Search results for: low operating pressure
5326 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load
Authors: M. Khoukhi
Abstract:
Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.Keywords: operating temperature, polystyrene insulation, thermal conductivity, cooling load
Procedia PDF Downloads 3765325 Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber
Authors: Malinda Sabrina, F. Andree Yohanes, Khoerul Anwar
Abstract:
There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed.Keywords: aerodynamics noise, hemi-anechoic chamber, radiator cooling fan, sound pressure level
Procedia PDF Downloads 3325324 Net Work Meta Analysis to Identify the Most Effective Dressings to Treat Pressure Injury
Authors: Lukman Thalib, Luis Furuya-Kanamori, Rachel Walker, Brigid Gillespie, Suhail Doi
Abstract:
Background and objectives: There are many topical treatments available for Pressure Injury (PI) treatment, yet there is a lack of evidence with regards to the most effective treatment. The objective of this study was to compare the effect of various topical treatments and identify the best treatment choice(s) for PI healing. Methods: Network meta-analysis of published randomized controlled trials that compared the two or more of the following dressing groups: basic, foam, active, hydroactive, and other wound dressings. The outcome complete healing following treatment and the generalised pair-wise modelling framework was used to generate mixed treatment effects against hydroactive wound dressing, currently the standard of treatment for PIs. All treatments were then ranked by their point estimates. Main Results: 40 studies (1,757 participants) comparing 5 dressing groups were included in the analysis. All dressings groups ranked better than basic (i.e. saline gauze or similar inert dressing). The foam (RR 1.18; 95%CI 0.95-1.48) and active wound dressing (RR 1.16; 95%CI 0.92-1.47) ranked better than hydroactive wound dressing in terms of healing of PIs when the latter was used as the reference group. Conclusion & Recommendations: There was considerable uncertainty around the estimates, yet, the use of hydroactive wound dressings appear to perform better than basic dressings. Foam and active wound dressing groups show promise and need further investigation. High-quality research on clinical effectiveness of the topical treatments are warranted to identify if foam and active wound dressings do provide advantages over hydroactive dressings.Keywords: Net work Meta Analysis, Pressure Injury, Dresssing, Pressure Ulcer
Procedia PDF Downloads 1145323 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 2155322 Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors
Authors: H. Fekhar
Abstract:
Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error.Keywords: microcontrollers, sensors, graphic liquid cristal display, protocol, temperature, pressure
Procedia PDF Downloads 4595321 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production
Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas
Abstract:
Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule
Procedia PDF Downloads 1755320 Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials
Authors: Gabi N. Nehme
Abstract:
Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.Keywords: patellar tendon, distal tibia, prosthetic socket relief areas, hole implementation
Procedia PDF Downloads 4145319 Efficiency of Virtual Reality Exercises with Nintendo Wii System on Balance and Independence in Motor Functions in Hemiparetic Patients: A Randomized Controlled Study
Authors: Ayça Utkan Karasu, Elif Balevi Batur, Gülçin Kaymak Karataş
Abstract:
The aim of this study was to examine the efficiency of virtual reality exercises with Nintendo Wii system on balance and independence in motor functions. This randomized controlled assessor-blinded study included 23 stroke inpatients with hemiparesis all within 12 months poststroke. Patients were randomly assigned to control group (n=11) or experimental group (n=12) via block randomization method. Control group participated in a conventional balance rehabilitation programme. Study group received a four-week balance training programme five times per week with a session duration of 20 minutes in addition to the conventional balance rehabilitation programme. Balance was assessed by the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index. Also, displacement of centre of pressure sway and centre of pressure displacement during weight shifting was calculated by Emed-SX system. Independence in motor functions was assessed by The Functional Independence Measure (FIM) ambulation and FIM transfer subscales. The outcome measures were evaluated at baseline, 4th week (posttreatment), 8th week (follow-up). Repeated measures analysis of variance was performed for each of the outcome measure. Significant group time interaction was detected in the scores of the Berg’s balance scale, the functional reach test, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed anteroposterior center of pressure sway distance, center of pressure displacement during weight shifting to effected side, unaffected side and total centre of pressure displacement during weight shifting (p < 0.05). Time effect was statistically significant in the scores of the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed mediolateral center of pressure sway distance, the center of pressure displacement during weight shifting to effected side, the functional independence measure ambulation and transfer scores (p < 0.05). Virtual reality exercises with Nintendo Wii system combined with a conventional balance rehabilitation programme enhances balance performance and independence in motor functions in stroke patients.Keywords: balance, hemiplegia, stroke rehabilitation, virtual reality
Procedia PDF Downloads 2215318 Investigation of the Effects of Dry Needling With Stretching Upper Trapezius Muscle on Clinical Outcomes in Participants With Active Myofascial Trigger Point.
Authors: Marzieh Yassin, Fereshteh Navaee, Javad Sarrafzadeh, Reza Salehi
Abstract:
Introduction: Myofascial trigger point (MTrP) is one of the most common sources of musculoskeletal pain. Approximately 30-85% of the patients with musculoskeletal pains would experience MTrP in their life. The prevalence of MTrP has reported in the patients seen in a general orthopedic clinic, general medical clinic and specialty pain management centers, 21%, 30% and 93% respectively. Nowadays, dry needling is suggested as a standard treatment for MTrPs. The purpose of the present study was to examine the effectiveness of dry needling with stretching upper trapezius muscle on pain and pain pressure threshold in participants with active myofascial trigger point. Methods: Thirty participants with an active myofascial trigger point of the upper trapezius muscle were randomly divided into two groups: dry needling with passive stretch (n=15) and passive stretch alone (n=15). They received 5 sessions of the treatments for three weeks. The outcomes were pain intensity and pain pressure threshold that were assessed with visual analogue scale and algometer respectively. Results: Significant improvement in pain and pain pressure threshold was observed in both groups (P=0.0001) after the treatment. Also, the results showed a significant difference in measurements between two groups (P<0.05). Conclusion: Dry needling with passive stretch can be more effective on pain and pain pressure threshold than passive stretching alone in short term in participants with active myofascial trigger points.Keywords: dry needling, myofascial pain syndrome, myofascial trigger point, stretching
Procedia PDF Downloads 675317 Recovery of Iodide Ion from TFT-LCD Wastewater by Forward Osmosis
Authors: Yu-Ting Chen, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray
Abstract:
Forward osmosis (FO) is a crucial technology with low operating pressure and cost for water reuse and reclamation. In Taiwan, with the advance of science and technology, thin film transistor liquid crystal displays (TFT-LCD) based industries are growing exponentially. In the optoelectronic industry wastewater, the iodide is one of the valuable element; it is also used in the medical industry. In this study, it was intended to concentrate iodide by utilizing FO system and can be reused for TFT-LCD production. Cellulose triacetate (CTA) membranes were used for all these FO experiments, and potassium iodide solution was used as the feed solution. It has been found that EDTA-2Na as draw solution at pH 8 produced high water flux and minimized salt leakage. The result also demonstrated that EDTA-2Na of concentration 0.6M could achieve the highest water flux (6.69L/m2 h). Additionally, from the recovered iodide ion from pH 3-8, the I- species was found to be more than 99%, whereas I2 was measured to be less than 1%. When potassium iodide solution was used from low to high concentration (1000 ppm to 10000 ppm), the iodide rejection was found to be than more 90%. Since, CTA membrane is negatively charged and I- is anionic in nature, so it will from electrostatic repulsion and hence there will be higher rejection. The overall performance demonstrates that recovery of concentrated iodide using FO system is a promising technology.Keywords: draw solution, EDTA-2Na, forward osmosis, potassium iodide
Procedia PDF Downloads 3675316 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints
Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache
Abstract:
The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy
Procedia PDF Downloads 1295315 Portable Water Treatment for Flood Resilience
Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed
Abstract:
Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.Keywords: flood resilience, membrane desalination, portable water treatment, solar energy
Procedia PDF Downloads 2885314 Simulation 2D of Flare Steel Tubes
Authors: B. Daheche, M. T. Hannachi, H. Djebaili
Abstract:
In this approach, we tried to describe the flare test tubes welded by high frequency induction HF, and its experimental application. The test is carried out ENTTPP (National company of pipe mill and processing of flat products). Usually, the final products (tube) undergo a series of destructive testing (CD) in order to see the efficiency of welding. This test performed on sections of pipe with a length defined in the notice is made under a determined effort (pressure), which depends on its share of other parameters namely mechanical (fracture resistance) and geometry (thickness tube, outside diameter), the variation of this effort is well researched and recorded.Keywords: flare, destructive testing, pressure, drafts tube, tube finished
Procedia PDF Downloads 3175313 Effect of Viscosity on Propagation of MHD Waves in Astrophysical Plasma
Authors: Alemayehu Mengesha, Solomon Belay
Abstract:
We determine the general dispersion relation for the propagation of magnetohydrodynamic (MHD) waves in an astrophysical plasma by considering the effect of viscosity with an anisotropic pressure tensor. Basic MHD equations have been derived and linearized by the method of perturbation to develop the general form of the dispersion relation equation. Our result indicates that an astrophysical plasma with an anisotropic pressure tensor is stable in the presence of viscosity and a strong magnetic field at considerable wavelength. Currently, we are doing the numerical analysis of this work.Keywords: astrophysical, magnetic field, instability, MHD, wavelength, viscosity
Procedia PDF Downloads 3435312 Recent Progress in Wave Rotor Combustion
Authors: Mohamed Razi Nalim, Shahrzad Ghadiri
Abstract:
With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion
Procedia PDF Downloads 845311 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics
Authors: Jingsi Li, Neil S. Ferguson
Abstract:
Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management
Procedia PDF Downloads 1125310 Model Organic Ranikin Cycle Power Plant for Waste Heat Recovery in Olkaria-I Geothermal Power Plant
Authors: Haile Araya Nigusse, Hiram M. Ndiritu, Robert Kiplimo
Abstract:
Energy consumption is an indispensable component for the continued development of the human population. The global energy demand increases with development and population rise. The increase in energy demand, high cost of fossil fuels and the link between energy utilization and environmental impacts have resulted in the need for a sustainable approach to the utilization of the low grade energy resources. The Organic Rankine Cycle (ORC) power plant is an advantageous technology that can be applied in generation of power from low temperature brine of geothermal reservoirs. The power plant utilizes a low boiling organic working fluid such as a refrigerant or a hydrocarbon. Researches indicated that the performance of ORC power plant is highly dependent upon factors such as proper organic working fluid selection, types of heat exchangers (condenser and evaporator) and turbine used. Despite a high pressure drop, shell-tube heat exchangers have satisfactory performance for ORC power plants. This study involved the design, fabrication and performance assessment of the components of a model Organic Rankine Cycle power plant to utilize the low grade geothermal brine. Two shell and tube heat exchangers (evaporator and condenser) and a single stage impulse turbine have been designed, fabricated and the performance assessment of each component has been conducted. Pentane was used as a working fluid and hot water simulating the geothermal brine. The results of the experiment indicated that the increase in mass flow rate of hot water by 0.08 kg/s caused a rise in overall heat transfer coefficient of the evaporator by 17.33% and the heat transferred was increased by 6.74%. In the condenser, the increase of cooling water flow rate from 0.15 kg/s to 0.35 kg/s increased the overall heat transfer coefficient by 1.21% and heat transferred was increased by 4.26%. The shaft speed varied from 1585 to 4590 rpm as inlet pressure was varied from 0.5 to 5.0 bar and power generated was varying from 4.34 to 14.46W. The results of the experiments indicated that the performance of each component of the model Organic Rankine Cycle power plant operating at low temperature heat resources was satisfactory.Keywords: brine, heat exchanger, ORC, turbine
Procedia PDF Downloads 6495309 Prevalence and Determinants of Hypertension among the Santal Indigenous Group in Bangladesh
Authors: Sharmin Sultana, Palash Chandra Banik, Shirin Jahan Mumu, Liaquat Ali
Abstract:
Santals are one of the oldest indigenous groups of South Asia who, according to anthropological evidence, are thought to be the origins of the Bengali race. The aim of the study was to explore, according to our best knowledge for the first time, the prevalence and determinants of hypertension in this relatively isolated and marginalized indigenous group who still live mostly in a traditional style. Under a cross-sectional analytical design, the study was conducted on the adult (age≥18 years) Santals (n=389, M/F 184/205, age in years, 38±15.3) of a village located in a remote rural area of northern Bangladesh. Subjects were selected by purposive sampling, and data were collected by interviewer-administered pretested questionnaire. Blood pressure was measured by following the WHO guideline of JNC-7 has been used to classify the blood pressure. The prevalence of hypertension was 4.9% among the respondents. Females had a much higher prevalence (5.4%) of hypertension compared to males (4.3%). Among the risk indicators of hypertension, more than half (50.9%) of the study population took extra salt in their meals, whereas 10.5% of respondents used extra salt occasionally, which is an important risk factor for high blood pressure. High waist circumference was found in 19% of the study subjects in terms of central obesity. Older age group (p=0.003, OR=1.1, 95%CI-1.02-1.10), respondents who completed more than primary school (p=0.038, OR=7.1, CI-1.11, 44.6), overweight and obesity (p=0.004, OR=17.1, CI-2.5, 118.1), were the major determinant for hypertension as found from the binary logistic model. None of the respondents received any medication, neither they visit any doctor ever for their hypertension control. The prevalence of hypertension was found to be low but not ignorable. Pre-hypertension in the case of systolic blood pressure needs attention among Santal indigenous population.Keywords: hypertension, indigenous group, Santals, Bangladesh
Procedia PDF Downloads 1085308 Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids
Authors: Yen-Hui Chen, Terry Walker
Abstract:
As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production.Keywords: Chlorella protothecoides, microalgal lipids, response surface methodology, supercritical carbon dioxide extraction
Procedia PDF Downloads 4435307 Cash Flow Position and Corporate Performance: A Study of Selected Manufacturing Companies in Nigeria
Authors: Uzoma Emmanuel Igboji
Abstract:
The study investigates the effects of cash flow position on corporate performance in the manufacturing sector of Nigeria, using multiple regression techniques. The study involved a survey of five (5) manufacturing companies quoted on the Nigerian Stock Exchange. The data were obtained from the annual reports of the selected companies under study. The result shows that operating and financing cash flow have a significant positive relationship with corporate performance, while investing cash flow position have a significant negative relationship. The researcher recommended that the regulatory authorities should encourage external auditors of these quoted companies to use cash flow ratios in evaluating the performance of a company before expressing an independent opinion on the financial statement. The will give detailed financial information to existing and potential investors to make informed economic decisions.Keywords: cash flow, financing, performance, operating
Procedia PDF Downloads 3155306 Inorganic Microporous Membranes Fabricated by Atmospheric Pressure Plasma Liquid Deposition
Authors: Damian A. Mooney, Michael T. P. Mc Cann, J. M. Don MacElroy, Olli Antson, Denis P. Dowling
Abstract:
Atmospheric pressure plasma liquid deposition (APPLD) is a novel technology used for the deposition of thin films via the injection of a reactive liquid precursor into a high-energy discharge plasma at ambient pressure. In this work, APPLD, utilising a TEOS precursor, was employed to produce asymmetric membranes consisting of a thin (100 nm) layer of deposited silica on a microporous silica support in order to assess their suitability for high temperature gas separation applications. He and N₂ gas permeability measurements were made for each of the fabricated membranes and a maximum ideal He/N₂ selectivity of 66 was observed at room temperature. He, N₂ and CO2 gas permeances were also measured at the elevated temperature of 673K and ideal He/N₂ and CO₂/N₂ selectivities of 300 and 7.4, respectively, were observed. The results suggest that this plasma-based deposition technique can be a viable method for the manufacture of membranes for the efficient separation of high temperature, post-combustion gases, including that of CO₂/N₂ where the constituent gases differ in size by fractions of an Ångstrom.Keywords: asymmetric membrane, CO₂ separation, high temperature, plasma deposition, thin films
Procedia PDF Downloads 3055305 Design and Development of Ceramics Kiln by Application Burners Use from High Pressure of Household Gas Stove
Authors: Somboon Sarasit
Abstract:
This research aims to develop a model small ceramic kiln using burner from a high-pressure household gas stove. The efficiency of the kiln and community technology transfer. The study of history shows that this area used to be a source of pottery on the old capital of Ayutthaya. There is evidence from pottery kilns unearthed many types of wood kiln since 2535 and was assumed that the production will end when the war with Burma in the Ayutthaya period. The result of the research design and performance testing of ceramic kiln using burners by gas cooker and outside from 200-liter steel drums inside with ceramic fiber. It was found that the Graze Firing of the products to be at a temperature of 1230°C. The duration of the burn approximately 5-6 hours and uses only 3-4 kg of LPG products, a coffee can burn up to 40-50 pieces. It is an energy-efficient Kiln. Use safe and appropriate opportunities for entrepreneurs, small ceramic and entrepreneurs with new investments or those who want to produce ceramic products as a hobby. The community interest in the pottery to create a new one to continue the product development and manufacturing in the harshest existence forever.Keywords: ceramics kiln design and development, ceramic gas kiln, burners application, high-pressure of household gas stove
Procedia PDF Downloads 5495304 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with Elliptical Pin-Fin Heat Sink
Authors: J. Y Jang, C. Y. Tseng
Abstract:
A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Therefore, the effects of convection and radiation heat transfer are considered. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. In addition, the effects of different operating conditions, including various inlet velocities (Vin = 1, 3, 5 m/s) and inlet temperatures (Tgas = 450, 550, 650K) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.Keywords: thermoelectric generator, waste heat recovery, pin-fin heat sink, experimental and numerical analysis
Procedia PDF Downloads 3825303 Biaxial Fatigue Specimen Design and Testing Rig Development
Authors: Ahmed H. Elkholy
Abstract:
An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.Keywords: biaxial, fatigue, stress, testing
Procedia PDF Downloads 1285302 Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings
Authors: Denis V. Shutin, Alexander Yu. Babin, Leonid A. Savin
Abstract:
One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine.Keywords: active bearings, control system, damping, hybrid bearings, stiffness
Procedia PDF Downloads 3835301 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability
Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel
Abstract:
With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture
Procedia PDF Downloads 1425300 Modeling Aerosol Formation in an Electrically Heated Tobacco Product
Authors: Markus Nordlund, Arkadiusz K. Kuczaj
Abstract:
Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.Keywords: aerosol, classical nucleation theory (CNT), electrically heated tobacco product (EHTP), electrically heated tobacco system (EHTS), modeling, multicomponent, nucleation
Procedia PDF Downloads 2775299 Study of the Responding Time for Low Permeability Reservoirs
Authors: G. Lei, P. C. Dong, X. Q. Cen, S. Y. Mo
Abstract:
One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape.Keywords: low permeability, flood-response time, threshold pressure gradient, medium deformation
Procedia PDF Downloads 4995298 Radio-Frequency Technologies for Sensing and Imaging
Authors: Cam Nguyen
Abstract:
Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: RF sensors, radars, surface sensing, subsurface sensing
Procedia PDF Downloads 3165297 Effects of Training on Self-Efficacy, Competence, and Target Complaints of Dementia Family Support Program Facilitators
Authors: Myonghwa Park, Eun Jeong Choi
Abstract:
Persons with dementia living at home have complex caregiving demands, which can be significant sources of stress for the family caregivers. Thus, the dementia family support program facilitators struggle to provide various health and social services, facing diverse challenges. The purpose of this study was to research the effects of training program for the dementia family support program facilitators on self-efficacy, competence, and target complaints concerning operating their program. We created a training program with systematic contents, which was composed of 10 sessions and we provided the program for the facilitators. The participants were 32 people at 28 community dementia support centers who manage dementia family support programs and they completed quantitative and qualitative self-report questionnaire before and after participating in the training program. For analyzing the data, descriptive statistics were used and with a paired t-test, pretest and posttest scores of self-efficacy, competence, and target complaints were analyzed. We used Statistical Package for the Social Sciences (SPSS) statistics (Version 21) to analyze the data. The average age of the participants was 39.6 years old and the 84.4% of participants were nurses. There were statistically meaningful increases in facilitators’ self-efficacy scores (t = -4.45, p < .001) and competence scores (t = -2.133, p = 0.041) after participating in training program and operating their own dementia family support program. Also, the facilitators’ difficulties in conducting their dementia family support program were decreased which was assessed with target complaints. Especially, the facilitators’ lack of dementia expertise and experience was decreased statistically significantly (t = 3.520, p = 0.002). Findings provided evidence of the benefits of the training program for facilitators to enhance managing dementia family support program by improving the facilitators’ self-efficacy and competence and decreasing their difficulties regarding operating their program.Keywords: competence, dementia, facilitator, family, self-efficacy, training
Procedia PDF Downloads 212