Search results for: safety of structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7138

Search results for: safety of structures

6388 “Friction Surfaces” of Airport Emergency Plan

Authors: Jakub Kraus, Vladimír Plos, Peter Vittek

Abstract:

This article focuses on the issue of airport emergency plans, which are documents describing reactions to events with impact on aviation safety or aviation security. The article specifically focuses on the use and creation of emergency plans, where could be found a number of disagreements between different stakeholders, for which the airport emergency plan applies. Those are the friction surfaces of interfaces, which is necessary to identify and ensure them smooth process to avoid dangerous situations or delay.

Keywords: airport emergency plan, aviation safety, aviation security, comprehensive management system, friction surfaces of airport emergency plan, interfaces of processes

Procedia PDF Downloads 501
6387 An Environmental Method for Renovation of Sewer Systems in Building Structures

Authors: Parastou Kharazmi

Abstract:

Degradation of building materials particularly pipelines causes environmental damage during the renovation or replacement, disturbance for people living in the buildings, is time-consuming and last but not least is very costly. Rehabilitation by composite materials is a solution for renovation of degraded pipeline in residential buildings and any other structures which is less costly, faster and causes less damage to the environment. This study provides a brief state of technology, methods, and materials which are being used in Nordic and some other European countries and an investigation on the performance of the relined pipes after they have been in working condition. The investigation was carried by different analyses in laboratory as well as numerous field inspections.

Keywords: buildings, pipeline, rehabilitation, polymer materials

Procedia PDF Downloads 228
6386 Improvement to Pedestrian Walkway Facilities to Enhance Pedestrian Safety-Initiatives in India

Authors: Basavaraj Kabade, K. T. Nagaraja, Swathi Ramanathan, A. Veeraragavan, P. S. Reashma

Abstract:

Deteriorating quality of the pedestrian environment and the increasing risk of pedestrian crashes are major concerns for most of the cities in India. The recent shift in the priority to motorized transport and the abating condition of existing pedestrian facilities can be considered as prime reasons for the increasing pedestrian related crashes in India. Bengaluru City – the IT capital hub of the nation is not much different from this. The increase in number of pedestrian crashes in Bengaluru reflects the same. To resolve this issue and to ensure safe, sustainable and pedestrian friendly sidewalks, Govt. of Karnataka, India has implemented newfangled pedestrian sidewalks popularized programme named Tender S.U.R.E. (Specifications for Urban Road Execution) projects. Tender SURE adopts unique urban street design guidelines where the pedestrians are given prime preference. The present study presents an assessment of the quality and performance of the pedestrian side walk and the walkability index of the newly built pedestrian friendly sidewalks. Various physical and environmental factors affecting pedestrian safety are identified and studied in detail. The pedestrian mobility is quantified through Pedestrian Level of Service (PLoS) and the pedestrian walking comfort is measured by calculating the Walkability Index (WI). It is observed that the new initiatives taken in reference to improving pedestrian safety have succeeded in Bengaluru by attaining a level of Service of ‘A’ and with a good WI score.

Keywords: pedestrian safety, pedestrian level of service (PLoS), Right of Way (RoW), Tender S.U.R.E (Specifications for Urban Road Execution), walkability index (WI), walkway facilities

Procedia PDF Downloads 177
6385 Delivering Safer Clinical Trials; Using Electronic Healthcare Records (EHR) to Monitor, Detect and Report Adverse Events in Clinical Trials

Authors: Claire Williams

Abstract:

Randomised controlled Trials (RCTs) of efficacy are still perceived as the gold standard for the generation of evidence, and whilst advances in data collection methods are well developed, this progress has not been matched for the reporting of adverse events (AEs). Assessment and reporting of AEs in clinical trials are fraught with human error and inefficiency and are extremely time and resource intensive. Recent research conducted into the quality of reporting of AEs during clinical trials concluded it is substandard and reporting is inconsistent. Investigators commonly send reports to sponsors who are incorrectly categorised and lacking in critical information, which can complicate the detection of valid safety signals. In our presentation, we will describe an electronic data capture system, which has been designed to support clinical trial processes by reducing the resource burden on investigators, improving overall trial efficiencies, and making trials safer for patients. This proprietary technology was developed using expertise proven in the delivery of the world’s first prospective, phase 3b real-world trial, ‘The Salford Lung Study, ’ which enabled robust safety monitoring and reporting processes to be accomplished by the remote monitoring of patients’ EHRs. This technology enables safety alerts that are pre-defined by the protocol to be detected from the data extracted directly from the patients EHR. Based on study-specific criteria, which are created from the standard definition of a serious adverse event (SAE) and the safety profile of the medicinal product, the system alerts the investigator or study team to the safety alert. Each safety alert will require a clinical review by the investigator or delegate; examples of the types of alerts include hospital admission, death, hepatotoxicity, neutropenia, and acute renal failure. This is achieved in near real-time; safety alerts can be reviewed along with any additional information available to determine whether they meet the protocol-defined criteria for reporting or withdrawal. This active surveillance technology helps reduce the resource burden of the more traditional methods of AE detection for the investigators and study teams and can help eliminate reporting bias. Integration of multiple healthcare data sources enables much more complete and accurate safety data to be collected as part of a trial and can also provide an opportunity to evaluate a drug’s safety profile long-term, in post-trial follow-up. By utilising this robust and proven method for safety monitoring and reporting, a much higher risk of patient cohorts can be enrolled into trials, thus promoting inclusivity and diversity. Broadening eligibility criteria and adopting more inclusive recruitment practices in the later stages of drug development will increase the ability to understand the medicinal products risk-benefit profile across the patient population that is likely to use the product in clinical practice. Furthermore, this ground-breaking approach to AE detection not only provides sponsors with better-quality safety data for their products, but it reduces the resource burden on the investigator and study teams. With the data taken directly from the source, trial costs are reduced, with minimal data validation required and near real-time reporting enables safety concerns and signals to be detected more quickly than in a traditional RCT.

Keywords: more comprehensive and accurate safety data, near real-time safety alerts, reduced resource burden, safer trials

Procedia PDF Downloads 70
6384 Developing Fire Risk Factors for Existing Small-Scale Hospitals

Authors: C. L. Wu, W. W. Tseng

Abstract:

From the National Health Insurance (NHI) system was introduced in Taiwan in 2000, there have been some problems in transformed small-scale hospitals, such as mobility of patients, shortage of nursing staff, medical pipelines breaking fire compartments and insufficient fire protection systems. Due to shrinking of the funding scale and the aging society, fire safety in small-scale hospitals has recently given cause for concern. The aim of this study is to determine fire risk index for small-scale hospital through a systematic approach The selection of fire safety mitigation methods can be regarded as a multi-attribute decision making process which must be guaranteed by expert groups. First of all, identify and select safety related factors and identify evaluation criteria through literature reviews and experts group. Secondly, application of the Fuzzy Analytic Hierarchy Process method is used to ascertain a weighted value which enables rating of the importance each of the selected factors. Overall, Sprinkler type and Compartmentation are the most crucial indices in mitigating fire, that is to say, structural approach play an important role to decrease losses in fire events.

Keywords: Fuzzy Delphi Method, fuzzy analytic hierarchy, process risk assessment, fire events

Procedia PDF Downloads 430
6383 Evaluating the Methods of Retrofitting and Renovating of the Masonry Schools

Authors: Navid Khayat

Abstract:

This study investigates the retrofitting of schools in Ahvaz City. Three schools, namely, Enghelab, Sherafat, and Golchehreh, in Ahvaz City are initially examined through Schmidt hammer and ultrasonic tests. Given the tests and controls on the structures of these schools, the methods are presented for their reconstruction. The plan is presented for each school by estimating the cost and generally the feasibility and estimated the duration of project reconstruction. After reconstruction, the mentioned tests are re-performed for rebuilt parts and the results indicate a significant improvement in performance of structure because of reconstruction. According to the results, despite the fact that the use of fiber reinforced polymers (FRP) for structure retrofitting is costly, due to the low executive costs and also other benefits of FRP, it is generally considered as one of the most effective ways of retrofitting. Building the concrete coating on walls is another effective method in retrofitting the buildings. According to this method, a grid of horizontal and vertical bars is installed on the wall and then the concrete is poured on it. The use of concrete coating on the concrete and brick structures leads to the useful results and the experience indicates that the poured concrete filled the joints well and provides the appropriate binding and adhesion.

Keywords: renovation, retrofitting, masonry structures, old school

Procedia PDF Downloads 266
6382 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit

Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah

Abstract:

Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.

Keywords: work safety, unsafe action, application, non-system fault, real-time.

Procedia PDF Downloads 5
6381 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational

Authors: Hamza Rekab Djabri, Salah Daoud

Abstract:

The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.

Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN

Procedia PDF Downloads 82
6380 The Effect of Artificial Intelligence on Construction Development

Authors: Shady Gamal Aziz Shehata

Abstract:

Difficulty in defining construction quality arises due to perception based on the nature and requirements of the market, the different partners themselves and the results they want. Quantitative research was used in this constructivist research. A case-based study was conducted to assess the structures of positive attitudes and expectations in the context of quality improvement. A survey based on expert opinions was analyzed among construction organizations/companies operating in the construction industry in Pakistan. The financial strength, management structure and construction experience of the construction companies formed the basis of their selection. A good concept is visible at the project level and is seen as the most valuable part of the construction project. Each quality improvement technique was expected to increase the user's profits by improving the efficiency of the construction project. The Survey is useful for construction professionals to evaluate current construction concepts and expectations for the application of quality improvement techniques in construction projects.

Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception

Procedia PDF Downloads 32
6379 Research Developments in Vibration Control of Structure Using Tuned Liquid Column Dampers: A State-of-the-Art Review

Authors: Jay Gohel, Anant Parghi

Abstract:

A tuned liquid column damper (TLCD) is a modified passive system of tuned mass damper, where a liquid is used in place of mass in the structure. A TLCD consists of U-shaped tube with an orifice that produces damping against the liquid motion in the tube. This paper provides a state-of-the-art review on the vibration control of wind and earthquake excited structures using liquid dampers. Further, the paper will also discuss the theoretical background of TCLD, history of liquid dampers and existing literature on experimental, numerical, and analytical study. The review will also include different configuration of TLCD viz single TLCD, multi tuned liquid column damper (MTLCD), TLCD-Interior (TLCDI), tuned liquid column ball damper (TLCBD), tuned liquid column ball gas damper (TLCBGD), and pendulum liquid column damper (PLCD). The dynamic characteristics of the different configurate TLCD system and their effectiveness in reducing the vibration of structure will be discussed. The effectiveness of semi-active TLCD will be also discussed with reference to experimental and analytical results. In addition, the review will also provide the numerous examples of implemented TLCD to control the vibration in real structures. Based on the comprehensive review of literature, some important conclusions will be made and the need for future research will be identified for vibration control of structures using TLCD.

Keywords: earthquake, wind, tuned liquid column damper, passive response control, structures

Procedia PDF Downloads 188
6378 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 407
6377 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 485
6376 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 116
6375 In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintain Within the Gut Microbiota and Its Potential Pathogenicity

Authors: Jordan Chamarande, Lisiane Cunat, Corentine Alauzet, Catherine Cailliez-Grimal

Abstract:

Gut microbiota (GM) is now considered a new organ mainly due to the microorganism’s specific biochemical interaction with its host. Although mechanisms underlying host-microbiota interactions are not fully described, it is now well-defined that cell surface molecules and structures of the GM play a key role in such relation. The study of surface structures of GM members is also fundamental for their role in the establishment of species in the versatile and competitive environment of the digestive tract and as a potential virulence factor. Among these structures are capsular polysaccharides (CPS), fimbriae, pili and lipopolysaccharides (LPS), all well-described for their central role in microorganism colonization and communication with host epithelium. The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and as a new potential biotherapeutic product. However, to the best of the authors’ knowledge, the cell surface molecules and structures of P. distasonis that allow its maintain within the GM are not identified. Moreover, although P. distasonis is strongly recognized as intestinal commensal species with benefits for its host, it has also been recognized as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of the capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-Typing classification in order to better understand and characterize the beneficial/pathogenic behaviour related to P. distasonis strains. In context, 2 different types of fimbriae, 3 of pilus and up to 14 capsular polysaccharide loci, have been identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-Type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed in P. distasonis adhesion capacities and its potential pathogenicity.

Keywords: gut microbiota, Parabacteroides distasonis, capsular polysaccharide, fimbriae, pilus, O-antigen, pathogenicity, probiotic, comparative genomics

Procedia PDF Downloads 81
6374 The Examination And Assurance Of The Microbiological Safety Pertaining To Raw Milk And its Derived Processed Products

Authors: Raana Babadi Fathipour

Abstract:

The production of dairy holds significant importance in the sustenance of billions of individuals worldwide, as they rely on milk and its derived products for daily consumption. In addition to being a source of essential nutrients crucial for human well-being, such as proteins, fats, vitamins, and minerals; dairy items are witnessing an increasing demand worldwide. Amongst all the factors contributing to the quality and safety assurance of dairy products, the strong focus lies on maintaining high standards in raw milk procurement. Raw milk serves as an externally nutritious medium for various microorganisms due to its inherent properties. This poses a considerable challenge for the dairy industry in ensuring that microbial contamination is minimized throughout every stage of the value chain. Despite implementing diverse process technologies—both conventional and innovative—the occurrence of microbial spoilage still results in substantial losses within this industry context. Moreover, milk and dairy products have been associated with numerous cases of foodborne illnesses across the globe. Various pathogens such as Salmonella serovars, Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and enterotoxin producing Staphylococcus aureus are commonly identified as the culprits behind these outbreaks in the dairy industry. The effective management of food safety within this sector necessitates a proactive and risk-based approach to reform. However, this strategy presents difficulties for developing nations where informal value chains dominate the dairy sector. Whether operating on a small or large scale or falling within formal or informal realms, it is imperative that the dairy industry adheres to principles of good hygiene practices and good manufacturing practices. Additionally, identifying and managing potential sources of contamination is crucial in mitigating challenges pertaining to quality and safety precautions.

Keywords: dairy value chain, microbial contamination, food safety, hygiene

Procedia PDF Downloads 53
6373 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process

Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani

Abstract:

Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.

Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process

Procedia PDF Downloads 322
6372 Development of the Integrated Quality Management System of Cooked Sausage Products

Authors: Liubov Lutsyshyn, Yaroslava Zhukova

Abstract:

Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant».

Keywords: cooked sausage products, HACCP, quality management, safety assurance

Procedia PDF Downloads 234
6371 Smart Helmet for Two-Wheelers

Authors: Ravi Nandu, Kuldeep Singh

Abstract:

A helmet is a protective layer that is worn in order to prevent head injury. Helmet is the most important safety gear for two wheeler riders. However, due to carelessness of people, less importance toward safety, lot of causalities is every year. According to National Crime Records Bureau (NCRB) two wheelers claimed 92 lives every day out of which most were due to helmetless drive. The system design will be such that without wearing the helmet the rider cannot start two wheelers. The helmet will be connected to vehicle key ignition systems which will be electronically controlled. The smart helmet will be having proximity sensor fitted inside it, which will act as our switch for ignition and further with wireless connection the helmet sensor circuit will be connected to the vehicle ignition system.

Keywords: helmet, proximity sensor, microcontroller, head injury

Procedia PDF Downloads 293
6370 From Equations to Structures: Linking Abstract Algebra and High-School Algebra for Secondary School Teachers

Authors: J. Shamash

Abstract:

The high-school curriculum in algebra deals mainly with the solution of different types of equations. However, modern algebra has a completely different viewpoint and is concerned with algebraic structures and operations. A question then arises: What might be the relevance and contribution of an abstract algebra course for developing expertise and mathematical perspective in secondary school mathematics instruction? This is the focus of this paper. The course Algebra: From Equations to Structures is a carefully designed abstract algebra course for Israeli secondary school mathematics teachers. The course provides an introduction to algebraic structures and modern abstract algebra, and links abstract algebra to the high-school curriculum in algebra. It follows the historical attempts of mathematicians to solve polynomial equations of higher degrees, attempts which resulted in the development of group theory and field theory by Galois and Abel. In other words, algebraic structures grew out of a need to solve certain problems, and proved to be a much more fruitful way of viewing them. This theorems in both group theory and field theory. Along the historical ‘journey’, many other major results in algebra in the past 150 years are introduced, and recent directions that current research in algebra is taking are highlighted. This course is part of a unique master’s program – the Rothschild-Weizmann Program – offered by the Weizmann Institute of Science, especially designed for practicing Israeli secondary school teachers. A major component of the program comprises mathematical studies tailored for the students at the program. The rationale and structure of the course Algebra: From Equations to Structures are described, and its relevance to teaching school algebra is examined by analyzing three kinds of data sources. The first are position papers written by the participating teachers regarding the relevance of advanced mathematics studies to expertise in classroom instruction. The second data source are didactic materials designed by the participating teachers in which they connected the mathematics learned in the mathematics courses to the school curriculum and teaching. The third date source are final projects carried out by the teachers based on material learned in the course.

Keywords: abstract algebra , linking abstract algebra and school mathematics, school algebra, secondary school mathematics, teacher professional development

Procedia PDF Downloads 128
6369 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 260
6368 Novel CFRP Adhesive Joints and Structures for Offshore Application

Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa

Abstract:

Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.

Keywords: adhesive joints, CFRP, VARTM, resin transfer molding

Procedia PDF Downloads 417
6367 Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves

Authors: Seul-Ki Park, Jong-Chun Park, Gyu-Mok Jeon, Dae-Kyung Ock, Seung-Gyu Jeong

Abstract:

Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed.

Keywords: multidirectional waves, focused waves, rogue waves, wave-structure interaction, numerical wave tank, computational fluid dynamics

Procedia PDF Downloads 236
6366 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 218
6365 The Development of Monk’s Food Bowl Production on Occupational Health Safety and Environment at Work for the Strength of Rattanakosin Local Wisdom

Authors: Thammarak Srimarut, Witthaya Mekhum

Abstract:

This study analysed and developed a model for monk’s food bowl production on occupational health safety and environment at work for the encouragement of Rattanakosin local wisdom at Banbart Community. The process of blowpipe welding was necessary to produce the bowl which was very dangerous or 93.59% risk. After the employment of new sitting posture, the work risk was lower 48.41% or moderate risk. When considering in details, it was found that: 1) the traditional sitting posture could create work risk at 88.89% while the new sitting posture could create the work risk at 58.86%. 2) About the environmental pollution, with the traditional sitting posture, workers exposed to the polluted fume from welding at 61.11% while with the new sitting posture workers exposed to the polluted fume from welding at 40.47%. 3) On accidental risk, with the traditional sitting posture, workers exposed to the accident from welding at 94.44% while with the new sitting posture workers exposed to the accident from welding at 62.54%.

Keywords: occupational health safety, environment at work, Monk’s food bowl, machine intelligence

Procedia PDF Downloads 424
6364 Microsimulation of Potential Crashes as a Road Safety Indicator

Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale

Abstract:

Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.

Keywords: road safety, traffic, traffic safety, traffic simulation

Procedia PDF Downloads 123
6363 Study of Corrosion in Structures due to Chloride Infiltration

Authors: Sukrit Ghorai, Akku Aby Mathews

Abstract:

Corrosion in reinforcing steel is the leading cause for deterioration in concrete structures. It is an electrochemical process which leads to volumetric change in concrete and causes cracking, delamination and spalling. The objective of the study is to provide a rational method to estimate the probable chloride concentration at the reinforcement level for a known surface chloride concentration. The paper derives the formulation of design charts to aid engineers for quick calculation of the chloride concentration. Furthermore, the paper focuses on comparison of durability design against corrosion with American, European and Indian design standards.

Keywords: chloride infiltration, concrete, corrosion, design charts

Procedia PDF Downloads 389
6362 A New Gateway for Rheumatoid Arthritis: COXIBs with a Safety Cardiovascular Profile

Authors: Malvina Hoxha, Valerie Capra, Carola Buccellati, Angelo Sala, Clara Cena, Roberta Fruttero, Massimo Bertinaria, G. Enrico Rovati

Abstract:

Today COXIBs are used in the treatment of arthritis and many other painful conditions in selected patients with high gastrointestinal risk and low CV risk. Previously we found a new mechanism of action of a traditional NSAID (diclofenac) and a COXIB (lumiracoxib) that possess weak competitive antagonism at the TP receptor. We hypothesize that modifying the structure of a known specific inhibitor of cyclooxygenase-2 (COXIB), so that it becomes also a more potent thromboxane antagonist will preserve the anti-inflammatory and gastrointestinal safety typical of COXIBs and prevent the cardiovascular risk associated with long term therapy.

Keywords: cyclooxygenase, inflammation, lumiracoxib, thromboxane A2

Procedia PDF Downloads 284
6361 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 277
6360 Theoretical and Experimental Investigations of Binary Systems for Hydrogen Storage

Authors: Gauthier Lefevre, Holger Kohlmann, Sebastien Saitzek, Rachel Desfeux, Adlane Sayede

Abstract:

Hydrogen is a promising energy carrier, compatible with the sustainable energy concept. In this context, solid-state hydrogen-storage is the key challenge in developing hydrogen economy. The capability of absorption of large quantities of hydrogen makes intermetallic systems of particular interest. In this study, efforts have been devoted to the theoretical investigation of binary systems with constraints consideration. On the one hand, besides considering hydrogen-storage, a reinvestigation of crystal structures of the palladium-arsenic system shows, with experimental validations, that binary systems could still currently present new or unknown relevant structures. On the other hand, various binary Mg-based systems were theoretically scrutinized in order to find new interesting alloys for hydrogen storage. Taking the effect of pressure into account reveals a wide range of alternative structures, changing radically the stable compounds of studied binary systems. Similar constraints, induced by Pulsed Laser Deposition, have been applied to binary systems, and results are presented.

Keywords: binary systems, evolutionary algorithm, first principles study, pulsed laser deposition

Procedia PDF Downloads 255
6359 Availability of Safety Measures and Knowledge Towards Hazardous Waste Management among Workers in Scientific Laboratories of Two Universities in Lebanon

Authors: Inaam Nasrallah, Pascale Salameh, Abbas El-Outa, Assem Alkak, Rihab Nasr, Wafa Toufic Bawab

Abstract:

Background: Hazardous Waste Management(HWM). is critical to human health outcomes and environmental protection. This study evaluated the knowledge regarding safety measures to be applied when collecting and storing waste in scientific laboratories of two universities in Lebanon.Method: A survey-based observational study was conducted in scientific laboratories of the public university and that of a private university, where a total of 309 participants were recruited.Result: The mean total knowledge score on safety measures of HWM was 9.02±4.34 (maximum attainable score, 13). Significant association (p<0.05) was found between knowledge score and job function, years of experience, educational level, professional status, work schedule, and training on proper HWM. Participants had adequate perceptions regarding the impact of HWM on health and the environment. Linear regression modeling revealed that knowledge score was significantly higher among bachelor level lab workers compared to those with doctoral degrees (p=0.043), full-time schedule workers versus part-timers (p=0.03), and among public university participants as compared to those of the private university (p<0.001).Conclusion: This study showed good knowledge concerning HWM in the scientific laboratoriesof the studied universities in Lebanon and a good awareness of the HWM on health and the environment. It highlights the importance of culture, attitude, and practice on proper HWM in the academic scientific laboratory.

Keywords: hasardous waste, safety measures, waste management, knwoledge score, scientific laboratory workers

Procedia PDF Downloads 186