Search results for: interfacial shear strength
4063 Computational Study of Blood Flow Analysis for Coronary Artery Disease
Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey
Abstract:
The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.Keywords: angiography, computational fluid dynamics (CFD), time-average wall shear stress (TAWSS), wall pressure, wall shear stress (WSS)
Procedia PDF Downloads 1834062 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System
Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi
Abstract:
In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building
Procedia PDF Downloads 1424061 Liquefaction Resistance Using Shear Wave Velocity
Authors: Filali Kamel, Sbartai Badreddine
Abstract:
The cyclic resistance curves developed by Andrus and Stokoe related to shear wave velocity case history databases are frequently used in accordance with the assumption of the Seed and Idriss simplified procedure. These cyclic resistance curves were deduced using a database according to the cyclic stress ratio (CSR) proposed by Seed and Idriss. Their approach is founded on the hypothesis that the dynamic cyclic shear stress (τd) is always less than that given by the simplified procedure (τr), as deduced by Seed and Idriss through their simplifying assumptions (rd= τd / τr <1). In 2017, Filali and Sbartai demonstrated that rd can often exceed 1, and they proposed a correction for the CSR in cases where rd > 1. Therefore, the correction of CSR implies that the cyclic resistance ratio (CRR) must also be corrected because it is defined by the boundary curve, which separates the liquefied and nonliqueified cases plotted using the original CSR of Seed and Idriss on which values of CRR are equal to CSR. For this purpose, in the context of this study, we have proposed in the range when the peak ground acceleration is ≤0.30g, which corresponds to rd>1, a modified boundary curve in accordance with the corrected version of the simplified method, which provides the safest case, generalize its use for any used earthquakes and allows the simplified method to be the more conservative.Keywords: liquefaction, soil, earthquake, simplified method, cyclic stress ratio, cyclique resistance ratio
Procedia PDF Downloads 204060 Design and Analysis of a Rear Bumper of an Automobile with a Hybrid Polymer Composite of Oil Palm Empty Fruit Bunch Fiber/Banana Fibres
Authors: S. O. Ologe, U. P. Anaidhuno, Duru C. A.
Abstract:
This research investigated the design and analysis of a rear bumper of an automobile with a hybrid polymer composite of OPEBF/Banana fibre. OPEBF/Banana fibre hybrid polymers composite is of low cost, lightweight, as well as possesses satisfactory mechanical properties. In this research work, hybrid composites have been developed using the hand layup technique based on the percentage combination of OPEBF/Banana fibre at 10:90, 20:80, 30:70, 40:60, 50:50. 60:40, 70:30. 20:80, 90:10, 95:5. The mechanical properties in the context of compressive strength of 65MPa, a flexural strength of 20MPa, and impact strength of 3.25Joule were observed, and the simulation analysis on the induction of 500N load at the factor of safety of 3 was observed to have displayed a good strength suitable for automobile bumper with the advantages of weight reduction.Keywords: OPEBF, Banana, fibre, hybrid
Procedia PDF Downloads 1134059 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing
Authors: W. H. El Garaihy, A. Nassef, S. Samy
Abstract:
Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation
Procedia PDF Downloads 4354058 Analysis of Slope in an Excavated Gneiss Rock Using Geological Strength Index (GSI) in Ilorin, Kwara State, Nigeria
Authors: S. A. Agbalajobi, W. A. Bello
Abstract:
The study carried out analysis on slope stability in an excavated gneiss rock using geological strength index (GSI) in Ilorin, Kwara State, Nigeria. A kinematic analysis of planar discontinuity sets in a gneiss deposit was carried out to ascertain the degree of slope stability. Discontinuity orientations in the rock mass were mapped using compass clinometers. The average result of physical and mechanical properties such as specific gravity, unit weight, uniaxial compressive strength, point load index, and Schmidt rebound value are 2.64 g/m3, 25.95 kN/m3, 156 MPa, 6.5 MPa, and 53.12 respectively. Also, a statistical model equation relating the rock strength was developed. The analyses states that the rock face is susceptible to wedge failures having all the geometrical conditions associated with the occurrence of such failures were noticeable. It can be concluded that analyses of discontinuity orientation in relation to cut face direction in rock excavation is essential for mine planning to forestall mine accidents. Assessment of excavated slope methods was evident that one excavation method (blasting and/or use of hydraulic hammer) is applicable for the given rock strength, the ease of excavation decreases as the rock mass quality increases, thus blasting most suitable for such operation.Keywords: slope stability, wedge failure, geological strength index (GSI), discontinuities and excavated slope
Procedia PDF Downloads 5174057 Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete
Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin
Abstract:
The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures.Keywords: rice husk ash, mechanical properties, shrinkage and expansion, Pozzolan
Procedia PDF Downloads 4104056 Effects of CFRP Confinement on PCC and Glass Fiber Reinforced Concrete
Authors: Muhammad Jahangeer Munir, Liaqat Ali Qureshi, Junaid Ahmed
Abstract:
This paper presents the investigation regarding use of glass fibers in structural concrete members and determining the behavior of normal PCC, GFRC and retrofitted GFRC under different tests performed in the laboratory. Effect of retrofitting on the GFRC & PCC was investigated by using three patterns of CFRP wrapping. Properties like compressive, split tensile and flexural strength of normal GFRC and retrofitted GFRC were investigated and compared with their PCC counterparts. It was found that GFRC has more compressive strength as compared to PCC. At lower confinement pressures PCC behaves better than GFRC. Confinement efficiency was lower in GFRC as compared to PCC in terms of Split tensile strength. In case of GFRC all the patterns of wrapped CFRP strips showed more strength than their PCC counterparts.Keywords: carbon fiber reinforced polymers, confinement, glass fibers, retrofitting
Procedia PDF Downloads 6084055 Study of Chemical and Physical - Mechanical Properties Lime Mortar with Addition of Natural Resins
Authors: I. Poot-Ocejo, H. Silva-Poot, J. C. Cruz, A. Yeladaqui-Tello
Abstract:
Mexico has remarkable archaeological remains mainly in the Maya area, which are critical to the preservation of our cultural heritage, so the authorities have an interest in preserving and restoring these vestiges of the most original way, by employing techniques traditional, which has advantages such as compatibility, durability, strength, uniformity and chemical composition. Recent studies have confirmed the addition of natural resins extracted from the bark of trees, of which Brosium alicastrum (Ramon) has been the most evaluated, besides being one of the most abundant species in the vicinity of the archaeological sites, like that Manilkara Zapota (Chicozapote). Therefore, the objective is to determine if these resins are capable of being employed in archaeological restoration. This study shows the results of the chemical composition and physical-mechanical behavior of mortar mixtures eight made with commercial lime and off by hand, calcium sand, resins added with Brosium alicastrum (Ramon) and Manilkara zapota (Chicozapote), where determined and quantified properties and chemical composition of the resins by X-Ray Fluorescence (XRF), the pH of the material was determined, indicating that both resins are acidic (3.78 and 4.02), and the addition rate maximum was obtained from resins in water by means of ultrasonic baths pulses, being in the case of 10% Manilkara zapota, because it contains up to 40% rubber and for 40% alicastrum Brosium contain less rubber. Through quantitative methodology, the compressive strength 96 specimens of 5 cm x 5 cm x 5 cm of mortar binding, 72 with partial substitution of water mixed with natural resins in proportions 5 to 10% in the case was evaluated of Manilkara Zapota, for Brosium alicastrum 20 and 40%, and 12 artificial resin and 12 without additive (mortars witnesses). 24 specimens likewise glued brick with mortar, for testing shear adhesion was found where, then the microstructure more conducive additions was determined by SEM analysis were prepared sweep. The test results indicate that the addition Manilkara zapota resin in the proportion of 10% 1.5% increase in compressive strength and 1% with respect to adhesion, compared to the control without addition mortar; In the case of Brosium alicastrum results show that compressive strengths and adhesion were insignificant compared to those made with registered by Manilkara zapota mixtures. Mortars containing the natural resins have improvements in physical properties and increase the mechanical strength and adhesion, compared to those who do not, in addition to the components are chemically compatible, therefore have considered that can be employed in Archaeological restoration.Keywords: lime, mortar, natural resins, Manilkara zapota mixtures, Brosium alicastrum
Procedia PDF Downloads 3714054 Effect of Resistance Training on Muscle Strength, IGF₁, and Physical Performance of Volleyball Players
Authors: Menan M. Elsayed, Hussein A. Heshmat
Abstract:
The aim of the study is to assess the effect of resistance training on muscle strength and physical performance of volleyball players of Physical Education College, Helwan University. The researcher used the experimental method of pre-post measurements of one group of 10 volleyball players. The execution of the program was through the period of 12/8/2018 to 12/10/2018; included 24 training units, 3 training units weekly for 8 weeks. The training program revealed an improvement in post measurement of muscle strength, IGF₁ (insulin-like growth factor 1), and physical performance of players. It may be concluded that the resistance training may include changes in hormones and muscle fibers leading to hypertrophy of the muscle and physical performance. It is recommended to use the results of the study in rationing the loads and training programs.Keywords: IGF₁, muscle strength, physical performance, resistance training, volleyball players
Procedia PDF Downloads 1934053 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength
Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos
Abstract:
Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.Keywords: statistical slope stability analysis, skew distributions, probability of failure, functions of random variables
Procedia PDF Downloads 3384052 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique
Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François
Abstract:
Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus
Procedia PDF Downloads 3634051 Development of A MG-Gd-Er-Zn-Zr Alloy with Ultrahigh Strength and Ductility via Extrusion, Pre-Deformation, and Two-Stage Aging
Authors: Linyue Jia, Wenbo Du, Zhaohui Wang, Ke Liu, Shubo Li
Abstract:
Due to the great potential for weight reduction in aerospace and automotive industries, magnesium-rare earth (Mg-RE) based alloys with outstanding mechanical performance have been widely investigated for decades. However, magnesium alloys are still restricted in engineering applications because of their lower strength and ductility. Hence, there are large spaces and challenges in achieving high-performance Mg alloys. This work reports an Mg-Gd-Er-Zn-Zr alloy with ultrahigh strength and good ductility developed via hot extrusion, pre-deformation, and two-stage aging. The extruded alloy comprises fine dynamically recrystallized (DRXed) grains and coarse worked grains with a large aspect ratio. Pre-deformation has little effect on the microstructure and macro-texture and serves primarily to introduce a large number of dislocations, resulting in strain hardening and higher precipitation strengthening during subsequent aging due to more nucleation sites. As a result, the alloy exhibits a yield strength (YS) of 506 MPa, an ultimate tensile strength (UTS) of 549 MPa, and elongation (EL) of 8.2% at room temperature, showing superior strength-ductility balance than the other wrought Mg-RE alloys previously reported. The current study proposes a combination of pre-deformation and two-stage aging to further improve the mechanical properties of wrought Mg alloys for engineering applications.Keywords: magnesium alloys, mechanical properties, microstructure, pre-deformation, two-stage aging
Procedia PDF Downloads 1654050 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone
Authors: Meshal Al-Samhan, Abdullah Al-Marshed
Abstract:
Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability
Procedia PDF Downloads 1084049 Effect of Different Types of Washes on the Fabric Strength of Denim
Authors: Hina Gul Rajpoot, Wazeer Hussain Solangi
Abstract:
Experimental Design (DOE) economically maximizes information; we deliberately change one or more process variables (looms) in order to observe the effect the changes have on one or more response fabric properties. In DOE obtained data can be analyzed to yield valid and objective conclusions. An Experimental Design is lying out of a detailed experimental plan in advance and maximizes the amount of "information" that can be obtained for a given amount of experimental. Fabric of 36 inches having following weaves was used. 3/1 twill, warp cotton (10.5 den), weft Lycra (16 spandex * 70 den) Ends per inch86, Picks per inch 52 and washes process includes Stone wash, Rinse wash, Bleaching and Enzyme wash. Once the samples were ready, they were subjected to tensile and tear strength tests, for these two kinds of samples were considered. One washed fabric samples of warp direction type and other type of the samples was weft direction. Then five samples from each were considered for tensile and teat strength tests separately then takes the mean value. The results found that the lowest strength damaged in the weft direction observed by tensile strength test & Enzyme wash. Maximum breaking load of the enzyme washed fabric sample was 42 kg.Keywords: twill, indigo dye, tear strength, loom, ball warp, denier or den, seam, waist band, pilling, selvage
Procedia PDF Downloads 2714048 Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth
Authors: Bouzidi Yassine
Abstract:
This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner.Keywords: initial absorption, cover concrete, compressive strength, carbonation depth
Procedia PDF Downloads 3364047 Compressive and Torsional Strength of Self-Compacting Concrete
Authors: Moosa Mazloom, Morteza Mehrvand
Abstract:
The goal of this study was to investigate the effects of silica fume and super plasticizer dosages on compressive and torsional properties of SCC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of 400 kg/m3 and 500 kg/m3, respectively. The percentages of silica fume that replaced cement were 0 % and 10 %. The super plasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2 % and 1.6 % of the weight of cement. Prism dimensions used in this test were 10 × 10 × 40 cm3. The results of this research indicated that torsional strength of SCC prisms can be calculated using the equations presented in Canadian and American concrete building codes.Keywords: self-compacting concrete, rectangular prism, torsional strength
Procedia PDF Downloads 5174046 Flow Characterization in Complex Terrain for Aviation Safety
Authors: Adil Rasheed, Mandar Tabib
Abstract:
The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system
Procedia PDF Downloads 4164045 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time
Procedia PDF Downloads 3644044 Effects of the Amount of Static Stretching on the Knee Isokinetic Muscle Strength
Authors: Chungyu Chen, Hui-Ju Chang, Pei-Shan Guo, Huei-Ling Jhan, Yi-Ping Lin
Abstract:
The purpose of this study was to investigate the effect of the amount of acutely static stretching on muscular strength and power. There were 15 males, and 7 females recruited voluntarily as the participants in the study. The mean age, body height, and weight of participants were 23.4 ± 2.8 years old, 171.0 ± 7.2 cm, and 65.7 ± 8.7 kg, respectively. Participants were repeated to stretch hamstring muscles 2 or 6 30-s bouts randomly on a separate day spaced 5-7 days apart in a passive, static, sit-and-reach stretching exercise. Before and after acutely static stretching, the Biodex System 4 Pro was used to acquire the peak torque, power, total work, and range of motion for right knee under the loading of 180 deg/s. The 2 (test-retest) × 2 (number of stretches) repeated measures two-way analysis of variance were used to compare the parameters of muscular strength/power (α = .05). The results showed that the peak torque, power, and total work increased significantly after acutely passive static stretching (ps < .05) in flexor and extensor of knee. But there were no significant differences found between the 2 and 6 30-s bouts hamstring muscles stretching (ps > .05). It indicated that the performance of muscular strength and power in knee flexion and extension do not inhibit following the increase of amount of stretching.Keywords: knee, power, flexibility, strength
Procedia PDF Downloads 2794043 Review on PETG Material Parts Made Using Fused Deposition Modeling
Authors: Dhval Chauhan, Mahesh Chudasama
Abstract:
This study has been undertaken to give a review of Polyethylene Terephthalate Glycol (PETG) material used in Fused Deposition Modelling (FDM). This paper offers a review of the existing literature on polyethylene terephthalate glycol (PETG) material, the objective of the paper is to providing guidance on different process parameters that can be used to improve the strength of the part by performing various testing like tensile, compressive, flexural, etc. This work is target to find new paths that can be used for further development of the use of fiber reinforcement in PETG material.Keywords: PETG, FDM, tensile strength, flexural strength, fiber reinforcement
Procedia PDF Downloads 1924042 Design, Construction and Evaluation of Ultra-High-Performance Concrete (UHPC) Bridge Deck Overlays
Authors: Jordy Padilla
Abstract:
The New Jersey Department of Transportation (NJDOT) initiated a research project to install and evaluate Ultra-High-Performance Concrete (UHPC) as an overlay on existing bridges. The project aims to implement UHPC overlays in NJDOT bridge deck strategies for preservation and repair. During design, four bridges were selected for construction. The construction involved the removal of the existing bridge asphalt overlays, partially removing the existing concrete deck surface, and resurfacing the deck with a UHPC overlay. In some cases, a new asphalt riding surface was placed. Additionally, existing headers were replaced with full-depth UHPC. The UHPC overlay is monitored through coring and Non-destructive testing (NDT) to ensure that the interfacial bond is intact and that the desired conditions are maintained. The NDT results show no evidence that the bond between the new UHPC overlay and the existing concrete deck is compromised. Bond strength test data demonstrates that, in general, the desired bond was achieved between UHPC and the substrate concrete, although the results were lower than anticipated. Chloride content is also within expectations except for one anomaly. The baseline testing was successful, and no significant defects were encountered.Keywords: ultra-high performance concrete, rehabilitation, non-destructive testing
Procedia PDF Downloads 804041 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles
Authors: Amir Mahmoudi
Abstract:
In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.Keywords: Portland cement, composite, nanoparticles, compressive strength
Procedia PDF Downloads 4354040 Effect of Volcanic Ash and Recycled Aggregates in Concrete
Authors: Viviana Letelier, Ester Tarela, Giacomo Moriconi
Abstract:
The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material.Keywords: compressive strength of recycled concrete, mechanical properties of recycled concrete, recycled aggregates, volcanic ash as cement replacement
Procedia PDF Downloads 3024039 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method
Authors: K. Meera Saheb, K. Krishna Bhaskar
Abstract:
Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates
Procedia PDF Downloads 2264038 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations
Authors: Oleg Kabantsev, Karomatullo Umarov
Abstract:
The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis
Procedia PDF Downloads 2064037 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures
Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu
Abstract:
This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.Keywords: swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity
Procedia PDF Downloads 6064036 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation
Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril
Abstract:
This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper
Procedia PDF Downloads 2084035 Rupture Probability of Type of Coarse Aggregate on Fracture Surface of Concrete
Authors: B. Ramakrishna, S. Sivamurthy Reddy
Abstract:
The various types of aggregates such as granite, dolerite, Quartzite, dolomitic limestone, limestone and river gravel were used to produce the concrete with 28-day target compressive strength of 35, 60, and 80 Mpa. The compressive strength of concrete, as well as aggregates, was measured to study the effect of rupture probability of aggregate on the fracture surface of the concrete. Also, the petrographic studies were carried out to study the texture, type of minerals present and their relative proportions in various types of aggregates. The concrete of various grades produced with the same aggregate has shown a rise in RPCA with strength. However, the above relationship has ceased to exist in the concretes of the same grade, made of different types of aggregates. The carbonate aggregates namely Limestone and Dolomitic limestone have produced concrete with higher RPCA irrespective of the strength of concrete. The mode of origin, texture and mineralogical composition of aggregates have a significant impact on their pulse velocity and thereby the pulse velocity of concrete. Procedia PDF Downloads 2944034 Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement
Authors: Vatsal Patel, Niraj Shah
Abstract:
The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits.Keywords: durability, high performance concrete, marble waste powder, sorptivity, accelerated corrosion
Procedia PDF Downloads 345