Search results for: multiple indicator cluster survey
10238 Supply Chain Risk Management (SCRM): A Simplified Alternative for Implementing SCRM for Small and Medium Enterprises
Authors: Paul W. Murray, Marco Barajas
Abstract:
Recent changes in supply chains, especially globalization and collaboration, have created new risks for enterprises of all sizes. A variety of complex frameworks, often based on enterprise risk management strategies have been presented under the heading of Supply Chain Risk Management (SCRM). The literature on promotes the benefits of a robust SCRM strategy; however, implementing SCRM is difficult and resource demanding for Large Enterprises (LEs), and essentially out of reach for Small and Medium Enterprises (SMEs). This research debunks the idea that SCRM is necessary for all enterprises and instead proposes a simple and effective Vendor Selection Template (VST). Empirical testing and a survey of supply chain practitioners provide a measure of validation to the VST. The resulting VSTis a valuable contribution because is easy to use, provides practical results, and is sufficiently flexible to be universally applied to SMEs.Keywords: multiple regression analysis, supply chain management, risk assessment, vendor selection
Procedia PDF Downloads 46510237 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators
Authors: Wei Ji
Abstract:
This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis
Procedia PDF Downloads 30810236 The Link of the Human Immunodeficiency Virus With the Progression of Multiple Sclerosis Disease
Authors: Sina Mahdavi
Abstract:
Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human immunodeficiency virus (HIV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on human HIV infection in MS disease progression. In this study, the keywords "Multiple sclerosis", "Human immunodeficiency virus ", and "Central nervous system" in the databases PubMed, and Google Scholar between 2017 and 2022 were searched and 15 articles were chosen, studied, and analyzed. Revealed histologic signs of "MS-like illness" in the setting of HIV, which comprised widespread demyelination with reactive astrocytes, foamy macrophages, and perivascular infiltration with inflammatory cells, all of which are compatible with MS lesions. Human immunodeficiency virus causes dysfunction of the immune system, especially characterized by hypergammaglobulinemia and chronic activation of B cells. Activation of B cells leads to increased synthesis of immunoglobulin and finally to an excess of free light chains. Free light chains may be involved in autoimmune responses against neurons. There is a high expression of HIV during the course of MS, which indicates the relationship between HIV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HIV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, human immunodeficiency virus, central nervous system, autoimmunity
Procedia PDF Downloads 8410235 Brazilian Transmission System Efficient Contracting: Regulatory Impact Analysis of Economic Incentives
Authors: Thelma Maria Melo Pinheiro, Guilherme Raposo Diniz Vieira, Sidney Matos da Silva, Leonardo Mendonça de Oliveira Queiroz, Mateus Sousa Pinheiro, Danyllo Wenceslau de Oliveira Lopes
Abstract:
The present article has the objective to describe the regulatory impact analysis (RIA) of the contracting efficiency of the Brazilian transmission system usage. This contracting is made by users connected to the main transmission network and is used to guide necessary investments to supply the electrical energy demand. Therefore, an inefficient contracting of this energy amount distorts the real need for grid capacity, affecting the sector planning accuracy and resources optimization. In order to provide this efficiency, the Brazilian Electricity Regulatory Agency (ANEEL) homologated the Normative Resolution (NR) No. 666, from July 23th of 2015, which consolidated the procedures for the contracting of transmission system usage and the contracting efficiency verification. Aiming for a more efficient and rational transmission system contracting, the resolution established economic incentives denominated as Inefficiency installment for excess (IIE) and inefficiency installment for over-contracting (IIOC). The first one, IIE, is verified when the contracted demand exceeds the established regulatory limit; it is applied to consumer units, generators, and distribution companies. The second one, IIOC, is verified when the distributors over-contract their demand. Thus, the establishment of the inefficiency installments IIE and IIOC intends to avoid the agent contract less energy than necessary or more than it is needed. Knowing that RIA evaluates a regulatory intervention to verify if its goals were achieved, the results from the application of the above-mentioned normative resolution to the Brazilian transmission sector were analyzed through indicators that were created for this RIA to evaluate the contracting efficiency transmission system usage, using real data from before and after the homologation of the normative resolution in 2015. For this, indicators were used as the efficiency contracting indicator (ECI), excess of demand indicator (EDI), and over-contracting of demand indicator (ODI). The results demonstrated, through the ECI analysis, a decrease of the contracting efficiency, a behaviour that was happening even before the normative resolution of 2015. On the other side, the EDI showed a considerable decrease in the amount of excess for the distributors and a small reduction for the generators; moreover, the ODI notable decreased, which optimizes the usage of the transmission installations. Hence, with the complete evaluation from the data and indicators, it was possible to conclude that IIE is a relevant incentive for a more efficient contracting, indicating to the agents that their contracting values are not adequate to keep their service provisions for their users. The IIOC also has its relevance, to the point that it shows to the distributors that their contracting values are overestimated.Keywords: contracting, electricity regulation, evaluation, regulatory impact analysis, transmission power system
Procedia PDF Downloads 12110234 Monitoring of Serological Test of Blood Serum in Indicator Groups of the Population of Central Kazakhstan
Authors: Praskovya Britskaya, Fatima Shaizadina, Alua Omarova, Nessipkul Alysheva
Abstract:
Planned preventive vaccination, which is carried out in the Republic of Kazakhstan, promoted permanent decrease in the incidence of measles and viral hepatitis B. In the structure of VHB patients prevail people of young, working age. Monitoring of infectious incidence, monitoring of coverage of immunization of the population, random serological control over the immunity enable well-timed identification of distribution of the activator, effectiveness of the taken measures and forecasting. The serological blood analysis was conducted in indicator groups of the population of Central Kazakhstan for the purpose of identification of antibody titre for vaccine preventable infections (measles, viral hepatitis B). Measles antibodies were defined by method of enzyme-linked assay (ELA) with test-systems "VektoKor" – Ig G ('Vektor-Best' JSC). Antibodies for HBs-antigen of hepatitis B virus in blood serum was identified by method of enzyme-linked assay (ELA) with VektoHBsAg test systems – antibodies ('Vektor-Best' JSC). The result of the analysis is positive, the concentration of IgG to measles virus in the studied sample is equal to 0.18 IU/ml or more. Protective level of concentration of anti-HBsAg makes 10 mIU/ml. The results of the study of postvaccinal measles immunity showed that the share of seropositive people made 87.7% of total number of surveyed. The level of postvaccinal immunity to measles in age groups differs. So, among people older than 56 the percentage of seropositive made 95.2%. Among people aged 15-25 were registered 87.0% seropositive, at the age of 36-45 – 86.6%. In age groups of 25-35 and 36-45 the share of seropositive people was approximately at the same level – 88.5% and 88.8% respectively. The share of people seronegative to a measles virus made 12.3%. The biggest share of seronegative people was found among people aged 36-45 – 13.4% and 15-25 – 13.0%. The analysis of results of the examined people for the existence of postvaccinal immunity to viral hepatitis B showed that from all surveyed only 33.5% have the protective level of concentration of anti-HBsAg of 10 mIU/ml and more. The biggest share of people protected from VHB virus is observed in the age group of 36-45 and makes 60%. In the indicator group – above 56 – seropositive people made 4.8%. The high percentage of seronegative people has been observed in all studied age groups from 40.0% to 95.2%. The group of people which is least protected from getting VHB is people above 56 (95.2%). The probability to get VHB is also high among young people aged 25-35, the percentage of seronegative people made 80%. Thus, the results of the conducted research testify to the need for carrying out serological monitoring of postvaccinal immunity for the purpose of operational assessment of the epidemiological situation, early identification of its changes and prediction of the approaching danger.Keywords: antibodies, blood serum, immunity, immunoglobulin
Procedia PDF Downloads 25510233 Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems
Authors: Linyu Wang, Mingjun Zhu, Jianhong Xiang, Hanyu Jiang
Abstract:
Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved.Keywords: mmWave, massive MIMO, hybrid precoding, singular value decompositing, equivalent channel
Procedia PDF Downloads 9610232 A Longitudinal Examination of the Impact of Treatment Modality on Relationship Satisfaction and Mental Health Quality of Life Outcomes among Prostate Cancer Survivors
Authors: Gabriela Ilie, Robert D. H. Rutledge
Abstract:
A review of the literature reveals a need for longitudinal studies to properly understand the quality of life of prostate cancer survivors during their prostate cancer journey in order to identify opportunities for patient support and care during prostate cancer survivorship. In this study, mental health and relationship satisfaction were assessed longitudinally and by treatment modality among a population-based sample of Canadian adult men with a history of prostate cancer diagnosis. A total of 98 men, aged 51 or older with a history of prostate cancer completed an on-line 15-minute survey between May 2017 and February 2018, assessing mental health (Kessler Psychological Distress Scale) and relationship satisfaction (Dyadic Adjustment Scale) at baseline and at three months post-treatment with either active or nonactive prostate cancer treatment. Almost 1 in 6 men in this sample screened positive for mental health issues (17.34%, n=17) irrespective of treatment modality and most (n=11) were not currently on medication for depression, anxiety or both. Mental health outcomes were poorer for men with multimorbidity. For every instance of screening positive for mental health issues, 2.021 (95% CI:1.1 to 3.8) times more comorbidities were recorded. Relationship satisfaction and dyadic cohesion were statistically significantly lower from first assessment to 3 months for men who underwent multiple treatment modalities (surgery and radiation with hormonal therapy). Relationship satisfaction was also lower at 3 months for men who underwent radiation therapy. Almost 1 in 2 men in this sample (74%) indicated they did not attend a prostate cancer support group. Results suggest that treatment for mental health is underutilized in men with prostate cancer. Men who undergo multiple forms of active treatment appear more vulnerable to relationship dissatisfaction and feeling disconnected from their partner. Data points to important opportunities for patient education and care support during survivorship.Keywords: prostate cancer survivorship, mental health, quality of life, relationship satisfaction
Procedia PDF Downloads 11710231 Criteria Analysis of Residential Location Preferences: An Urban Dwellers’ Perspective
Authors: Arati Siddharth Petkar, Joel E. M. Macwan
Abstract:
Preferences for residential location are of a diverse nature. Primarily they are based on the socio-economic, socio-cultural, socio-demographic characteristics of the household. It also depends on character, and the growth potential of different areas in a city. In the present study, various criteria affecting residential location preferences from the Urban Dwellers’ perspective have been analyzed. The household survey has been conducted in two parts: Existing Buyers’ survey and Future Buyers’ survey. The analysis reveals that workplace location is the most governing criterion in deciding residential location from the majority of the urban dwellers perspective. For analyzing the importance of varied criteria, Analytical Hierarchy Process approach has been explored. The suggested approach will be helpful for urban planners, decision makers and developers, while designating a new residential area or redeveloping an existing one.Keywords: analytical hierarchy process (AHP), household, preferences, residential location preferences, residential land use, urban dwellers
Procedia PDF Downloads 20810230 Magnetic Survey for the Delineation of Concrete Pillars in Geotechnical Investigation for Site Characterization
Authors: Nuraddeen Usman, Khiruddin Abdullah, Mohd Nawawi, Amin Khalil Ismail
Abstract:
A magnetic survey is carried out in order to locate the remains of construction items, specifically concrete pillars. The conventional Euler deconvolution technique can perform the task but it requires the use of fixed structural index (SI) and the construction items are made of materials with different shapes which require different SI (unknown). A Euler deconvolution technique that estimate background, horizontal coordinate (xo and yo), depth and structural index (SI) simultaneously is prepared and used for this task. The synthetic model study carried indicated the new methodology can give a good estimate of location and does not depend on magnetic latitude. For field data, both the total magnetic field and gradiometer reading had been collected simultaneously. The computed vertical derivatives and gradiometer readings are compared and they have shown good correlation signifying the effectiveness of the method. The filtering is carried out using automated procedure, analytic signal and other traditional techniques. The clustered depth solutions coincided with the high amplitude/values of analytic signal and these are the possible target positions of the concrete pillars being sought. The targets under investigation are interpreted to be located at the depth between 2.8 to 9.4 meters. More follow up survey is recommended as this mark the preliminary stage of the work.Keywords: concrete pillar, magnetic survey, geotechnical investigation, Euler Deconvolution
Procedia PDF Downloads 25810229 Assessment of Food Safety Culture in Select Restaurants and a Produce Market in Doha, Qatar
Authors: Ipek Goktepe, Israa Elnemr, Hammad Asim, Hao Feng, Mosbah Kushad, Hee Park, Sheikha Alzeyara, Mohammad Alhajri
Abstract:
Food safety management in Qatar is under the shared oversight of multiple agencies in two government ministries (Ministry of Public Health and Ministry of Municipality and Environment). Despite the increasing number and diversity of the food service establishments, no systematic food surveillance system is in place in the country, which creates a gap in terms of determining the food safety attitudes and practices applied in the food service operations. Therefore, this study seeks to partially address this gap through determination of food safety knowledge among food handlers, specifically with respect to food preparation and handling practices, and sanitation methods applied in food service providers (FSPs) and a major market in Doha, Qatar. The study covered a sample of 53 FSPs randomly selected out of 200 FSPs. Face-to-face interviews with managers at participating FSPs were conducted using a 40-questions survey. Additionally, 120 produce handlers who are in direct contact with fresh produce at the major produce market in Doha were surveyed using a questionnaire containing 21 questions. A written informed consent was obtained from each survey participant. The survey data were analyzed using the chi-square test and correlation test. The significance was evaluated at p ˂ 0.05. The results from the FSPs surveys indicated that the average age of FSPs was 11 years, with the oldest and newest being established in 1982 and 2015, respectively. Most managers (66%) had college degree and 68% of them were trained on the food safety management system known as HACCP. These surveys revealed that FSP managers’ training and education level were highly correlated with the probability of their employees receiving food safety training while managers with lower education level had no formal training on food safety for themselves nor for their employees. Casual sit-in and fine dine-in restaurants consistently kept records (100%), followed by fast food (36%), and catering establishments (14%). The produce handlers’ survey results showed that none of the workers had any training on safe produce handling practices. The majority of the workers were in the age range of 31-40 years (37%) and only 38% of them had high-school degree. Over 64% of produce handlers claimed to wash their hands 4-5 times per day but field observations pointed limited handwashing as there was soap in the settings. This observation suggests potential food safety risks since a significant correlation (p ˂ 0.01) between the educational level and the hand-washing practices was determined. This assessment on food safety culture through determination of food and produce handlers' level of knowledge and practices, the first of its kind in Qatar, demonstrated that training and education are important factors which directly impact the food safety culture in FSPs and produce markets. These findings should help in identifying the need for on-site training of food handlers for effective food safety practices in food establishments in Qatar.Keywords: food safety, food safety culture, food service providers, food handlers
Procedia PDF Downloads 33910228 Bit Error Rate Performance of MIMO Systems for Wireless Communications
Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula
Abstract:
This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR
Procedia PDF Downloads 49010227 The Impact of Job Meaningfulness on the Relationships between Job Autonomy, Supportive Organizational Climate, and Job Satisfaction
Authors: Sashank Nyapati, Laura Lorente-Prieto, Maria Peiro
Abstract:
The general objective of this study is to analyse the mediating role of meaningfulness in the relationships between job autonomy and job satisfaction and supportive organizational climate and job satisfaction. Theories such as the Job Characteristics Model, Conservation of Resources theory, as well as the Job Demands-Resources theory were used as theoretical framework. Data was obtained from the 5th European Working Conditions Survey (EWCS), and sample was composed of 1005 and 1000 workers from Spain and Portugal respectively. The analysis was conducted using the SOBEL Macro for SPSS (A multiple regression mediation model) developed by Preacher and Hayes in 2003. Results indicated that Meaningfulness partially mediates both the Job Autonomy-Job Satisfaction as well as the Supportive Organizational Climate-Job Satisfaction relationships. However, the percentages are large enough to draw substantial conclusions, especially that Job Meaningfulness plays an essential – if indirect – role in the amount of Satisfaction that one experiences at work. Some theoretical and practical implications are discussed.Keywords: meaningfulness, job autonomy, supportive organizational climate, job satisfaction
Procedia PDF Downloads 53610226 Incidence and Causes of Elective Surgery Cancellations in Songklanagarind Hospital, Thailand
Authors: A. Kaeotawee, N. Bunmas, W. Chomthong
Abstract:
Background: The cancellation of elective surgery is a major indicator of poor operating room efficiency. Furthermore, it is recognized as a major cause of emotional trauma to patients as well as their families. This study was carried out to assess the incidence and causes of elective surgery cancellation in our setting and to find the appropriate solutions for better quality management. Objective: To determine the incidence and causes of elective surgery cancellations in Songklanagarind Hospital. Material and Method: A prospective survey was conducted from September to November 2012. All patients who had their scheduled elective operations cancelled were assessed. Data was collected on the following 2 components: (1) patient demographics;(2) main reasons for cancellations, which were grouped into patient-related factors and organizational-related factors. Data are reported as a percentage of patients whose operations were cancelled. The association between cancellation status and patient demographics was assessed using univariate logistic regression. Results: 2,395 patients were scheduled for elective surgery and of these 343 (14.3%) had their operations cancelled. Cardiothoracic surgery had the highest rate of cancellations (28.7%) while the least number of cancellations occurred in ophthalmology (10.1%). The main reasons for cancellations were related to the unit's organization (53.6%), due to the surgeon (48.4%). Patient related causes (46.4%), due to non medical reasons (32.1%). The most common cause of cancellation by the surgeon was lack of theater time (21.3%), by patients due to the patient’s nonappearance (25.1%). Cancellation was significantly associated with type of patient, health insurance, type of anesthesia and specialties (p<0.05). Conclusion: Surgery cancellations by surgeons relating to a lack of theater time was a significant problem in our setting. Appropriate solutions for better quality improvement are needed.Keywords: elective cases, surgery cancellation, quality management, appropriate solutions
Procedia PDF Downloads 26010225 Cash Flow Position and Corporate Performance: A Study of Selected Manufacturing Companies in Nigeria
Authors: Uzoma Emmanuel Igboji
Abstract:
The study investigates the effects of cash flow position on corporate performance in the manufacturing sector of Nigeria, using multiple regression techniques. The study involved a survey of five (5) manufacturing companies quoted on the Nigerian Stock Exchange. The data were obtained from the annual reports of the selected companies under study. The result shows that operating and financing cash flow have a significant positive relationship with corporate performance, while investing cash flow position have a significant negative relationship. The researcher recommended that the regulatory authorities should encourage external auditors of these quoted companies to use cash flow ratios in evaluating the performance of a company before expressing an independent opinion on the financial statement. The will give detailed financial information to existing and potential investors to make informed economic decisions.Keywords: cash flow, financing, performance, operating
Procedia PDF Downloads 31510224 The Three-Zone Composite Productivity Model of Multi-Fractured Horizontal Wells under Different Diffusion Coefficients in a Shale Gas Reservoir
Authors: Weiyao Zhu, Qian Qi, Ming Yue, Dongxu Ma
Abstract:
Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interference of the fractures. In regard to the fractured horizontal wells, the free gas was found to majorly contribute to the productivity, while the contribution of the desorption increased with the increased pressure differences.Keywords: multi-scale, fracture network, composite model, productivity
Procedia PDF Downloads 27010223 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 14210222 Parent’s Preferences about Technology-Based Therapy for Children and Young People on the Autism Spectrum – a UK Survey
Authors: Athanasia Kouroupa, Karen Irvine, Sivana Mengoni, Shivani Sharma
Abstract:
Exploring parents’ preferences towards technology-based interventions for children on the autism spectrum can inform future research and support technology design. The study aimed to provide a comprehensive description of parents’ knowledge and preferences about innovative technology to support children on the autism spectrum. Survey data were collected from parents (n = 267) internationally. The survey included information about the use of conventional (e.g., smartphone, iPod, tablets) and non-conventional (e.g., virtual reality, robot) technologies. Parents appeared to prefer conventional technologies such as tablets and dislike non-conventional ones. They highlighted the positive contribution technology brought to the children’s lives during the pandemic. A few parents were equally concerned that the compulsory introduction of technology during the pandemic was associated with elongated time on devices. The data suggested that technology-based interventions are not widely known, need to be financially approachable and achieve a high standard of design to engage users.Keywords: autism, intervention, preferences, technology
Procedia PDF Downloads 13310221 Finite Element-Based Stability Analysis of Roadside Settlements Slopes from Barpak to Yamagaun through Laprak Village of Gorkha, an Epicentral Location after the 7.8Mw 2015 Barpak, Gorkha, Nepal Earthquake
Authors: N. P. Bhandary, R. C. Tiwari, R. Yatabe
Abstract:
The research employs finite element method to evaluate the stability of roadside settlements slopes from Barpak to Yamagaon through Laprak village of Gorkha, Nepal after the 7.8Mw 2015 Barpak, Gorkha, Nepal earthquake. It includes three major villages of Gorkha, i.e., Barpak, Laprak and Yamagaun that were devastated by 2015 Gorkhas’ earthquake. The road head distance from the Barpak to Laprak and Laprak to Yamagaun are about 14 and 29km respectively. The epicentral distance of main shock of magnitude 7.8 and aftershock of magnitude 6.6 were respectively 7 and 11 kilometers (South-East) far from the Barpak village nearer to Laprak and Yamagaon. It is also believed that the epicenter of the main shock as said until now was not in the Barpak village, it was somewhere near to the Yamagaun village. The chaos that they had experienced during the earthquake in the Yamagaun was much more higher than the Barpak. In this context, we have carried out a detailed study to investigate the stability of Yamagaun settlements slope as a case study, where ground fissures, ground settlement, multiple cracks and toe failures are the most severe. In this regard, the stability issues of existing settlements and proposed road alignment, on the Yamagaon village slope are addressed, which is surrounded by many newly activated landslides. Looking at the importance of this issue, field survey is carried out to understand the behavior of ground fissures and multiple failure characteristics of the slopes. The results suggest that the Yamgaun slope in Profile 2-2, 3-3 and 4-4 are not safe enough for infrastructure development even in the normal soil slope conditions as per 2, 3 and 4 material models; however, the slope seems quite safe for at Profile 1-1 for all 4 material models. The result also indicates that the first three profiles are marginally safe for 2, 3 and 4 material models respectively. The Profile 4-4 is not safe enough for all 4 material models. Thus, Profile 4-4 needs a special care to make the slope stable.Keywords: earthquake, finite element method, landslide, stability
Procedia PDF Downloads 34810220 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 9710219 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps
Authors: Yong Bum Shin
Abstract:
This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process
Procedia PDF Downloads 8110218 The Effectiveness of Water Indices in Detecting Soil Moisture as an Indicator of Mudflow in Arid Regions
Authors: Zahraa Al Ali, Ammar Abulibdeh, Talal Al-Awadhi, Midhun Mohan, Mohammed Al-Barwani, Mohammed Al-Barwani, Sara Al Nabbi, Meshal Abdullah
Abstract:
This study aims to evaluate the performance and effectiveness of six spectral water indices - derived from Multispectral sentinel-2 data - to detect soil moisture and inundated area in arid regions to be used as an indicator of mudflow phenomena to predict high-risk areas. Herein, the validation of the performance of spectral indices was conducted using threshold method, spectral curve performance, and soil-line method. These indirect validation techniques play a key role in saving time, effort, and cost, particularly for large-scale and inaccessible areas. It was observed that the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (mNDWI), and RSWIR indices have the potential to detect soil moisture and inundated areas in arid regions. According to the temporal spectral curve performance, the spectral characteristics of water and soil moisture were distinct in the Near infrared (NIR), Short-wave Infrared (SWIR1,2) bands. However, the rate and degree differed between these bands, depending on the amount of water in the soil. Furthermore, the soil line method supported the appropriate selection of threshold values to detect soil moisture. However, the threshold values varied with location, time, season, and between indices. We concluded that considering the factors influencing the behavior of water and soil reflectivity could support decision-makers in identifying high-risk mudflow locations.Keywords: spectral reflectance curve, soil-line method, spectral indices, Shaheen cyclone
Procedia PDF Downloads 7310217 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 22410216 College Students’ Multitasking and Its Causes
Authors: Huey-Wen Chou, Shuo-Heng Liang
Abstract:
This study focuses on studying college students’ multitasking with cellphones/laptops during lectures. In-class multitasking behavior is defined as the activities students engaged that are irrelevant to learning. This study aims to understand if students' learning engagement affects students' multitasking as well as to investigate the causes or motivations that contribute to the occurrence of multitasking behavior. Survey data were collected and analyzed by PLS method and multiple regression to test the research model and hypothesis. Major results include: 1. Students' multitasking motivation positively predicts students’ in-class multitasking. 2. Factors affecting multitasking in class, including efficiency, entertainment and social needs, significantly impact on multitasking. 3. Polychronic personality traits will positively predict students’ multitasking. 4. Students' classroom learning engagement negatively predicts multitasking. 5. Course attributes negatively predict student learning engagement and positively predict student multitasking.Keywords: engagement, monochronic personality, multitasking, learning, personality traits
Procedia PDF Downloads 13310215 A Survey of Dynamic QoS Methods in Sofware Defined Networking
Authors: Vikram Kalekar
Abstract:
Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN.Keywords: QoS, policy, congestion, flow management, latency, delay index terms-SDN, delay
Procedia PDF Downloads 19310214 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals
Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou
Abstract:
In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life
Procedia PDF Downloads 13310213 Use of Fractal Geometry in Machine Learning
Authors: Fuad M. Alkoot
Abstract:
The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.Keywords: fractal geometry, machine learning, classifier, fractal dimension
Procedia PDF Downloads 21810212 Reduced Complexity of ML Detection Combined with DFE
Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.Keywords: detection, DFE, MIMO-OFDM, ML
Procedia PDF Downloads 61010211 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.Keywords: SDN, network, virtualization, security
Procedia PDF Downloads 42810210 Error Probability of Multi-User Detection Techniques
Authors: Komal Babbar
Abstract:
Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)
Procedia PDF Downloads 52810209 3D Object Detection for Autonomous Driving: A Comprehensive Review
Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy
Abstract:
Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning
Procedia PDF Downloads 62