Search results for: hybrid reactor
1667 Behavior of Composite Reinforced Concrete Circular Columns with Glass Fiber Reinforced Polymer I-Section
Authors: Hiba S. Ahmed, Abbas A. Allawi, Riyadh A. Hindi
Abstract:
Pultruded materials made of fiber-reinforced polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, and other structural sections. These FRP materials are starting to compete with steel as structural materials because of their great resistance, low self-weight, and cheap maintenance costs-especially in corrosive conditions. This study aimed to evaluate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) of the hybrid columns built by combining (GFRP) profiles with concrete columns because of their low cost and high structural efficiency. To achieve the aims of this study, nine circular columns with a diameter of (150 mm) and a height of (1000mm) were cast using normal concrete with compression strength equal to (35 MPa). The research involved three different types of reinforcement: hybrid circular columns type (IG) with GFRP I-section and 1% of the reinforcement ratio of steel bars, hybrid circular columns type (IS) with steel I-section and 1% of the reinforcement ratio of steel bars, (where the cross-section area of I-section for GFRP and steel was the same), compared with reference column (R) without I-section. To investigate the ultimate capacity, axial and lateral deformation, strain in longitudinal and transverse reinforcement, and failure mode of the circular column under different loading conditions (concentric and eccentric) with eccentricities of 25 mm and 50 mm, respectively. In the second part, an analytical finite element model will be performed using ABAQUS software to validate the experimental results.Keywords: composite, columns, reinforced concrete, GFRP, axial load
Procedia PDF Downloads 571666 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 1631665 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6281664 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication
Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi
Abstract:
Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.Keywords: hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress
Procedia PDF Downloads 3041663 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1571662 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source
Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka
Abstract:
After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.Keywords: neutron source, neutron resonance, nuclear debris, time of flight
Procedia PDF Downloads 2381661 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows
Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari
Abstract:
The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids
Procedia PDF Downloads 1311660 A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time.Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, neural network
Procedia PDF Downloads 3881659 Fire Resistance of High Alumina Cement and Slag Based Ultra High Performance Fibre-Reinforced Cementitious Composites
Authors: A. Q. Sobia, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi
Abstract:
Fibre-reinforced polymer (FRP) strengthened reinforced concrete (RC) structures are susceptible to intense deterioration when exposed to elevated temperatures, particularly in the incident of fire. FRP has the tendency to lose bond with the substrate due to the low glass transition temperature of epoxy; the key component of FRP matrix. In the past few decades, various types of high performance cementitious composites (HPCC) were explored for the protection of RC structural members against elevated temperature. However, there is an inadequate information on the influence of elevated temperature on the ultra high performance fibre-reinforced cementitious composites (UHPFRCC) containing ground granulated blast furnace slag (GGBS) as a replacement of high alumina cement (HAC) in conjunction with hybrid fibres (basalt and polypropylene fibres), which could be a prospective fire resisting material for the structural components. The influence of elevated temperatures on the compressive as well as flexural strength of UHPFRCC, made of HAC-GGBS and hybrid fibres, were examined in this study. Besides control sample (without fibres), three other samples, containing 0.5%, 1% and 1.5% of basalt fibres by total weight of mix and 1 kg/m3 of polypropylene fibres, were prepared and tested. Another mix was also prepared with only 1 kg/m3 of polypropylene fibres. Each of the samples were retained at ambient temperature as well as exposed to 400, 700 and 1000 °C followed by testing after 28 and 56 days of conventional curing. Investigation of results disclosed that the use of hybrid fibres significantly helped to improve the ambient temperature compressive and flexural strength of UHPFRCC, which was found to be 80 and 14.3 MPa respectively. However, the optimum residual compressive strength was marked by UHPFRCC-CP (with polypropylene fibres only), equally after both curing days (28 and 56 days), i.e. 41%. In addition, the utmost residual flexural strength, after 28 and 56 days of curing, was marked by UHPFRCC– CP and UHPFRCC– CB2 (1 kg/m3 of PP fibres + 1% of basalt fibres) i.e. 39% and 48.5% respectively.Keywords: fibre reinforced polymer materials (FRP), ground granulated blast furnace slag (GGBS), high-alumina cement, hybrid, fibres
Procedia PDF Downloads 2871658 Surface Modified Core–Shell Type Lipid–Polymer Hybrid Nanoparticles of Trans-Resveratrol, an Anticancer Agent, for Long Circulation and Improved Efficacy against MCF-7 Cells
Authors: M. R. Vijayakumar, K. Priyanka, Ramoji Kosuru, Lakshmi, Sanjay Singh
Abstract:
Trans resveratrol (RES) is a non-flavonoid poly-phenolic compound proved for its therapeutic and preventive effect against various types of cancer. However, the practical application of RES in cancer treatment is limited because of its higher dose (up to 7.5 g/day in humans), low biological half life, rapid metabolism and faster elimination in mammals. PEGylated core-shell type lipid polymer hybrid nanoparticles are the novel drug delivery systems for long circulation and improved anti cancer effect of its therapeutic payloads. Therefore, the main objective of this study is to extend the biological half life (long circulation) and improve the therapeutic efficacy of RES through core shell type of nanoparticles. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS), a novel surfactant is applied for the preparation of PEGylated lipid polymer hybrid nanoparticles. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Entrapment efficiency and invitro drug release were determined by ultracentrifugation method and dialysis bag method, respectively. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies after i.v administration were performed in sprague dawley rats. The prepared NPs were found to be spherical in shape with smooth surfaces. Particle size and zeta potential of prepared NPs were found to be in the range of 179.2±7.45 to 266.8±9.61 nm and -0.63 to -48.35 mV, respectively. DSC revealed absence of potential interaction. XRD study revealed presence of amorphous form in nanoparticles. Entrapment efficiency was found to be 83.7 % and drug release was found to be in controlled manner. MTT assay showed low MEC and pharmacokinetic studies showed higher AUC of nanoformulaition than its pristine drug. All these studies revealed that the RES loaded PEG modified core-shell type lipid polymer hybrid nanoparticles can be an alternative tool for chemopreventive and therapeutic application of RES in cancer.Keywords: trans resveratrol, cancer nanotechnology, long circulating nanoparticles, bioavailability enhancement, core shell nanoparticles, lipid polymer hybrid nanoparticles
Procedia PDF Downloads 4721657 Seismic Analysis of Vertical Expansion Hybrid Structure by Response Spectrum Method Concern with Disaster Management and Solving the Problems of Urbanization
Authors: Gautam, Gurcharan Singh, Mandeep Kaur, Yogesh Aggarwal, Sanjeev Naval
Abstract:
The present ground reality scenario of suffering of humanity shows the evidence of failure to take wrong decisions to shape the civilization with Irresponsibilities in the history. A strong positive will of right responsibilities make the right civilization structure which affects itself and the whole world. Present suffering of humanity shows and reflect the failure of past decisions taken to shape the true culture with right social structure of society, due to unplanned system of Indian civilization and its rapid disaster of population make the failure to face all kind of problems which make the society sufferer. Our India is still suffering from disaster like earthquake, floods, droughts, tsunamis etc. and we face the uncountable disaster of deaths from the beginning of humanity at the present time. In this research paper our focus is to make a Disaster Resistance Structure having the solution of dense populated urban cities area by high vertical expansion HYBRID STRUCTURE. Our efforts are to analyse the Reinforced Concrete Hybrid Structure at different seismic zones, these concrete frames were analyzed using the response spectrum method to calculate and compare the different seismic displacement and drift. Seismic analysis by this method generally is based on dynamic analysis of building. Analysis results shows that the Reinforced Concrete Building at seismic Zone V having maximum peak story shear, base shear, drift and node displacement as compare to the analytical results of Reinforced Concrete Building at seismic Zone III and Zone IV. This analysis results indicating to focus on structural drawings strictly at construction site to make a HYBRID STRUCTURE. The study case is deal with the 10 story height of a vertical expansion Hybrid frame structure at different zones i.e. zone III, zone IV and zone V having the column 0.45x0.36mt and beam 0.6x0.36mt. with total height of 30mt, to make the structure more stable bracing techniques shell be applied like mage bracing and V shape bracing. If this kind of efforts or structure drawings are followed by the builders and contractors then we save the lives during earthquake disaster at Bhuj (Gujarat State, India) on 26th January, 2001 which resulted in more than 19,000 deaths. This kind of Disaster Resistance Structure having the capabilities to solve the problems of densely populated area of cities by the utilization of area in vertical expansion hybrid structure. We request to Government of India to make new plans and implementing it to save the lives from future disasters instead of unnecessary wants of development plans like Bullet Trains.Keywords: history, irresponsibilities, unplanned social structure, humanity, hybrid structure, response spectrum analysis, DRIFT, and NODE displacement
Procedia PDF Downloads 2111656 Evaluation and Selection of Elite Jatropha Genotypes for Biofuel
Authors: Bambang Heliyanto, Rully Dyah Purwati, Hasnam, Fadjry Djufry
Abstract:
Jatropha curcas L., a drought tolerant and monoecious perennial shrub, has received attention worldwide during the past decade. Realizing the facts, the Indonesian government has decided to option for Jatropha and palm oil for in country biofuel production. To support the program development of high yielding jatropha varieties is necessary. This paper reviews Jatropha improvement program in Indonesia using mass selection and hybrid development. To start with, at the end of 2005, in-country germplasm collection was mobilized to Lampung and Nusa Tenggara Barat (NTB) provinces and successfully collected 15 provenances/sub-provenances which serves as a base population for selection. A significant improvement has been achieved through a simple recurrent breeding selection during 2006 to 2007. Seed yield productivity increased more than double, from 0.36 to 0.97 ton dry seed per hectare during the first selection cycle (IP-1), and then increased to 2.2 ton per hectare during the second cycles (IP-2) in Lampung provenance. Similar result was also observed in NTB provenance. Seed yield productivity increased from 0.43 ton to 1 ton dry seed per hectare in the first cycle (IP-1), and then 1.9 ton in the second cycle (IP-2). In 2008, the population IP-3 resulted from the third cycle of selection have been identified which were capable of producing 2.2 to 2.4 ton seed yield per hectare. To improve the seed yield per hectare, jatropha hybrid varieties was developed involving superior provenances. As a result a Jatropha Energy Terbarukan (JET) variety-2 was released in 2017 with seed yield potential of 2.6 ton per hectare. The use of this high yielding genotypes for biofuel is discussed.Keywords: Jatropha curcas, provenance, biofuel, improve population, hybrid
Procedia PDF Downloads 1731655 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 4131654 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts
Authors: Lin Huang, Bo Wang, Armando Borgna
Abstract:
Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase
Procedia PDF Downloads 2651653 Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water
Authors: Monika Šípová, Daniela Marušáková, Claudia Aparicio
Abstract:
New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest.Keywords: localised corrosion, supercritical water, stainless steel, electron backscatter diffraction
Procedia PDF Downloads 791652 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods
Authors: J. Tamosaitiene
Abstract:
The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.Keywords: risk, system, model, construction
Procedia PDF Downloads 1691651 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading
Authors: C. Shalini Devi
Abstract:
This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.Keywords: composite, stress concentration, finite element analysis, tensile strength
Procedia PDF Downloads 4501650 Optimization Techniques for Microwave Structures
Authors: Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.Keywords: segmentation, s parameters, simulation, optimization
Procedia PDF Downloads 5301649 Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre of Visual Arts in the Context of Agile, Lean and Hybrid Project Management Approaches
Authors: Maria Ledinskaya
Abstract:
This paper examines the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts in the context of Agile, Lean, and Hybrid project management. It is part case study and part literature review. To date, relatively little has been written about non-traditional project management approaches in heritage conservation. This paper seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation, by referencing their practical application on a recent museum-based conservation project. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre for Visual Arts by private collectors Michael and Joyce Morris. The first part introduces the chronological timeline and key elements of the project. It describes a medium-size conservation project of moderate complexity, which was planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown condition and materials, unconfirmed budget. The project was also impacted by the unknown unknowns of the COVID-19 pandemic, such as indeterminate lockdowns, and the need to accommodate social distancing and remote communications. The author, a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Collection Conservation Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. Subsequent sections examine the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment, due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Collection Conservation Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, as well as the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics, particularly with respect to change management, bespoke ethics, shared decision-making, and value-based cost-benefit conservation strategy. The author concludes that the Morris Collection Conservation Project had multiple Agile and Lean features which were instrumental to the successful delivery of the project. These key features are identified as distributed decision making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point largely in favour of a Hybrid model which combines traditional and alternative project processes and tools to suit the specific needs of the project.Keywords: project management, conservation, waterfall, agile, lean, hybrid
Procedia PDF Downloads 1001648 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle
Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri
Abstract:
On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.Keywords: electric vehicles, fuel cell, battery, regenerative braking, energy management
Procedia PDF Downloads 7141647 Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment
Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun
Abstract:
To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education
Procedia PDF Downloads 3741646 The Relationship between Operating Condition and Sludge Wasting of an Aerobic Suspension-Sequencing Batch Reactor (ASSBR) Treating Phenolic Wastewater
Authors: Ali Alattabi, Clare Harris, Rafid Alkhaddar, Ali Alzeyadi
Abstract:
Petroleum refinery wastewater (PRW) can be considered as one of the most significant source of aquatic environmental pollution. It consists of oil and grease along with many other toxic organic pollutants. In recent years, a new technique was implemented using different types of membranes and sequencing batch reactors (SBRs) to treat PRW. SBR is a fill and draw type sludge system which operates in time instead of space. Many researchers have optimised SBRs’ operating conditions to obtain maximum removal of undesired wastewater pollutants. It has gained more importance mainly because of its essential flexibility in cycle time. It can handle shock loads, requires less area for operation and easy to operate. However, bulking sludge or discharging floating or settled sludge during the draw or decant phase with some SBR configurations are still one of the problems of SBR system. The main aim of this study is to develop and innovative design for the SBR optimising the process variables to result is a more robust and efficient process. Several experimental tests will be developed to determine the removal percentages of chemical oxygen demand (COD), Phenol and nitrogen compounds from synthetic PRW. Furthermore, the dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) of the SBR system will be monitored online to ensure a good environment for the microorganisms to biodegrade the organic matter effectively.Keywords: petroleum refinery wastewater, sequencing batch reactor, hydraulic retention time, Phenol, COD, mixed liquor suspended solids (MLSS)
Procedia PDF Downloads 2631645 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors
Authors: Ye Ling, Ruan Haihui
Abstract:
Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8
Procedia PDF Downloads 521644 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies
Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel
Abstract:
To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots
Procedia PDF Downloads 5271643 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate
Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili
Abstract:
This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE
Procedia PDF Downloads 681642 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model
Authors: Jai Heui Kim, Sotheara Veng
Abstract:
This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility
Procedia PDF Downloads 2991641 Comics as Third Space: An Analysis of the Continuous Negotiation of Identities in Postcolonial Philippines
Authors: Anna Camille V. Flores
Abstract:
Comics in the Philippines has taken on many uses for the Filipino people. They have been sources of entertainment, education, and political and social commentaries. History has been witnessed to the rise and fall of Philippine comics but the 21st century is seeing a revival of the medium and the industry. It is within this context that an inquiry about Filipino identity is situated. Employing the analytical framework of postcolonialism, particularly Homi K. Bhabha’s concepts of Hybridity and the Third Space, this study analyzes three contemporary Philippine comics, Trese, Filipino Heroes League, and Dead Balagtas. The study was able to draw three themes that represent how Filipinos inhabit hybrid worlds and hybridized identities. First, the third space emerged through the use of hybrid worlds in the comics. Second, (re)imagined communities are established through the use of intertextual signifiers. Third, (re)negotiated identities are expressed through visual and narrative devices such as the use of Philippine mythology, historical and contemporary contexts, and language. In conclusion, comics can be considered as Third Space where these identities have the agency and opportunity to be expressed and represented.Keywords: comics, hybridity and third space, Philippine comics, postcolonialism
Procedia PDF Downloads 2321640 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria
Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar
Abstract:
The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator
Procedia PDF Downloads 441639 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection
Authors: Jiandong Lv, Xingang Wang, Cuiling Shao
Abstract:
The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer
Procedia PDF Downloads 2501638 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts
Authors: Maria Ledinskaya
Abstract:
This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management
Procedia PDF Downloads 71