Search results for: partial pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5228

Search results for: partial pressure

4478 Determination of Sintering Parameters of TiB₂ – Ti₃SiC₂ Composites

Authors: Bilge Yaman Islak, Erhan Ayas

Abstract:

The densification behavior of TiB₂ – Ti₃SiC₂ composites is investigated for temperatures in the range of 1200°C to 1400°C, for the pressure of 40 and 50MPa, and for holding time between 15-30 min by spark plasma sintering (SPS) technique. Ti, Si, TiC and 5 wt.% TiB₂ were used to synthesize TiB₂ – Ti₃SiC₂ composites and the effect of different sintering parameters on the densification and phase evolution of these composites were investigated. The bulk densities were determined by using the Archimedes method. The polished and fractured surfaces of the samples were examined using a scanning electron microscope equipped with an energy dispersive spectroscopy (EDS). The phase analyses were accomplished by using the X-Ray diffractometer. Sintering temperature and holding time are found to play a dominant role in the phase development of composites. TiₓCᵧ and TiSi₂ secondary phases were found in 5 wt.%TiB₂ – Ti₃SiC₂ composites densified at 1200°C and 1400°C under the pressure of 40 MPa, due to decomposition of Ti₃SiC₂. The results indicated that 5 wt.%TiB₂ – Ti₃SiC₂ composites were densified into the dense parts with a relative density of 98.77% by sintering at 1300 °C, for 15 min, under a pressure of 50 MPa via SPS without the formation of any other ancillary phase. This work was funded and supported by Scientific Research Projects Commission of Eskisehir Osmangazi University with the Project Number 201915C103 (2019-2517).

Keywords: densification, phase evolution, sintering, TiB₂ – Ti₃SiC₂ composites

Procedia PDF Downloads 141
4477 Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy

Authors: H. Lee, Jr., L. Bo-ot, R. Tumlos, H. Ramos

Abstract:

The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates.

Keywords: plasma jet, OES, Boltzmann plots, vibrational temperatures

Procedia PDF Downloads 714
4476 From Responses of Macroinvertebrate Metrics to the Definition of Reference Thresholds

Authors: Hounyèmè Romuald, Mama Daouda, Argillier Christine

Abstract:

The present study focused on the use of benthic macrofauna to define the reference state of an anthropized lagoon (Nokoué-Benin) from the responses of relevant metrics to proxies. The approach used is a combination of a joint species distribution model and Bayesian networks. The joint species distribution model was used to select the relevant metrics and generate posterior probabilities that were then converted into posterior response probabilities for each of the quality classes (pressure levels), which will constitute the conditional probability tables allowing the establishment of the probabilistic graph representing the different causal relationships between metrics and pressure proxies. For the definition of the reference thresholds, the predicted responses for low-pressure levels were read via probability density diagrams. Observations collected during high and low water periods spanning 03 consecutive years (2004-2006), sampling 33 macroinvertebrate taxa present at all seasons and sampling points, and measurements of 14 environmental parameters were used as application data. The study demonstrated reliable inferences, selection of 07 relevant metrics and definition of quality thresholds for each environmental parameter. The relevance of the metrics as well as the reference thresholds for ecological assessment despite the small sample size, suggests the potential for wider applicability of the approach for aquatic ecosystem monitoring and assessment programs in developing countries generally characterized by a lack of monitoring data.

Keywords: pressure proxies, bayesian inference, bioindicators, acadjas, functional traits

Procedia PDF Downloads 84
4475 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance

Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan

Abstract:

When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.

Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel

Procedia PDF Downloads 68
4474 Design of an Active Compression System for Treating Vascular Disease Using a Series of Silicone Based Inflatable Mini Bladders

Authors: Gayani K. Nandasiri, Tilak Dias, William Hurley

Abstract:

Venous disease of human lower limb could range from minor asymptomatic incompetence of venous valves to chronic venous ulceration. The sheer prevalence of varicose veins and its associated significant costs of treating late complications such as chronic ulcers contribute to a higher burden on health care resources. In most of western countries with developed health care systems, treatment costs associated with Venous disease accounts for a considerable portion of their total health care budget, and it has become a high-cost burden to National Health Service (NHS), UK. The established gold standard of treatment for the venous disease is the graduated compression, where the pressure at the ankle being highest and decreasing towards the knee and thigh. Currently, medical practitioners use two main methods to treat venous disease; i.e. compression bandaging and compression stockings. Both these systems have their own disadvantages which lead to the current programme of research. The aim of the present study is to revolutionize the compression therapy by using a novel active compression system to deliver a controllable and more accurate pressure profiles using a series of inflatable mini bladders. Two types of commercially available silicones were tested for the application. The mini bladders were designed with a special fabrication procedure to provide required pressure profiles, and a series of experiments were conducted to characterise the mini bladders. The inflation/deflation heights of these mini bladders were investigated experimentally and using a finite element model (FEM), and the experimental data were compared to the results obtained from FEM simulations, which showed 70-80% agreement. Finally, the mini bladders were tested for its pressure transmittance characteristics, and the results showed a 70-80% of inlet air pressure transmitted onto the treated surface.

Keywords: finite element analysis, graduated compression, inflatable bladders, venous disease

Procedia PDF Downloads 185
4473 Effects of the Treatment by Polypill Combinations vs Identical Monopill Therapies in Patients with Cardiovascular Comorbid Diseases

Authors: Denys Sebov, Viktoriia Korotaieva, Kateryna Markina

Abstract:

The clinical advantage of the multipill combination drugs administration (polypill-strategy) over single-component drugs (monopill-strategy) has been established in patients with comorbid arterial hypertension, heart failure, chronic coronary syndrome, diabetes. It was found that polypill-strategy provides better treatment adherence in 33.4% of the patients. It was proven a significant decrease in systolic and diastolic blood pressure, as well as a decrease in dispersion index due to the stability of the blood pressure profile in patients with the polypill-strategy treatment.

Keywords: polypill, artetial hypertension, cardiovascular disease, compliance

Procedia PDF Downloads 61
4472 Numerical Studies on the Performance of the Finned-Tube Heat Exchanger

Authors: S. P. Praveen Kumar, Bong-Su Sin, Kwon-Hee Lee

Abstract:

Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc. Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper, numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables, maximizing the temperature difference and minimizing the pressure drop was suggested by applying DOE. In this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using Analysis of Variance (ANOVA) to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition.

Keywords: heat exchanger, fluid analysis, heat transfer, design of experiment, analysis of variance

Procedia PDF Downloads 446
4471 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 193
4470 Effects of Physical Activity Used as Treatment in Community Mental Health Services

Authors: John Olav Bjornestad, Bjorn Tore Johansen

Abstract:

The number of people suffering from mental illnesses is increasing, and such illness is currently one of the major causes of disability and poor health. The reason for this is most likely a lack of physical activity. The purpose of this study was to discover if physical activity was an effective mode of treatment for psychiatric patients at an out-patient treatment facility. The study included an exploration of whether or not patients having physical activity included as an integral part of their treatment (to a greater degree than do patients who are physically inactive) would achieve 1) an improvement in their physical condition 2) a reduction in symptomatic pressure and 3) an increase in their health-related quality of life. The intervention period lasted a total of 12 weeks. The training group completed a minimum of 2 training sessions per week with an intensity of 60-75% of maximum heart rate. The participants’ health-related quality of life (SF-36), symptomatic pressure (SCL-90-R) and physical condition (UKK-walking test) were measured before and after intervention. Twenty participants were pre-tested, and out of this initial group, nine patients completed the intervention program and participated thereafter in post-testing. The results showed that participants on average improved their physical condition, reduced their symptomatic pressure and increased their health-related quality of life over the course of the intervention period. The training group experienced significant changes in their symptomatic pressure (the anxiety dimension) and health-related quality of life (the mental health dimension) from the pre-testing stage to the post-testing one. Furthermore, there was a significant connection between symptomatic pressure and health-related quality of life. The patients who were admitted to the psychiatric out-patient clinic were in a physical condition that was significantly poorer than that of persons of the same age in the remainder of the population. Experiences from the study and the relatively large defection from it demonstrate that there is a great need for close follow-up of psychiatric patients’ physical activity levels when physical activity and lifestyle changes are included as part of their treatment program.

Keywords: health-related quality, mental health, physical activity, physical condition

Procedia PDF Downloads 279
4469 Applying Element Free Galerkin Method on Beam and Plate

Authors: Mahdad M’hamed, Belaidi Idir

Abstract:

This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole

Keywords: numerical computation, element-free Galerkin (EFG), moving least squares (MLS), meshless methods

Procedia PDF Downloads 283
4468 A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer

Authors: James Q. Feng

Abstract:

Pneumatic nebulizers (as variations based on the Collison nebulizer) have been widely used for producing fine aerosol droplets from a liquid material. As qualitatively described by many authors, the basic working principle of those nebulizers involves utilization of the negative pressure associated with an expanding gas jet to syphon liquid into the jet stream, then to blow and shear into liquid sheets, filaments, and eventually droplets. But detailed quantitative analysis based on fluid mechanics theory has been lacking in the literature. The purpose of present work is to investigate the nature of negative pressure distribution associated with compressible gas jet flow in the Collison nebulizer by a computational fluid dynamics (CFD) analysis, using an OpenFOAM® compressible flow solver. The value of the negative pressure associated with a gas jet flow is examined by varying geometric parameters of the jet expansion channel adjacent to the jet orifice outlet. Such an analysis can provide valuable insights into fundamental mechanisms in liquid aspiration process, helpful for effective design of the pneumatic atomizer in the Aerosol Jet® direct-write system for micro-feature, high-aspect-ratio material deposition in additive manufacturing.

Keywords: collison nebulizer, compressible gas jet flow, liquid aspiration, pneumatic atomization

Procedia PDF Downloads 181
4467 Supply Air Pressure Control of HVAC System Using MPC Controller

Authors: P. Javid, A. Aeenmehr, J. Taghavifar

Abstract:

In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.

Keywords: air conditioning system, GPC, dead time, air supply control

Procedia PDF Downloads 527
4466 Flow Separation Control on an Aerofoil Using Grooves

Authors: Neel K. Shah

Abstract:

Wind tunnel tests have been performed at The University of Manchester to investigate the impact of surface grooves of a trapezoidal planform on flow separation on a symmetrical aerofoil. A spanwise array of the grooves has been applied around the maximum thickness location of the upper surface of an NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. A laminar separation bubble developed on the aerofoil at low AoA. It has been found that the grooves shorten the streamwise extent of the separation bubble by shedding a pair of counter-rotating vortices. However, the increase in leading-edge suction due to the shorter bubble is not significant since the creation of the grooves results in a decrease of surface curvature and an increase in blockage (increase in surface pressure). Additionally, the increased flow mixing by the grooves thickens the boundary layer near the trailing edge of the aerofoil also contributes to this limitation. As a result of these competing effects, the improvement in the pressure-lift and pressure-drag coefficients are small, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. Crosswire anemometry shows that the grooves increase turbulence intensity and Reynolds stresses in the wake, thus indicating an increase in viscous drag.

Keywords: aerofoil flow control, flow separation, grooves, vortices

Procedia PDF Downloads 315
4465 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 590
4464 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls

Authors: M. A. Anwar, K. Iqbal, M. Razzaq

Abstract:

Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.

Keywords: bifurcation, elastic walls, finite element, wall shear stress,

Procedia PDF Downloads 181
4463 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 121
4462 Brinkman Flow Past an Impervious Spheroid under Stokesian Assumption

Authors: D. Satish Kumar, T. K. V. Iyengar

Abstract:

In this paper, we study the Brinkman flow, under Stokesian assumption, past an impervious prolate spheroid and obtain the expressions for the velocity and pressure fields in terms of Legendre functions, Associated Legendre functions, prolate radial and angular spheroidal wave functions. We further obtain an expression for the drag experienced by the spheroid and numerically study its variation with respect to the flow parameters and display the results through graphs.

Keywords: prolate spheoid, porous medium, stokesian assumption, brinkman model, velocity, pressure, drag

Procedia PDF Downloads 536
4461 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X

Authors: Natasha Botha, Gary Corderely, Helen M. Inglis

Abstract:

With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.

Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage

Procedia PDF Downloads 247
4460 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks

Authors: Nicholas Aerne, John P. Parmigiani

Abstract:

There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.

Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply

Procedia PDF Downloads 205
4459 Case of A Huge Retroperitoneal Abscess Spanning from the Diaphragm to the Pelvic Brim

Authors: Christopher Leung, Tony Kim, Rebecca Lendzion, Scott Mackenzie

Abstract:

Retroperitoneal abscesses are a rare but serious condition with often delayed diagnosis, non-specific symptoms, multiple causes and high morbidity/mortality. With the advent of more readily available cross-sectional imaging, retroperitoneal abscesses are treated earlier and better outcomes are achieved. Occasionally, a retroperitoneal abscess is present as a huge retroperitoneal abscess, as evident in this 53-year-old male. With a background of chronic renal disease and left partial nephrectomy, this gentleman presented with a one-month history of left flank pain without any other symptoms, including fevers or abdominal pain. CT abdomen and pelvis demonstrated a huge retroperitoneal abscess spanning from the diaphragm, abutting the spleen, down to the iliopsoas muscle and abutting the iliac vessels at the pelvic brim. This large retroperitoneal abscess required open drainage as well as drainage by interventional radiology. A long course of intravenous antibiotics and multiple drainages was required to drain the abscess. His blood culture and fluid culture grew Proteus species suggesting a urinary source, likely from his non-functioning kidney, which had a partial nephrectomy. Such a huge retroperitoneal abscess has rarely been described in the literature. The learning point here is that the basic principle of source control and antibiotics is paramount in treating retroperitoneal abscesses regardless of the size of the abscess.

Keywords: retroperitoneal abscess, retroperitoneal mass, sepsis, genitourinary infection

Procedia PDF Downloads 222
4458 Effect of High-Pressure and Thermal Treatments on Quality Markers of Strawberry Nectars

Authors: Karen Louise Lacey, Dario Javier Pavon Vargas, Massimiliano Rinaldi, Luca Cattani, Sara Rainieri

Abstract:

The effects of high-pressure processing (HPP) and thermal treatments (TT) on quality markers of strawberry nectar (12 °Brix, 3,3 pH) was studied before and after treatments. TT and HPP treatments ensured a 3-log aerobic bacteria inactivation. No significant difference was detected in terms of pH and °Brix. TT samples were less red (a* less positive) than all HPP treated samples, while all samples were less red than the control. Apparent viscosity was significantly increased in all the HPP treatments, at 10 1/s shear rate, control was 79.04±7.94 mPa•s and the 600 MPa-20 min treatment were 327.10±1.64 mPa•s. This work suggests that HPP treatments may maintain the quality markers of strawberry nectar better.

Keywords: HPP, strawberry nectar, colour , viscosity

Procedia PDF Downloads 132
4457 Aging-Related Changes in Calf Muscle Function: Implications for Venous Hemodynamic and the Role of External Mechanical Activation

Authors: Bhavatharani S., Boopathy V., Kavin S., Naveethkumar R.

Abstract:

Context: Resistance training with blood flow restriction (BFR) has increased in clinical rehabilitation due to the substantial benefits observed in augmenting muscle mass and strength using low loads. However, there is a great variability of training pressures for clinical populations as well as methods to estimate it. The aim of this study was to estimate the percentage of maximal BFR that could result by applying different methodologies based on arbitrary or individual occlusion levels using a cuff width between 9 and 13 cm. Design: A secondary analysis was performed on the combined databases of 2 previous larger studies using BFR training. Methods: To estimate these percentages, the occlusion values needed to reach complete BFR (100% limb occlusion pressure [LOP]) were estimated by Doppler ultrasound. Seventy-five participants (age 24.32 [4.86] y; weight: 78.51 [14.74] kg; height: 1.77 [0.09] m) were enrolled in the laboratory study for measuring LOP in the thigh, arm, or calf. Results: When arbitrary values of restriction are applied, a supra-occlusive LOP between 120% and 190% LOP may result. Furthermore, the application of 130% resting brachial systolic blood pressure creates a similar occlusive stimulus as 100% LOP. Conclusions: Methods using 100 mm Hg and the resting brachial systolic blood pressure could represent the safest application prescriptions as they resulted in applied pressures between 60% and 80% LOP. One hundred thirty percent of the resting brachial systolic blood pressure could be used to indirectly estimate 100% LOP at cuff widths between 9 and 13 cm. Finally, methodologies that use standard values of 200 and, 300 mm Hg far exceed LOP and may carry additional risk during BFR exercise.

Keywords: lower limb rehabilitation, ESP32, pneumatics for medical, programmed rehabilitation

Procedia PDF Downloads 84
4456 The Effects of Vocational Training on Offender Rehabilitation in Nigerian Correctional Institutions

Authors: Hadi Mohammed

Abstract:

The introduction of vocational education and training (VET) in correctional institutions as part of prisoner rehabilitation program is to help offenders develop marketable job skills and reduce re-offending thereby increasing the likely hood of successful reintegration back to their community. Offenders who participate in vocational education and training are significantly less likely to return to prison after released and are more likely to find employment after released than offenders who do not received such training. Those who participated in vocational training were 28% more likely to be employed after released from prison than those who did not received such training. This paper examined the effects of vocational training on offender rehabilitation as well as the effects of vocational training on the relationship between reformation and reintegration in Nigerian correctional institution. To address this two research question were formulated to guide the research. A survey research was employed. The participants were 200 offenders in Nigerian correctional institutions. Questionnaire items were administered. Mean, standard deviation and Partial Correlation were used for the data analysis. The findings revealed that vocational training has helped in offender rehabilitation in Nigerian correctional institutions. Similarly there was a moderate significant positive partial correlation between reformation and reintegration, controlling for vocational training, r=0.461, n=221, p<0.005 with moderate level of reformation and being associated with moderate level of reintegration. Based on the findings of the study, it was recommended that Nigerian Correctional Institutions should strengthen their vocational training program for offenders to be properly rehabilitated.

Keywords: correctional institutions, vocational education and training, offender rehabilitation

Procedia PDF Downloads 169
4455 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 51
4454 The Effects of Passive and Active Recoveries on Responses of Platelet Indices and Hemodynamic Variables to Resistance Exercise

Authors: Mohammad Soltani, Sajad Ahmadizad, Fatemeh Hoseinzadeh, Atefe Sarvestan

Abstract:

The exercise recovery is an important variable in designing resistance exercise training. This study determined the effects of passive and active recoveries on responses of platelet indices and hemodynamic variables to resistance exercise. Twelve healthy subjects (six men and six women, age, 25.4 ±2.5 yrs) performed two types of resistance exercise protocols (six exercises including upper- and lower-body parts) at two separate sessions with one-week intervening. First resistance protocol included three sets of six repetitions at 80% of 1RM with 2 min passive rest between sets and exercises; while, the second protocol included three sets of six repetitions at 60% of 1RM followed by active recovery included six repetitions of the same exercise at 20% of 1RM. The exercise volume was equalized. Three blood samples were taken before exercise, immediately after exercise and after 1-hour recovery, and analyzed for fibrinogen and platelet indices. Blood pressure (BP), heart rate (HR) and rate pressure product (RPP), were measured before, immediately after exercise and every 5 minutes during recovery. Data analyzes showed a significant increase in SBP (systolic blood pressure), HR, rate of pressure product (RPP) and PLT in response to resistance exercise (P<0.05) and that changes for HR and RPP were significantly different between two protocols (P<0.05). Furthermore, MPV and P_LCR did not change in response to resistance exercise, though significant reductions were observed after 1h recovery compared to before and after exercise (P<0.05). No significant changes in fibrinogen and PDW following two types of resistance exercise protocols were observed (P>0.05). On the other hand, no significant differences in platelet indices were found between the two protocols (P>0.05). Resistance exercise induces changes in platelet indices and hemodynamic variables, and that these changes are not related to the type of recovery and returned to normal levels after 1h recovery.

Keywords: hemodynamic variables, platelet indices, resistance exercise, recovery intensity

Procedia PDF Downloads 143
4453 Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration

Authors: Payam Haghparast, Mikhail V. Sorin, Hakim Nesreddine

Abstract:

The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.

Keywords: 1D model, constant area-mixing, constant pressure-mixing, normal shock location, ejector dimensions

Procedia PDF Downloads 195
4452 Parametric Study on the Development of Earth Pressures Behind Integral Bridge Abutments Under Cyclic Translational Movements

Authors: Lila D. Sigdel, Chin J. Leo, Samanthika Liyanapathirana, Pan Hu, Minghao Lu

Abstract:

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. Integral bridges are economical alternatives to conventional jointed bridges with lower maintenance costs and greater durability, thereby improving social and economic stability for the community. Integral bridges have also been proven to be effective in lowering the overall construction cost compared to the conventional type of bridges. However, there is significant uncertainty related to the design and analysis of integral bridges in response to cyclic thermal movements induced due to deck expansion and contraction. The cyclic thermal movements of the abutments increase the lateral earth pressures on the abutment and its foundation, leading to soil settlement and heaving of the backfill soil. Thus, the primary objective of this paper is to investigate the soil-abutment interaction under the cyclic translational movement of the abutment. Results from five experiments conducted to simulate different magnitudes of cyclic translational movements of abutments induced by thermal changes are presented, focusing on lateral earth pressure development at the abutment-soil interface. Test results show that the cycle number and magnitude of cyclic translational movements have significant effects on the escalation of lateral earth pressures. Experimentally observed earth pressure distributions behind the integral abutment were compared with the current design approaches, which shows that the most of the practices has under predicted the lateral earth pressure.

Keywords: integral bridge, cyclic thermal movement, lateral earth pressure, soil-structure interaction

Procedia PDF Downloads 114
4451 Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics

Authors: Mohammad Al- Rawi, Ahmad Al- Jumaily

Abstract:

This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site.

Keywords: arterial blockage, pulse wave, atherosclerosis, CFD

Procedia PDF Downloads 284
4450 Body Composition Response to Lower Body Positive Pressure Training in Obese Children

Authors: Basant H. El-Refay, Nabeel T. Faiad

Abstract:

Background: The high prevalence of obesity in Egypt has a great impact on the health care system, economic and social situation. Evidence suggests that even a moderate amount of weight loss can be useful. Aim of the study: To analyze the effects of lower body positive pressure supported treadmill training, conducted with hypocaloric diet, on body composition of obese children. Methods: Thirty children aged between 8 and 14 years, were randomly assigned into two groups: intervention group (15 children) and control group (15 children). All of them were evaluated using body composition analysis through bioelectric impedance. The following parameters were measured before and after the intervention: body mass, body fat mass, muscle mass, body mass index (BMI), percentage of body fat and basal metabolic rate (BMR). The study group exercised with antigravity treadmill three times a week during 2 months, and participated in a hypocaloric diet program. The control group participated in a hypocaloric diet program only. Results: Both groups showed significant reduction in body mass, body fat mass and BMI. Only study group showed significant reduction in percentage of body fat (p = 0.0.043). Changes in muscle mass and BMR didn't reach statistical significance in both groups. No significant differences were observed between groups except for muscle mass (p = 0.049) and BMR (p = 0.042) favoring study group. Conclusion: Both programs proved effective in the reduction of obesity indicators, but lower body positive pressure supported treadmill training was more effective in improving muscle mass and BMR.

Keywords: children, hypocaloric diet, lower body positive pressure supported treadmill, obesity

Procedia PDF Downloads 244
4449 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System

Authors: Masoud Mirzaee, Ghobad Behzadi Pour

Abstract:

An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.

Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure

Procedia PDF Downloads 250