identified serious underreporting of the adopted control strategies following disease outbreaks. Adoption of comprehensive disease control strategies coupled with thorough reporting can help to reduce outbreaks of foot and mouth disease and prevent losses to the livestock farming sector of South Africa and Limpopo Province in particular.Keywords: livestock farming, African buffalo, prevalence, serotype, slaughter
Procedia PDF Downloads 64221 Magnitude and Factors of Risky Sexual Practice among Day Laborers in Ethiopia: A Systematic Review and Meta-Analysis, 2023
Authors: Kalkidan Worku, Eniyew Tegegne, Menichil Amsalu, Samuel Derbie Habtegiorgis
Abstract:
Introduction: Because of the seasonal nature of the work, day laborers are exposed to risky sexual practices. Since the majority of them are living far away from their birthplace and family, they engage in unplanned and multiple sexual practices. These unplanned and unprotected sexual experiences are a risk for different types of sexual-related health crises. This study aimed to assess the pooled prevalence of risky sexual practices and its determinants among day laborers in Ethiopia. Methods: Online databases, including PubMed, Google Scholar, Science Direct, African Journal of Online, Academia Edu, Semantic Scholar, and university repository sites, were searched from database inception until March 2023. PRISMA 2020 guideline was used to conduct the review. Among 851 extracted studies, ten articles were retained for the final quantitative analysis. To identify the source of heterogeneity, a sub-group analysis and I² test were performed. Publication bias was assessed by using a funnel plot and the Egger and Beg test. The pooled prevalence of risky sexual practices was calculated. Besides, the association between determinant factors and risky sexual practice was determined using a pooled odds ratio (OR) with a 95% confidence interval. Result: The pooled prevalence of risky sexual practices among day laborers was 46.00% (95% CI: 32.96, 59.03). Being single (OR: 2.49; 95% CI: 1.29 to 4.83), substance use (OR: 1.79; 95% CI: 1.40 to 2.29), alcohol intake (OR: 4.19; 95% CI: 2.19 to 8.04), watching pornographic (OR: 5.49; 95% CI: 2.99 to 10.09), discussion about SRH (OR: 4.21; 95% CI: 1.34 to 13.21), visiting night clubs (OR: 2.86 95% CI: 1.79 to 4.57) and risk perception (OR: 0.37 95% CI: 0.20 to 0.70) were the possible factors for risky sexual practice of day laborers in Ethiopia. Conclusions: A large proportion of day laborers engaged in risky sexual practices. Interventions targeting creating awareness of sexual and reproductive health for day laborers should be implemented. Continuous peer education on sexual health should be given to day laborers. Sexual and reproductive health services should be accessible in their workplaces to maximize condom utilization and to facilitate sexual health education for all day laborers.Keywords: day laborers, sexual health, risky sexual practice, unsafe sex, multiple sexual partners
Procedia PDF Downloads 79220 Sustainable Mitigation of Urban Stormwater Runoff: The Applicability of Green Infrastructure Approach in Finnish Climate
Authors: Rima Almalla
Abstract:
The purpose of the research project in Geography is to evaluate the applicability of urban green infrastructure approach in Finnish climate. The key focus will be on the operation and efficiency of green infrastructure on urban stormwater management. Green infrastructure approach refers to the employment of sufficient green covers as a modern and smart environmental solution to improve the quality of urban environments. Green infrastructure provides a wide variety of micro-scale ecosystem services, such as stormwater runoff management, regulation of extreme air temperatures, reduction of energy consumption, plus a variety of social benefits and human health and wellbeing. However, the cold climate of Finland with seasonal ground frost, snow cover and relatively short growing season bring about questions of whether green infrastructure works as efficiently as expected. To tackle this question, green infrastructure solutions will be studied and analyzed with manifold methods: stakeholder perspectives regarding existing and planned GI solutions will be collected by web based questionnaires, semi structured interviews and group discussions, and analyzed in both qualitative and quantitative methods. Targeted empirical field campaigns will be conducted on selected sites. A systematic literature review with global perspective will support the analyses. The findings will be collected, compiled and analyzed using geographic information systems (GIS). The findings of the research will improve our understanding of the functioning of green infrastructure in the Finnish environment in urban stormwater management, as a landscape element for citizens’ wellbeing, and in climate change mitigation and adaptation. The acquired information will be shared with stakeholders in interactive co-design workshops. As green covers have great demand and potential globally, the conclusions will have relevance in other cool climate regions and may support Finnish business in green infrastructure sector.Keywords: climate change adaptation, climate change, green infrastructure, stormwater
Procedia PDF Downloads 166219 Association of Phytomineral Supplementation with the Seasonal Prevalence of Gastrointestinal Parasites of Grazing Sheep in the Scenario of Climate Change
Authors: Muhammad Sohail Sajid, Hafiz Muhammad Rizwan, Ashfaq Ahmad Chatta, Zafar Iqbal, Muhammad Saqib
Abstract:
Changes in the climate are posing threats to the livestock community throughout the globe. Agro-grazing animals and natural vegetation as their forages are the most important components of animal production. Climate and local conditions not only determine the nature and kind of plants, their distribution, composition and nutritive value in different cropping belts and grazing sites but also influence number and kinds of grazing animals. Phytomineral supplementation can act as an indirect tool to boost-up immunological profile of animals leading to the development of resilience against parasitic infections. The present study correlates the trace element (Cu, Co, Mn, Zn) profile of grazing sheep, feedstuffs, respective soils and their GI helminths in a selected district of Sialkot, Punjab, Pakistan. Ten species of GI helminths were found during the survey. A significant (P < 0.05) variation in the concentrations (conc.) of Zn, Cu, Mn and Co was recorded in a total of 16 collected forages. During autumn, mean conc. of Cu, Zn and Co in sera were inversely proportional to the GI helminth burden; while, during spring, only Zn was inversely proportional to the GI helminth burden in grazing sheep. During autumn the highest conc. of Zn, Cu, Mn and Co were recorded in Echinochloa colona, Amaranthus viridis, Cannabis sativa, and Brachiaria ramose and during spring in Cichorium intybus, Cynodon dactylon, Parthenium hysterophorus and Coronopus didymus respectively. The trace element-rich forages, preferably Zn, found effective against helminth infection are advisable supplemental remedies to improve the trace element profile in grazing sheep. This mitigation strategy may ultimately improve the resilience against GI helminth infections especially in the resource poor countries like Pakistan.Keywords: coprological examination, Trace elements, Sheep, Gastro-intestinal parasites, Prevalence, Sialkot, Pakistan
Procedia PDF Downloads 391218 Biopotential of Introduced False Indigo and Albizia’s Weevils in Host Plant Control and Duration of Its Development Stages in Southern Regions of Panonian Basin
Authors: Renata Gagić-Serdar, Miroslava Markovic, Ljubinko Rakonjac, Aleksandar Lučić
Abstract:
The paper present the results of the entomological experimental studies of the biological, ecological, and (bionomic) insect performances, such as seasonal adaptation of introduced monophagous false indigo and albizias weevil’s Acanthoscelides pallidipennis Motschulsky. and Bruchidius terrenus (Sharp), Coleoptera: Chrysomelidae: Bruchinae, to phenological phases of aggressive invasive host plant Amorpha fruticosa L. and Albizia julibrissin (Fabales: Fabaceae) on the territory of Republic of Serbia with special attention on assessing and monitoring of new formed and detected inter species relations between autochthons parasite wasps from fauna (Hymenoptera: Chalcidoidea) and herbaceous seed weevil beetle. During 15 years (2006-2021), on approximately 30 localities, data analyses were done for observed experimental host plants from samples with statistical significance. Status of genera from families Hymenoptera: Chalcidoidea.: Pteromalidae and Eulophidae, after intensive investigations, has been trophicly identified. Recorded seed pest species of A. fruticosa or A. julibrissin (Fabales: Fabaceae) was introduced in Serbia and planted as ornamental trees, they also were put undergo different kinds of laboratory and field research tests during this period in a goal of collecting data about lasting each of develop stage of their seed beetles. Field generations in different stages were also monitored by continuous infested seed collecting and its disection. Established host plant-seed predator linkage was observed in correlation with different environment parameters, especially water level fluctuations in bank corridor formation stands and riparian cultures.Keywords: amorpha, albizia, chalcidoid wasp, invasiveness, weevils
Procedia PDF Downloads 94217 Effect of Calving Season on the Economic and Production Efficiency of Dairy Production Breeds
Authors: Eman. K. Ramadan, Abdelgawad. S. El-Tahawy
Abstract:
The objective of this study was to evaluate the effects of calving season on the production and economic efficiency of dairy farms in Egypt. Our study was performed at dairy production farms in the Alexandria, Behera, and Kafr El-Sheikh provinces of Egypt from summer 2010 to winter 2013. The randomly selected dairy farms had herds consisting of Baladi, Holstein-Friesian, or cross-bred (Baladi × Holstein-Friesian) cows. The data were collected from production records and responses to a structured questionnaire. The average total return differed significantly (P < 0.05) between the different cattle breeds and calving seasons. The average total return was highest for the Holstein-Friesian cows that calved in the winter (29106.42 EGP/cow/year), and it was lowest for Baladi cows that calved in the summer (12489.79 EGP/cow/year). Differences in total returns between the cows that calved in the winter or summer or between the foreign and native breeds, as well as variations in calf prices, might have contributed to the differences in milk yield. The average net profit per cow differed significantly (P < 0.05) between the cattle breeds and calving seasons. The average net profit values for the Baladi cows that calved in the winter or summer were 2413 and 2994.96 EGP/cow/year, respectively, and those for the Holstein-Friesian cows were 10744.17 and 7860.56 EGP/cow/year, respectively, whereas those for the cross-bred cows were 10174.86 and 7571.33 EGP/cow/year, respectively. The variations in net profit might have resulted from variation in the availability or price of feed materials, milk prices, or sales volumes. Our results show that the breed and calving season of dairy cows significantly affected the economic efficiency of dairy farms in Egypt. The cows that calved in the winter produced more milk than those that calved in the summer, which may have been the result of seasonal influences, such as temperature, humidity, management practices, and the type of feed or green fodder available.Keywords: calving season, economic, production, efficiency, dairy
Procedia PDF Downloads 429216 Agrarian Transitions and Rural Social Relations in Jharkhand, India
Authors: Avinash
Abstract:
Rural Jharkhand has attracted lesser attention in the field of agrarian studies in India, despite more than eighty percent of its rural population being directly dependent on agriculture as their primary source of livelihood. The limited studies on agrarian issues in Jharkhand have focused predominantly on the subsistence nature of agriculture and low crop productivity. There has also not been much research on agrarian social relations between ‘tribe’ and ‘non-tribe’ communities in the region. This paper is an attempt to understand changing agrarian social relations between tribal and non-tribal communities relating them to different kinds of agrarian transitions taking place in two districts of Jharkhand - Palamu and Khunti. In the Palamu region, agrarian relations are dominated by the presence and significant population size of Hindu high caste land owners, whereas in the Khunti region, agrarian relations are characterized by the population size and dominance of tribes and lower caste land owner cum cultivators. The agrarian relations between ‘upper castes’ and ‘tribes’ in these regions are primarily related to agricultural daily wage labour. However, the agrarian social relations between Dalits and tribal people take the form of ‘communal system of labour exchange’ and ‘household-based labour’. In addition, the ethnographic study of the region depicts steady agrarian transitions (especially shift from indigenous to ‘High Yielding Variety’ (HYV) paddy seeds and growing vegetable cultivation) where ‘Non-Governmental Organizations’ (NGOs) and agricultural input manufacturers and suppliers are playing a critical role in agrarian transitions as intermediaries. While agricultural productivity still remains low, both the regions are witnessing slow but gradual agrarian transitions. Rural-urban linkages in the form of seasonal labour migration are creating capital and technical inflows that are transforming agricultural activities. This study describes and interprets the above changes through the lens of ‘regional rurality’.Keywords: agrarian transitions, rural Jharkhand, regional rurality, tribe and non-tribe
Procedia PDF Downloads 184215 Rural Water Management Strategies and Irrigation Techniques for Sustainability. Nigeria Case Study; Kwara State
Authors: Faith Eweluegim Enahoro-Ofagbe
Abstract:
Water is essential for sustaining life. As a limited resource, effective water management is vital. Water scarcity has become more common due to the effects of climate change, land degradation, deforestation, and population growth, especially in rural communities, which are more susceptible to water-related issues such as water shortage, water-borne disease, et c., due to the unsuccessful implementation of water policies and projects in Nigeria. Since rural communities generate the majority of agricultural products, they significantly impact on water management for sustainability. The development of methods to advance this goal for residential and agricultural usage in the present and the future is a challenge for rural residents. This study evaluated rural water supply systems and irrigation management techniques to conserve water in Kwara State, North-Central Nigeria. Suggesting some measures to conserve water resources for sustainability, off-season farming, and socioeconomic security that will remedy water degradation, unemployment which is one of the causes of insecurity in the country, by considering the use of fabricated or locally made irrigation equipment, which are affordable by rural farmers, among other recommendations. Questionnaires were distributed to respondents in the study area for quantitative evaluation of irrigation methods practices. For physicochemical investigation, samples were also gathered from their available water sources. According to the study's findings, 30 percent of farmers adopted intelligent irrigation management techniques to conserve water resources, saving 45% of the water previously used for irrigation. 70 % of farmers practice seasonal farming. Irrigation water is drawn from river channels, streams, and unlined and unprotected wells. 60% of these rural residents rely on private boreholes for their water needs, while 40% rely on government-supplied rural water. Therefore, the government must develop additional water projects, raise awareness, and offer irrigation techniques that are simple to adapt for water management, increasing socio-economic productivity, security, and water sustainability.Keywords: water resource management, sustainability, irrigation, rural water management, irrigation management technique
Procedia PDF Downloads 111214 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management
Procedia PDF Downloads 491213 Virtual Schooling as a Collaboration between Public Schools and the Scientific Community
Authors: Thomas A. Fuller
Abstract:
Over the past fifteen years, virtual schooling has been introduced and implemented in varying degrees throughout the public education system in the United States. It is possible in some states for students to voluntarily take all of their course load online, without ever having to step in a classroom. Experts foresee a dramatic rise in the number of courses taken online by public school students in the United States, with some predicting that by 2019 as many as 50% of public high school courses will be delivered online. This electronic delivery of public education offers tremendous potential to the scientific community because it calls for innovation and is funded by public school revenue. Public accountability provides a ready supply of statistical data for measuring the progress of virtual schools as they are implemented into the public school arena. This allows for a survey of the current use of virtual schooling through examination of past statistical data, as well as forecasting forward for future years based upon this past data. Virtual schooling is on the rise in the United States, but its growth has been tempered by practical problems of implementation. The greatest and best use of virtual schooling thus far has been to supplement the courses offered by public schools (e.g., offering unique language courses, elective courses, and games-based math and science courses). The weaknesses of virtual schooling lay in the problematic accountability in allowing students to take courses online at home and the lack of supportive infrastructure in the public school arena. Virtual schooling holds great promise for the public school education system in the United States, as well as the scientific community. Online courses allow students access to a much greater catalog of courses than is offered through classroom instruction in their local public school. This promising sector needs assistance from the scientific community in implementing new pedagogical methodologies.Keywords: virtual schools, online classroom, electronic delivery, technological innovation
Procedia PDF Downloads 383212 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals
Authors: Ibrahim Khan, Waqas Khalid
Abstract:
The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning
Procedia PDF Downloads 63211 Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India
Authors: Rajkumar Ghosh
Abstract:
India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities.Keywords: rooftop rainwater harvesting, organic farming, green water management, food protection, ecological stabilty
Procedia PDF Downloads 102210 Hybrid Energy System for the German Mining Industry: An Optimized Model
Authors: Kateryna Zharan, Jan C. Bongaerts
Abstract:
In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy
Procedia PDF Downloads 343209 The Optimal Order Policy for the Newsvendor Model under Worker Learning
Authors: Sunantha Teyarachakul
Abstract:
We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.Keywords: inventory management, Newsvendor model, order policy, worker learning
Procedia PDF Downloads 416208 Spatiotemporal Variability of Snow Cover and Snow Water Equivalent over Eurasia
Authors: Yinsheng Zhang
Abstract:
Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972–2006 and the Global Monthly EASE-Grid SWE data for 1979–2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972–2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as the partial area of Central Asia and northwestern Russia but varied little in other parts of Eurasia. ‘Snow-free breaks’ (SFBs) with intermittent snow cover in the cold season were mainly observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1–14 weeks in the Tibetan Plateau during 1972–2006 and the maximum intermittence could reach 25 weeks in some extreme years. At a seasonal scale, the SWE usually peaked in February or March but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979–2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China.Keywords: Eurasia, snow cover extent, snow cover persistence period, snow-free breaks, onset and disappearance timings, snow water equivalent
Procedia PDF Downloads 146