Search results for: knee width
314 Long-Term Field Performance of Paving Fabric Interlayer Systems to Reduce Reflective Cracking
Authors: Farshad Amini, Kejun Wen
Abstract:
The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The effectiveness of paving fabrics in reducing reflection cracking is related to joint or crack movement in the underlying pavement, crack width, overlay thickness, subgrade conditions, climate, and traffic volume. The nonwoven geotextiles are installed between the old and new asphalt layers. Paving fabrics enhance performance through two mechanisms: stress relief and waterproofing. Several factors including proper installation, remedial work performed before overlay, overlay thickness, variability of pavement strength, existing pavement condition, base/subgrade support condition, and traffic volume affect the performance. The primary objective of this study was to conduct a long-term monitoring of the paving fabric interlayer systems to evaluate its effectiveness and performance. A comprehensive testing, monitoring, and analysis program were undertaken, where twelve 500-ft pavement sections of a four-lane highway were rehabilitated, and then monitored for seven years. A comparison between the performance of paving fabric treatment systems and control sections is reported. Lessons learned, and the various factors are discussed.Keywords: monitoring, paving fabrics, performance, reflective cracking
Procedia PDF Downloads 333313 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna
Authors: Chuanzhi Chen, Wenjing Yu
Abstract:
Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation
Procedia PDF Downloads 146312 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films
Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou
Abstract:
Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO
Procedia PDF Downloads 83311 Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive
Authors: Umair Ashraf, Kjetil Uhlen, Sverre Eriksen, Nadeem Jelani
Abstract:
Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed.Keywords: non-linear load, power electronics, parallel operating generators, pulse width modulation, variable frequency drives, voltage source converters, weak grid
Procedia PDF Downloads 568310 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method
Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama
Abstract:
SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies
Procedia PDF Downloads 85309 An Experimental Study to Investigate the Behaviour of Torque Fluctuation of Crossflow Turbines Operating in an Open Channel
Authors: Sunil Kumar Singal, Manoj Sood, Upendra Bajpai
Abstract:
Instream technology is the upcoming sustainable approach in the hydro sector for energy harnessing. With well-known cross-sections and regulated supply, open channels are the most prominent locations for the installation of hydrokinetic turbines. The fluctuation in generated torque varies with site condition (flow depth and flow velocity), as well as with the type of turbine. The present experimental study aims to investigate the torque/power fluctuations of crossflow hydrokinetic turbines operating at different flow velocities and water depths. The flow velocity is varied from 1.0 m/s to 2.0 m/s. The complete assembly includes an open channel having dimensions of 0.3 m (depth) x 0.71 m (width) x 4.5 m (length), along with a lifting mechanism for varying the channel slope, a digital transducer for monitoring the torque, power, and rpm, a digital handheld water velocity meter for measuring the flow velocity. Further, a time series of torque, power, and rpm is plotted for a duration of 30 minutes showing the continuous operation of the turbine. A comparison of Savonius, Darrieus, and their improved twisted and helical blades is also presented in the study. A correlation has also been developed for assessing the hydropower generation from the installed turbine. The developed correlations will be very useful in the decision-making process for development at a site.Keywords: darrieus turbine, flow velocity, open channel, savoinus turbine, water depth, hydropower
Procedia PDF Downloads 84308 Spatio-Temporal Variability in Reciprocal Resource Subsidies across Adjacent Terrestrial and Aquatic Eastern Cape Ecosystems
Authors: Tiyisani L. Chavalala, Nicole B. Richoux, Martin H. Villet
Abstract:
Rivers and their adjacent ecosystems are linked by reciprocal ecological subsidies. Rivers receive nutrients and energy from land, and these transfers can represent important food subsidies, a phenomenon known as allochthony. Emergence of adult aquatic invertebrates can also provide important food sources to terrestrial consumers. Reciprocal subsidies are influenced by factors such as canopy cover, river flow rate and channel width, which can be highly variable through space and time. The aim of this study is to identify and quantify the main trophic links between adjacent ecosystems (terrestrial and freshwater systems) in several Eastern Cape Rivers with different catchment sizes and flow rates and to develop an understanding of the factors that affect the strength of these links and their spatial dynamics. Food sources and consumers were sampled during four seasons (August 2016, November 2016, February 2017 and May 2017), and stable isotope ratios will serve as tracers to estimate the food web structures. Emergence traps are being used to quantify the rates of emergence of adult aquatic insects, and infall-pan traps are being used to quantify the terrestrial insects falling into rivers as potential food subsidies.Keywords: emerging aquatic insects, in-falling terrestrial insects, reciprocal resource subsidies, stable isotopes
Procedia PDF Downloads 205307 Comparison of Leeway Space Predictions Using Moyers and Tanaka-Johnston Upper Jaw and Lower Jaw on Batak Tribe Between Male and Female in Elementary School Students in Medan City, Sumatera Utara, Indonesia: A Cross-sectional Study
Authors: Hilda Fitria Lubis, Erna Sulistyawati
Abstract:
Objective: The study aims to compare Leeway space averages between Moyers and Tanaka-Johnston's analysis of elementary school students from the Batak tribe in Medan City. Material and Methods: The study involved 106 students from the Batak tribe elementary school in Medan, comprising 53 male and 53 female students. The samples obtained were then printed on both jaws to obtain a working model, and the mesiodistal width of the four permanent biting teeth of the lower jaw and the amount of space available on the canine-premolar region, as well as the predicted mesiodistal number of the canine-premolar on the Moyers probability table with a 75% degree of confidence and the Tanaka-Johnston formula. Results: Using Moyers analysis, students at Batak Elementary School in Medan City have an average Leeway space value of 2 mm on the upper jaw and 2.78 mm on the lower jaw. The average Leeway spatial value using Tanaka-Johnston analysis in the Batak tribe in elementary school in Medan City is 1.33 mm on the top jaw and 2.39 mm on the bottom jaw. Conclusion: According to Moyers and Tanaka-Johnsnton's analysis of both the upper and lower jaws in elementary school students of the Batak tribe in Medan City, there is a significant difference between Leeway's average space.Keywords: leeways space, batak tribe, genders, diagnosis
Procedia PDF Downloads 31306 Role of NaCl and Temperature in Glycerol Mediated Rapid Growth of Silver Nanostructures
Authors: L. R. Shobin, S. Manivannan
Abstract:
One dimensional silver nanowires and nanoparticles gained more interest in developing transparent conducting films, catalysis, biological and chemical sensors. Silver nanostructures can be synthesized by varying reaction conditions such as the precursor concentration, molar ratio of the surfactant, injection speed of silver ions, etc. in the polyol process. However, the reaction proceeds for greater than 2 hours for the formation of silver nanowires. The introduction of etchant in the medium promotes the growth of silver nanowires from silver nanoparticles along the [100] direction. Rapid growth of silver nanowires is accomplished using the Cl- ions from NaCl and polyvinyl pyrrolidone (PVP) as surfactant. The role of Cl- ion was investigated in the growth of the nanostructured silver. Silver nanoparticles (<100 nm) were harvested from glycerol medium in the absence of Cl- ions. Trace amount of Cl- ions (2.5 mM -NaCl) produced the edge joined nanowires of length upto 2 μm and width ranging from 40 to 65 nm. Formation and rapid growth (within 25 minutes) of long, uniform silver nanowires (upto 5 μm) with good yield were realized in the presence of 5 mM NaCl at 200ºC. The growth of nanostructures was monitored by UV-vis-NIR spectroscopy. Scanning and transmission electron microscopes reveal the morphology of the silver nano harvests. The role of temperature in the reduction of silver ions, growth mechanism for nanoparticles, edge joined and straight nanowires will be discussed.Keywords: silver nanowires, glycerol mediated polyol process, scanning electron microscopy, UV-Vis- NIR spectroscopy, transmission electron microscopy
Procedia PDF Downloads 303305 Aqueous Hydrogen Sulphide in Slit-Shaped Silica Nano-Pores: Confinement Effects on Solubility, Structural and Dynamical Properties
Authors: Sakiru Badmos, David R. Cole, Alberto Striolo
Abstract:
It is known that confinement in nm-size pores affects many structural and transport properties of water and co-existing volatile species. Of particular interest for fluids in sub-surface systems, in catalysis, and in separations are reports that confinement can enhance the solubility of gases in water. Equilibrium molecular dynamics simulations were performed for aqueous H₂S confined in slit-shaped silica pores at 313K. The effect of pore width on the H₂S solubility in water was investigated. Other properties of interest include the molecular distribution of the various fluid molecules within the pores, the hydration structure for solvated H₂S molecules, and the dynamical properties of the confined fluids. The simulation results demonstrate that confinement reduces the H₂S solubility in water and that the solubility increases with pore size. Analysis of spatial distribution functions suggests that these results are due to perturbations on the coordination of water molecules around H₂S due to confinement. Confinement is found to dampen the dynamical properties of aqueous H₂S as well. Comparing the results obtained for aqueous H₂S to those reported elsewhere for aqueous CH₄, it can be concluded that H₂S permeates hydrated slit-shaped silica nano-pores faster than CH₄. In addition to contributing to better understanding the behavior of fluids in subsurface formations, these observations could also have important implications for developing new natural gas sweetening technologies.Keywords: confinement, interfacial properties, molecular dynamic simulation, sub-surface formations
Procedia PDF Downloads 164304 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage
Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov
Abstract:
Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel
Procedia PDF Downloads 283303 Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre
Authors: Mohammed Mashrei
Abstract:
Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results.Keywords: ferrocement, fibre, silica fume, slab, strength
Procedia PDF Downloads 235302 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach
Authors: Ali Akbar Heydari
Abstract:
Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter
Procedia PDF Downloads 154301 The Measurements of Nitrogen Dioxide Pollution in Street Canyons
Authors: Aukse Miskinyte, Audrius Dedele
Abstract:
The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics.Keywords: air pollution, nitrogen dioxide, passive sampler, street canyon
Procedia PDF Downloads 272300 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending
Authors: Yang Zheng, Wei Sun
Abstract:
This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.Keywords: bending, creep, thin plate, materials engineering
Procedia PDF Downloads 474299 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities
Authors: Elmineh Tsegahun Gedif
Abstract:
Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs
Procedia PDF Downloads 111298 Effects of Virgin Coconut Oil on the Histomorphometric Parameters in the Aortae and Hearts of Rats Fed with Repeatedly Heated Palm Oil
Authors: K. Subermaniam, Q. H. M. Saad, S. N. A. Bakhtiar, J. A. Hamid, F. Z .J. Sidek, F. Othman
Abstract:
Objective: To investigate the effects of virgin coconut oil (VCO) on histomorphometric changes in the aorta and heart of thermoxidized palm oil-fed rats. Methods: Thirty two male Sprague-Dawley rats were divided into four groups: control group fed with normal diet; 5 times heated palm oil-fed group (5HPO) fortified with 15% w/w of 5HPO; VCO group supplemented with 1.42 ml/kg of VCO; and 5HPO + VCO group. The treatment lasted for four months. Upon sacrifice, aortic and heart tissues were processed for light microscopic studies. Results: Light microscopic studies showed thickened intima and media of the aorta in two out of eight rats in the 5HPO group only, while the rest of the rats did not show any thickening of either the intima or media of the aorta. Intima media area (IMA) in the VCO, 5HPO and 5HPO+VCO was significantly increased compared to the control group. Circumferential wall tension (CWT) and tensile stress (TS) in the aorta of 5HPO showed significant increase compared to the other groups. Cardiomyofibre width in 5HPO group showed significant increase in size compared to the control, VCO and 5HPO+VCO groups. Cardiomyofibre nuclear size in the 5HPO group decreased in size significantly compared to the control, VCO and 5HPO+VCO groups. Conclusion: VCO supplementation at a dose of 1.42 ml/kg showed protectives effect on the aorta and heart of thermoxidized palm oil fed rats.Keywords: aorta, heart, histomorphometric changes, thermoxidized palm oil, virgin coconut oil
Procedia PDF Downloads 425297 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles
Authors: Hee-Chang Lim
Abstract:
The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD
Procedia PDF Downloads 235296 High Sensitive Graphene-Based Strain Sensors for SHM of Composite Laminates
Authors: A. Rinaldi, A. Proietti, C. Aquarelli, F. Marra, A. Tamburrano, M. Ciminello, M. S. Sarto
Abstract:
A new type of high sensitive piezoresistive sensors based on graphene was developed within the SARISTU project for application on Structural Health Monitoring (SHM). The new sensor consists of a graphene-based film, obtained through the spray deposition of a colloidal suspension of Multi-Layer Graphene (MLGs) nano platelets over a substrate. MLGs are produced by liquid exfoliation of thermally expanded Graphite Intercalation Compound. An array of 8 sensors is produced by spray deposition over an aeronautical CFRC plate of dimensions 550 mm (length) × 550 mm (width) × 3 mm (thickness). Electromechanical tests were performed in order to assess the sensitivity of the new piezoresistive sensors, which are characterized by an isotropic response. In the quasi-static characterizations, the CFRC plate was clamped on one side and loaded on the opposite one. The local strain map of the plate was then obtained from displacement measurements and numerical analysis. The dynamic tests were performed lying the plate over an anti-vibration table and actuating a piezoelectric element located in the middle of the sensing array. The obtained experimental results demonstrated that the sensors possess a good repeatability and a high constant gauge factor (~200) in the applied strain range 0.001%-0.02%. Moreover, they can follow dynamics up to 400 kHz and for this reason they are good candidates for Lamb-wave analysis.Keywords: graphene, strain sensor, spray deposition, lamb-wave analysis
Procedia PDF Downloads 431295 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes
Authors: Zhuang Guo
Abstract:
In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty
Procedia PDF Downloads 76294 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 517293 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 224292 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics
Authors: Jatin Gupta, Bishakh Bhattacharya
Abstract:
With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design
Procedia PDF Downloads 200291 3D Visualization for the Relationship of the Urban Rule and Building Form by Using CityEngine
Authors: Chin Ku, Han liang Lin
Abstract:
The purpose of this study is to visualize how the rule related to urban design influences the building form by 3D modeling software CityEngine. In order to make the goal of urban design clearly connect to urban form, urban planner or designer should understand how the rule affects the form, especially the building form. In Taiwan, the rule pertained to urban design includes traditional zoning, urban design review and building codes. However, zoning cannot precisely expect the outcome of building form and lack of thinking about public realm and 3D form. In addition to that, urban design review is based on case by case, do not have a comprehensive regulation plan and the building code is just for general regulation. Therefore, rule cannot make the urban form reach the vision or goal of the urban design. Consequently, another kind of zoning called Form-based code (FBC) has arisen. This study uses the component of FBC which pertained to urban fabric such as street width, block and plot size, etc., to be the variants of building form, and find out the relationship between the rule and building form. There are three stages of this research, it will start from a field survey of Taichung City in Taiwan to induce the rule-building form relationship by using cluster analysis and descriptive Statistics. Second, visualize the relationship through the parameterized and codified process in CityEngine which is the procedural modeling, and can analyze, monitor and visualize the 3D world. Last, compare the CityEngine result with real world to examine how extent do this model represent the real world appearance.Keywords: 3D visualization, CityEngine, form-based code, urban form
Procedia PDF Downloads 549290 Effect of Rapid Thermal Annealing on the Optical Properties of InAs Quantum Dots Grown on (100) and (311)B GaAs Substrates by Molecular Beam Epitaxy
Authors: Amjad Almunyif, Amra Alhassni, Sultan Alhassan, Maryam Al Huwayz, Saud Alotaibi, Abdulaziz Almalki, Mohamed Henini
Abstract:
The effect of rapid thermal annealing (RTA) on the optical properties of InAs quantum dots (QDs) grown at an As overpressure of 2x 10⁻⁶ Torr by molecular beam epitaxy (MBE) on (100) and (311)B GaAs substrates was investigated using photoluminescence (PL) technique. PL results showed that for the as-grown samples, the QDs grown on the high index plane (311)B have lower PL intensity and lower full width at half maximum (FWHM) than those grown on the conventional (100) plane. The latter demonstrates that the (311)B QDs have better size uniformity than (100) QDs. Compared with as-grown samples, a blue-shift was observed for all samples with increasing annealing temperature from 600°C to 700°C. For (100) samples, a narrowing of the FWHM was observed with increasing annealing temperature from 600°C to 700°C. However, in (311)B samples, the FWHM showed a different behaviour; it slightly increased when the samples were annealed at 600°C and then decreased when the annealing temperature increased to 700°C. As expected, the PL peak intensity for all samples increased when the laser excitation power increased. The PL peak energy temperature dependence showed a strong redshift when the temperature was increased from 10 K to 120 K. The PL peak energy exhibited an abnormal S-shape behaviour as a function of temperature for all samples. Most samples exhibited a significant enhancement in their activation energies when annealed at 600°C and 700°C, suggesting that annealing annihilated defects created during sample growth. Procedia PDF Downloads 174289 Behavior of Square Reinforced-Concrete Columns Strengthened with Carbon Fiber Reinforced Polymers under Eccentric Loading
Authors: Dana J. Abed, Mu'tasim S. Abdel-Jaber, Nasim K. Shatarat
Abstract:
In this paper, an experimental study on twelve square columns was conducted to investigate the influence of cross-sectional size on axial compressive capacity of carbon fiber reinforced polymers (CFRP) wrapped square reinforced concrete (RC) short columns subjected to eccentric loadings. The columns were divided into three groups with three cross sections (200×200×1200, 250×250×1500 and 300×300×1800 mm). Each group was tested under two different eccentricities: 10% and 20% of the width of samples measured from the center of the column cross section. Four columns were developed in each arrangement. Two columns in each category were left unwrapped as control samples, and two were wrapped with one layer CFRP perpendicular to the specimen surface. In general; CFRP sheets has enhanced the performance of the strengthened columns compared to the control columns. It was noticed that the percentage of compressive capacity enhancement was decreased by increasing the cross-sectional size, and increasing loading eccentricity generally leads to reduced load bearing capacity in columns. In the same group specimens, when the eccentricity increased the percentage of enhancement in load carrying capacity was increased. The study concludes that the optimum use of the CFRP sheets for axial strength enhancement is for smaller cross-section columns under higher eccentricities.Keywords: CFRP, columns, eccentric loading, cross-sectional
Procedia PDF Downloads 175288 Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot
Authors: H. Soltani, J. Hadfield, M. Redmond, D. S. Nobes
Abstract:
The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation.Keywords: rising droplet, rectangular orifice, particle shadow velocimetry, match refractive index
Procedia PDF Downloads 171287 Association Between Type of Face Mask and Visual Analog Scale Scores During Pain Assessment
Authors: Merav Ben Natan, Yaniv Steinfeld, Sara Badash, Galina Shmilov, Milena Abramov, Danny Epstein, Yaniv Yonai, Eyal Berbalek, Yaron Berkovich
Abstract:
Introduction: Postoperative pain management is crucial for effective rehabilitation, with the Visual Analog Scale (VAS) being a common tool for assessing pain intensity due to its sensitivity and accuracy. However, challenges such as misunderstanding of instructions and discrepancies in pain reporting can affect its reliability. Additionally, the mandatory use of face masks during the COVID-19 pandemic may impair nonverbal and verbal communication, potentially impacting pain assessment and overall care quality. Aims: This study examines the association between the type of mask worn by health care professionals and the assessment of pain intensity in patients after orthopedic surgery using the visual analog scale (VAS). Design: A nonrandomized controlled trial was conducted among 176 patients hospitalized in an orthopedic department of a hospital located in northern-central Israel from January to March 2021. Methods: In the intervention group (n = 83), pain assessment using the VAS was performed by a healthcare professional wearing a transparent face mask, while in the control group (n = 93), pain assessment was performed by a healthcare professional wearing a standard nontransparent face mask. The initial assessment was performed by a nurse, and 15 minutes later, an additional assessment was performed by a physician. Results: Healthcare professionals wearing a standard non-transparent mask obtained higher VAS scores than healthcare professionals wearing a transparent mask. In addition, nurses obtained lower VAS scores than physicians. The discrepancy in VAS scores between nurses and physicians was found in 50% of cases. This discrepancy was more prevalent among female patients, patients after knee replacement or spinal surgery, and when health care professionals were wearing a standard nontransparent mask. Conclusions: This study supports the use of transparent face masks by healthcare professionals in an orthopedic department, particularly by nurses. In addition, this study supports the assumption of problems involving the reliability of VAS.Keywords: postoperative pain management, visual analog scale, face masks, orthopedic surgery
Procedia PDF Downloads 26286 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection
Authors: P. Bhavya, P. R. Jayasree
Abstract:
This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink
Procedia PDF Downloads 341285 Battery Control with Moving Average Algorithm to Smoothen the Intermittent Output Power of Photovoltaic Solar Power Plants in Off-Grid Configuration
Authors: Muhammad Gillfran Samual, Rinaldy Dalimi, Fauzan Hanif Jufri, Budi Sudiarto, Ismi Rosyiana Fitri
Abstract:
Solar energy is increasingly recognized as an important future energy source due to its abundant availability and renewable nature. However, the intermittent nature of solar energy can cause fluctuations in the electricity produced, making it difficult to guarantee a stable and reliable electricity supply. One solution that can be implemented is to use batteries in a photovoltaic solar power plant system with a Moving Average control algorithm, which can help smooth and reduce fluctuations in solar power output power. The parameter that can be adjusted in the Moving Average algorithm is the window size or the arithmetic average width of the photovoltaic output power over time. This research evaluates the effect of a change of window size parameter in the Moving Average algorithm on the resulting smoothed photovoltaic output power and the technical effects on batteries, i.e., power and energy usage. Based on the evaluation, it is found that the increase of window size parameter will slow down the response of photovoltaic output power to changes in irradiation and increase the smoothing quality of the intermittent photovoltaic output power. In addition, increasing the window size will reduce the maximum power received on the load side, and the amount of energy used by the battery during the power smoothing process will increase, which, in turn, increases the required battery capacity.Keywords: battery, intermittent, moving average, photovoltaic, power smoothing
Procedia PDF Downloads 61