Search results for: resin cement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1128

Search results for: resin cement

378 Study of the Green Composite Jute/Epoxy

Authors: A. Mir, C. Aribi, B. Bezzazi

Abstract:

Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibers offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fiber composites reinforced, even after several recycling. Because of the environmental standards which become increasingly severe, one attends the emergence of eco-materials at the base of natural fibers such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibers show an increase of about 60% of the rigidity of elementary fibers of hemp subjected to cyclic loading. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well-defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi static mechanical behavior of the laminate jute/epoxy.

Keywords: jute, epoxy resin, mechanical, static, dynamic behavior

Procedia PDF Downloads 231
377 Study of The Ballistic Impact at Low Speed on Angle-Ply Fibrous Structures

Authors: Daniel Barros, Carlos Mota, Raul Fangueiro, Pedro Rosa, Gonçalo Domingos, Alfredo Passanha, Norberto Almeida

Abstract:

The main aim of the work was to compare the ballistic performance of developed composites using different types of fiber woven fabrics [0,90] and different layers orientation (Angle-ply). The ballistic laminate composites were developed using E-glass, S-glass and aramid fabrics impregnated with thermosetting epoxy resin and using different layers orientation (0,0)º and (0,15)º. The idea of the study is to compare the ballistic performance of each laminate produced by studying the velocity loss of the fragment fired into the laminate surface. There are present some mechanical properties for laminates produced using the different types of fiber, where tensile, flexural and impact Charpy properties were studied. Overall, the angle-ply laminates produced using orientations of (0,15)º, despite the slight loss of mechanical properties compared to the (0,0)º orientation, presents better ballistic resistance and dissipation of energy, for lower ballistic impact velocities (under 290 m/s-1). After treatment of ballistic impact results, the S-Glass with (0,15)º laminate presents better ballistic perforce compared to the other combinations studied.

Keywords: ballistic impact, angle-ply, ballistic composite, s-glass fiber, aramid fiber, fabric fiber, energy dissipation, mechanical performance

Procedia PDF Downloads 190
376 A Study on Behaviour of Normal Strength Concrete and High Strength Concrete Subjected to Elevated Temperatures

Authors: Butchi Kameswara Rao Chittem, Rooban Kumar

Abstract:

Cement concrete is a complex mixture of different materials. Concrete is believed to have a good fire resistance. Behaviour of concrete depends on its mix proportions and its constituent materials when it is subjected to elevated temperatures. Loss in compressive strength, loss in weight or mass, change in colour and spall of concrete are reported in literature as effects of elevated temperature on concrete. In this paper results are reported on the behaviour of normal strength concrete and high strength concrete subjected to temperatures 200°C, 400°C, 600°C, and 800°C and different cooling regimes viz. air cooling, water quenching. Rebound hammer test was also conducted to study the changes in surface hardness of concrete specimens subjected to elevated temperatures.

Keywords: normal strength concrete, high-strength concrete, temperature, NDT

Procedia PDF Downloads 419
375 Influence of Resin Finishes on Properties of Khadi Fabric

Authors: Shivi Rastogi, Suman Pant

Abstract:

Khadi is an Indian fabric and also known by another name “Khaddar”. During pre-independence era, the movement of khadi manufacturing gained momentum. Over the years, khadi fabrics that were generally considered as the “second skin” of the Swadesh revolutionists changed its uniqueness. It underwent a metamorphosis from that of a patriot’s fabric, and a farmer’s apparel, to become a “fashion fabric”. Drape of garment is governed by draping quality of fabric used. Drape is an essential parameter to decide both appearance and handle of fabric. It is also a secondary determinant of fabric mechanical properties as influenced by the low stress properties, like bending length, formability, tensile and shear properties and compressibility of the fabric. In finishing, fabric is treated to add something to coat the fabric or fiber and thereby temporarily or permanently fix. Film forming agents such as thermoplastic and thermosetting resins and other surface deposits alter hand. In this study, resins were used to modify fabric hand. Three types of resins have been applied on the khadi fabric at three concentration. The effect of these finishes on drapeability, crease recovery, stiffness, tearing strength and smoothness of khadi fabrics were assessed. Silicone gave good results in imparting properties specially drape, smoothness and softness and hand of cotton and khadi fabric. KES result also showed that silicone treated samples enhanced THV rating amongst all treated samples when compared to the control fabric.

Keywords: crease recovery, drapeability, KES, silicone, THV

Procedia PDF Downloads 210
374 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 71
373 Liquid-Liquid Equilibrium Study in Solvent Extraction of o-Cresol from Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of the process of coal gasification and carbonation, also in some industries such as steel, power plant, cement, and others. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in solvent extraction of o-Cresol from the coal tar. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of o-Cresol for those system.

Keywords: coal tar, o-Cresol, Wohl, Van Laar, three-suffix margules

Procedia PDF Downloads 256
372 Up-Scaling of Highly Transparent Quasi-Solid State Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up-scaling

Procedia PDF Downloads 321
371 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH as a sustainable material instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared, incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: high temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties

Procedia PDF Downloads 245
370 Improvement of Soft Clay Soil with Biopolymer

Authors: Majid Bagherinia

Abstract:

Lime and cement are frequently used as binders in the Deep Mixing Method (DMM) to improve soft clay soils. The most significant disadvantages of these materials are carbon dioxide emissions and the consumption of natural resources. In this study, three different biopolymers, guar gum, locust bean gum, and sodium alginate, were investigated for the improvement of soft clay using DMM. In the experimental study, the effects of the additive ratio and curing time on the Unconfined Compressive Strength (UCS) of stabilized specimens were investigated. According to the results, the UCS values of the specimens increased as the additive ratio and curing time increased. The most effective additive was sodium alginate, and the highest strength was obtained after 28 days.

Keywords: deep mixing method, soft clays, ground improvement, biopolymers, unconfined compressive strength

Procedia PDF Downloads 56
369 Carbon Fibre Reinforced Polymers Modified with PET-G/MWCNTs Nonwovens

Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska

Abstract:

Carbon fibre reinforced polymers (CFRPs) are characterized by very high strength and stiffness in relation to their weight. In addition, properties such as corrosion resistance and low thermal expansion allow them to replace traditional materials, i.e., wood or metals, in many industries such as aerospace, automotive, marine, and sports goods. However, CFRPs, have some disadvantages -they have relatively low electrical conductivity and break brittle, which significantly limits their application possibilities. Moreover, conventional CFRPs are usually manufactured based on thermosets, which makes them difficult to recycle. The solution to these drawbacks is the use of the innovative thermoplastic resin (ELIUM from ARKEMA) as a matrix of composites and the modification by introducing into their structure thermoplastic nonwovens based on PET-G with the addition of multi-wall carbon nanotubes (MWCNTs). The acrylic-carbon composites, which were produced by the infusion technique, were tested for mechanical, thermo-mechanical, and electrical properties, and the effect of modifications on their microstructure was studied. Acknowledgment: This study was carried out with funding from grant no. LIDER/46/0185/L-11/19/NCBR/2020, financed by The National Centre for Research and Development.

Keywords: CFRP, MWCNT, ELIUM, electrical properties, infusion

Procedia PDF Downloads 119
368 Restrained Shrinkage Behavior of Self Consolidating Concrete

Authors: Boudjelthia Radhwane

Abstract:

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. The shrinkage of concrete is the main cause of cracking in bridge decks. Bridge decks tend to be restrained from shrinkage, and this restraint along with other factors causes the bridge to crack. The characteristics of SCC under restrained shrinkage are important to understand in order to predict the cracking behavior in actual structures. Restrained shrinkage testing is done in accordance to AASHTO testing protocol. The free shrinkage performance and cracking behavior were reported and compared when changing the sand to aggregate ratio and the water to cement ratio. The results of free shrinkage show that when a mix design has higher free shrinkage, it will crack in restrained shrinkage earlier than a mix with lower free shrinkage.

Keywords: concrete mix, cracking behavior, restrained shrinkage, self compacting concrete

Procedia PDF Downloads 361
367 Enhancement of Building Sustainability by Using Environment-Friendly Material

Authors: Rina Yadav, Meng-Ting Tsai

Abstract:

In the present scenario, sustainable buildings are in high demand. The essential decision for building sustainability is made during the design and preconstruction stages. Main objective of this study is reduction of unfavorable environmental impacts, which is a major cause of global warming. Based on this problem, to diminish the environmental hazards, present research study is applied to provide a guideline to designer that will be useful for material selection stage of designing. This can be achieved by using local available materials such as wood, mud, bamboos instead of cement, steel, concrete by reducing carbon dioxide emission. Energy simulation will be analyzed by software to get the comparable result. It will be encouraging and motivational for designer while using ecofriendly material to achieve points in Leadership in energy and environmental design (LEED) in green rating system.

Keywords: sustainability design, lead rating, LEED, building performance analyses

Procedia PDF Downloads 472
366 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion

Authors: M. Sari Yilmaz, N. Karamahmut Mermer

Abstract:

Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence (XRF) spectroscopy and X-ray diffraction (XRD). The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: extraction, fly ash, fusion, XRD

Procedia PDF Downloads 309
365 Wildfires Assessed By Remote Sensed Images And Burned Land Monitoring

Authors: Maria da Conceição Proença

Abstract:

This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. It’s intended to show that this evaluation can be done with remote sensing data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it available for county workers in city halls of the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away from the animal population. The economic interest is also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years. The tools described in this paper enable the location of the areas where took place the annihilation of natural habitats and establish a baseline for major changes in forest ecosystems recovery. Moreover, the result allows the follow up of the surface fuel loading, enabling the targeting and evaluation of restoration measures in a time basis planning.

Keywords: image processing, remote sensing, wildfires, burned areas evaluation, sentinel-2

Procedia PDF Downloads 190
364 Experimental Study on Strengthening Systems of Reinforced Concrete Cantilever Slabs

Authors: Aymen H. Khalil, Ashraf M. Heniegal, Bassam A. Abdelsalam

Abstract:

There are many problems related to cantilever slabs such as the time-dependent deformation, corrosion problems of steel reinforcement, and lack of experimental studies on the strength of strengthened cantilever slabs. This paper presents an investigation to evaluate the behavior of reinforced concrete cantilever slabs after strengthening with different techniques. Six medium scale specimens, divided into three groups, were tested along with a control slab. The first group consists of two specimens which were repaired and strengthened using reinforced concrete jacket above with and without shear connector bars, whereas the second group contained two slabs which were strengthened using two strips of two layers of glass fiber reinforced polymer (GFRP) covering 60% and 90% from the cantilever length. The last group involves two specimens strengthened with two steel plates. In one specimen, the steel plates were glued to the surface using epoxy resin. The second specimen, the steel plates were affixed to the concrete surface using expansion bolts. The loading was conducted in two phases. Firstly, the samples were subjected to 40% of the ultimate load of the control slab. Secondly, the specimens reloaded after being strengthened up to failure. The load-deflection, steel strain, concrete strain, failure mode, toughness, and ductility index are discussed in this paper.

Keywords: repair, strengthened, GFRP layers, reloaded, jacketing, cantilever slabs

Procedia PDF Downloads 191
363 Cranioplasty With Custom Implant Realized Using 3D Printing Technology

Authors: R. Trad Khodja, A. Guessmi, R. Ghoul, A. Mahtout, S. A. Benbouali, M. A. Boulahlib

Abstract:

Cranioplasty is a surgical act that aims to restore cranial bone losses in order to protect the brain from external aggressions and to improve the patient's aesthetic appearance. This objective can be achieved by taking advantage of the current technological development in computer science and biomechanics. The objective of this paper is to present an approach for the realization of high-precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure, ten patients underwent this procedure with excellent aesthetic results.

Keywords: cranioplasty, cranial defect, PMMA, 3d printing, custom made implants

Procedia PDF Downloads 29
362 Hot-Dip Galvanizing as a Barrier Protection Coating for Steel Hydraulic Structures

Authors: Farrokh Taherkhani, Thomas Pinger, Max Gündel

Abstract:

The total economic damage caused by corrosion in Germany is estimated to be more than 3% of the GDP per year. Additionally, corrosion and suitable corrosion protection systems are also significant factors in the consideration of life cycle costs for steel hydraulic structures. In addition to classic coating systems (for example, epoxy resin or polyurethane), zinc and its alloys offer effective and very durable corrosion protection for steels. As a protective layer, hot-dip galvanizing prevents the corrosive media from penetrating into the steel matrix and acts as a sacrificial anode, which corrodes in preference to the steel. However, hot-dip galvanizing as a corrosion protection system has not yet been approved by the relevant authority, the Federal Waterways Engineering and Research Institute (BAW) in Germany. In order to make hot-dip galvanizing usable as a corrosion protection system for steel hydraulic structures in the future, different factors must be considered. These factors are (i) corrosion protection type, (ii) resistance to mechanical stress (i.e., abrasion resistance), (iii) combinability with cathodic corrosion protection, (iv) environmental effects and (v) the crack formation and propagation during hot-dip galvanizing. In this work, hot-dip galvanizing as a corrosion protection system for steel hydraulic steel structures, as well as open questions, are discussed. This paper is based on initial long-term exposure tests with corrosion protection systems consisting of hot-dip galvanizing and duplex systems.

Keywords: steel hydraulic structure, hot-dip galvanizing, corrosion, corrosion resistance, zinc coating, organic coating, duplex sytems

Procedia PDF Downloads 9
361 Application of Cube IQ Software to Optimize Heterogeneous Packing Products in Logistics Cargo and Minimize Transportation Cost

Authors: Muhammad Ganda Wiratama

Abstract:

XYZ company is one of the upstream chemical companies that produce chemical products such as NaOH, HCl, NaClO, VCM, EDC, and PVC for downstream companies. The products are shipped by land using trucks and sea lanes using ship mode. Especially for solid products such as flake caustic soda (F-NaOH) and PVC resin, the products are sold in loose bag packing and palletize packing (packed in pallet). The focus of this study is to increase the number of items that can be loaded in pallet packaging on the company's logistics vehicle. This is very difficult because on this packaging, the dimensions or size of the material to be loaded become larger and certainly much heavier than the loose bag packing. This factor causes the arrangement and handling of materials in the mode of transportation more difficult. In this case, it is difficult to load a different type of volume packing pallet dimension in one truck or container. By using the Cube-IQ software, it is hoped that the planning of stuffing activity material by pallet can become easier in optimizing the existing space with various possible combinations of possibilities. In addition, the output of this software can also be used as a reference for operators in the material handling include the order and orientation of materials contained in the truck or container. The more optimal contents of logistics cargo, then transportation costs can also be minimized.

Keywords: loading activity, container loading, palletize product, simulation

Procedia PDF Downloads 285
360 A Social-Environmental Way for Production of Building Materials with Solid Residues

Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque

Abstract:

Water treatment residues (WTR) are produced during water treatment and have recently been seen as a reusable material. The aim of this research was to perform characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, in Goiania, Brazil, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feed stock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: residue, sustainable, water treatment plants, WTR

Procedia PDF Downloads 524
359 Material Analysis for Temple Painting Conservation in Taiwan

Authors: Chen-Fu Wang, Lin-Ya Kung

Abstract:

For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.

Keywords: temple painting, painting material, conservation, FT-IR

Procedia PDF Downloads 168
358 Adhesive Connections in Timber: A Comparison between Rough and Smooth Wood Bonding Surfaces

Authors: Valentina Di Maria, Anton Ianakiev

Abstract:

The use of adhesive anchors for wooden constructions is an efficient technology to connect and design timber members in new timber structures and to rehabilitate the damaged structural members of historical buildings. Due to the lack of standard regulation in this specific area of structural design, designers’ choices are still supported by test analysis that enables knowledge, and the prediction, of the structural behavior of glued in rod joints. The paper outlines an experimental research activity aimed at identifying the tensile resistance capacity of several new adhesive joint prototypes made of epoxy resin, steel bar and timber, Oak and Douglas Fir species. The development of new adhesive connectors has been carried out by using epoxy to glue stainless steel bars into pre-drilled holes, characterized by smooth and rough internal surfaces, in timber samples. The realization of a threaded contact surface using a specific drill bit has led to an improved bond between wood and epoxy. The applied changes have also reduced the cost of the joints’ production. The paper presents the results of this parametric analysis and a Finite Element analysis that enables identification and study of the internal stress distribution in the proposed adhesive anchors.

Keywords: glued in rod joints, adhesive anchors, timber, epoxy, rough contact surface, threaded hole shape

Procedia PDF Downloads 533
357 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy

Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.

Keywords: concrete, damage assessment, harmful substances, LIBS

Procedia PDF Downloads 165
356 Evaluation of Polyurethane-Bonded Particleboard Manufactured with Eucalyptus Sp. and Bi-Oriented Polypropylene Wastes

Authors: Laurenn Borges de Macedo, Fabiane Salles Ferro, Tiago Hendrigo de Almeida, Gérson Moreira de Lima, André Luiz Christoforo, Francisco Antonio Rocco Lahr

Abstract:

The growth of the furniture manufacturing industry is one of the fundamental factors contributing to the growth of the particleboard industry. The use of recycled products into particleboards can contribute to the forest conservation, in addition to achieve a high quality sustainable product with low-cost production. This work investigates the effect of bi-oriented polypropylene (BOPP) waste particles and sealing product on the physical and mechanical properties of Eucalyptus sp. particleboards fabricated with a castor oil based polyurethane resin. Among the factors, only the seal coating was statistically significant. The wood panels of Treatment 2 were classified as H1, based on the internal bond strength and elastic modulus results data required by ANSI A208.1:1999. The bending strength data did not reach the minimum values recommended by NBR 14810:2006 and ANSI A208.1:1999. The thickness swelling data for 2h immersed in water achieved the standard requirement levels. High-density panels were achieved revealing their potential use in variety of particleboard applications.

Keywords: BOPP, mechanical properties, particleboards, physical properties

Procedia PDF Downloads 356
355 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac

Abstract:

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.

Keywords: carbon fiber reinforced plastic(CFRP), pre-impregnation, laminating method, interlaminar shear strength (ILSS)

Procedia PDF Downloads 356
354 Study on the Thermal Conductivity about Porous Materials in Wet State

Authors: Han Yan, Jieren Luo, Qiuhui Yan, Xiaoqing Li

Abstract:

The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board.

Keywords: porous materials, thermal conductivity, moisture content, transient hot-wire method

Procedia PDF Downloads 167
353 Mechanical Properties of Self-Compacting Concrete with Three-Dimensional Steel Fibres

Authors: Jeffri Ramli, Brabha Nagaratnam, Keerthan Poologanathan, Wai Ming Cheung, Thadshajini Suntharalingham

Abstract:

Fiber-reinforced self-compacting concrete (FRSCC) combines the benefits of SCC of high flowability and randomly dispersed short fibres together in one single concrete. Fibres prevent brittle behaviour and improve several mechanical properties of SCC. In this paper, an experimental investigation of the effect of three-dimensional (3D) fibres on the mechanical properties of SCC has been conducted. Seven SCC mixtures, namely SCC with no fibres as a reference mix, and six 3D steel fibre reinforced SCC mixes were prepared. Two different sizes of 3D steel fibres with perimeters of 115 mm and 220 mm at different fibre contents of 1%, 2%, and 3% (by cement weight) were considered. The mechanical characteristics were obtained through compressive, splitting tensile, and flexural strength tests. The test results revealed that the addition of 3D fibres improves the mechanical properties of SCC.

Keywords: self-compacting concrete, three-dimensional steel fibres, mechanical properties, compressive strength, splitting tensile strength, flexural strength

Procedia PDF Downloads 134
352 Preparation of Core-Shell AgBr/Cationic Polymer Nanocomposite with Dual Biocidal Modes and Sustained Release of Ag+ Ions

Authors: Rongzhou Wang

Abstract:

Research on designing nano-antibacterial agent with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a core-shell AgBr/cationic polymer nanocomposite (AgBr/NPVP-H10) were synthesized and its structure confirmed by Fourier Transform Infrared Spectrometer (FT-IR), Nuclear Magnetic Resonance (1H NMR) and X-ray diffraction (XRD), and the cationic polymer contents were determined with Thermal Gravimetric Analyzer (TGA). The morphology was directly observed by Transmission Electron Microscope (TEM) which showed that the nanoparticle contains single core and organic shell and had an average diameter of 30.1 nm. The antibacterial test against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli illuminated that this nanocomposite had potent bactericidal activity, which can be attributed to the contact-killing of cationic polymers and releasing-killing of Ag+ ions. In addition, cationic polymer encapsulating AgBr cores gave the resin discs sustained release of Ag+ ions, which may result in long-lasting bactericidal activity. The AgBr/NPVP-H10 nanoparticle with the dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing bacterial infection.

Keywords: core-shell nanocomposite, cationic polymer, dual antibacterial capability, long-lasting antibacterial activity

Procedia PDF Downloads 176
351 The Development of Packaging to Create Additional Value for Organic Rice Products of Uttaradit Province, Thailand

Authors: Juntima Pokkrong

Abstract:

The objectives of the study were to develop packaging made from rice straws left after the harvest in order to create additional value for organic rice products of Uttaradit Province and to demonstrate the technology of producing straw packaging to the community. The population was promoters of organic rice distributors, governmental organizations, consumers, and three groups of organic rice producers which are the Agriculturist Group of Khorrum Sub-district, Pichai District, Uttaradit Province; the Agriculturist Group of Wangdin Sub-district, Muang District, Uttaradit Province; and the Agriculturist Group of Wangkapi Sub-district, Muang District, Uttaradit Province. The data were collected via group discussions, and two types of questionnaires. The data acquired were then analyzed using descriptive statistic for percentage, mean, standard deviation, and content analysis. It has been found that primary packaging for one kilogram of rice requires vacuumed plastic bags made from thermoplastic or resin because they are able to preserve the quality of rice for a long time, and they are also very cheap. For secondary packaging, the making of straw paper was studied and applied. Straw paper can be used for various purposes, and in this study, it was used to create the secondary packaging models in compliance with packaging preferences acquired from the questionnaires. The models were surveyed among the population for their opinion using satisfaction questionnaires, and the result was overall highly satisfactory.

Keywords: environmentally friendly, organic rice, packaging, straw paper

Procedia PDF Downloads 230
350 Effective Microorganisms as a Sustainable Environment Product and Their Application: A Study in Pakistan

Authors: Jaffar Hussain, Farman Ali Shah

Abstract:

As we know that Pakistan is the developing country so it adopts new technologies for progress. In last three decays, some new technologies were introduced in the world in which Effective Microorganism was one of them. Microorganisms are one of the most power full living forces on earth. Originally, EM was developed as an odor control, farm, and animal health, human health many industrial treatments. Effective Microorganism is an organic fertilizer that contains a mixture of co-existing valuable microorganism composed from the environment. There are vast application of the EM in the world in which the researchers are explained in literature .In Pakistan work on EM technologies are under process, researcher are doing work to make them most valuable. At that time the application of EM are in agriculture, water treatment, to increase Cement strength, improving saline soil etc. Effective microorganisms are environmentally friendly , not-naturally organized, not chemically synthesized, not dangerous and not pathogenic.

Keywords: developing country, technologies, effective microorganism, researchers, Pakistan, agriculture

Procedia PDF Downloads 466
349 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 298