Search results for: fuzzy reasoning
276 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes
Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal
Abstract:
Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle
Procedia PDF Downloads 54275 Extending BDI Multiagent Systems with Agent Norms
Authors: Francisco José Plácido da Cunha, Tassio Ferenzini Martins Sirqueira, Marx Leles Viana, Carlos José Pereira de Lucena
Abstract:
Open Multiagent Systems (MASs) are societies in which heterogeneous and independently designed entities (agents) work towards similar, or different ends. Software agents are autonomous and the diversity of interests among different members living in the same society is a fact. In order to deal with this autonomy, these open systems use mechanisms of social control (norms) to ensure a desirable social order. This paper considers the following types of norms: (i) obligation — agents must accomplish a specific outcome; (ii) permission — agents may act in a particular way, and (iii) prohibition — agents must not act in a specific way. All of these characteristics mean to encourage the fulfillment of norms through rewards and to discourage norm violation by pointing out the punishments. Once the software agent decides that its priority is the satisfaction of its own desires and goals, each agent must evaluate the effects associated to the fulfillment of one or more norms before choosing which one should be fulfilled. The same applies when agents decide to violate a norm. This paper also introduces a framework for the development of MASs that provide support mechanisms to the agent’s decision-making, using norm-based reasoning. The applicability and validation of this approach is demonstrated applying a traffic intersection scenario.Keywords: BDI agent, BDI4JADE framework, multiagent systems, normative agents
Procedia PDF Downloads 235274 Knowledge Diffusion via Automated Organizational Cartography (Autocart)
Authors: Mounir Kehal
Abstract:
The post-globalization epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behavior has come to provide the competitive and comparative edge. Enterprises have turned to explicit - and even conceptualizing on tacit - knowledge management to elaborate a systematic approach to develop and sustain the intellectual capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualized. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper, we present an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 310273 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning
Authors: Zhanna Dedovets
Abstract:
Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.
Procedia PDF Downloads 50272 Literature Review: Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 410271 The Characteristics of Quantity Operation for 2nd and 3rd Grade Mathematics Slow Learners
Authors: Pi-Hsia Hung
Abstract:
The development of mathematical competency has individual benefits as well as benefits to the wider society. Children who begin school behind their peers in their understanding of number, counting, and simple arithmetic are at high risk of staying behind throughout their schooling. The development of effective strategies for improving the educational trajectory of these individuals will be contingent on identifying areas of early quantitative knowledge that influence later mathematics achievement. A computer-based quantity assessment was developed in this study to investigate the characteristics of 2nd and 3rd grade slow learners in quantity. The concept of quantification involves understanding measurements, counts, magnitudes, units, indicators, relative size, and numerical trends and patterns. Fifty-five tasks of quantitative reasoning—such as number sense, mental calculation, estimation and assessment of reasonableness of results—are included as quantity problem solving. Thus, quantity is defined in this study as applying knowledge of number and number operations in a wide variety of authentic settings. Around 1000 students were tested and categorized into 4 different performance levels. Students’ quantity ability correlated higher with their school math grade than other subjects. Around 20% students are below basic level. The intervention design implications of the preliminary item map constructed are discussed.Keywords: mathematics assessment, mathematical cognition, quantity, number sense, validity
Procedia PDF Downloads 249270 Knowledge Diffusion via Automated Organizational Cartography: Autocart
Authors: Mounir Kehal, Adel Al Araifi
Abstract:
The post-globalisation epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behaviour has come to provide the competitive and comparative edge. Enterprises have turned to explicit- and even conceptualising on tacit- Knowledge Management to elaborate a systematic approach to develop and sustain the Intellectual Capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualised. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper we present likewise an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 417269 An Adaptive Distributed Incremental Association Rule Mining System
Authors: Adewale O. Ogunde, Olusegun Folorunso, Adesina S. Sodiya
Abstract:
Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.Keywords: adaptivity, data mining, distributed association rule mining, incremental mining, mobile agents
Procedia PDF Downloads 393268 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence
Authors: Rajeev Kumar, Harishankar Kumar
Abstract:
Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights, enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence
Procedia PDF Downloads 10267 Hausa Home Videos: A Template for Global Peace
Authors: Ibrahim Uba Yusuf
Abstract:
Conflict is a subject or, better put, theme that primarily dominates Hausa home videos. Conflict in Hausa home videos is one of the sources of attraction to viewers, but do such films achieve anything? The Hausa home video industry in Northern Nigeria, popularly called Kannywood has been making attempts by producing cultural products for consumption within and outside the country. The ability of the industry to connect issues of concern within the region is an effort to reckon with. This paper, therefore, examines how Hausa home videos on peacebuilding can serve as a template for peacebuilding. This is coming at a time when global attention to peacebuilding is increasing. The inclusion of peacebuilding as SDG Goal suggests the need for utilizing other approaches that can enhance peace in risk societies like Nigeria. The paper based its arguments using the key proponents of the auteur theory—the director’s bias, thoughts, and sense of reasoning shape the issues emphasized in the home videos. The paper argues that Hausa home video industry is one medium amongst the many producing discourse about peacebuilding, conflict, and justice, social cohesion, education, and understanding, as well as raising social consciousness on issues of public concern. It is the conclusion of the paper that Hausa home videos produced on sustaining peacebuilding in Northern Nigeria are cultural products that have become lenses to understanding the interplay between representations or portrayal of conflict and peaceful resolutions of the conflicting issues.Keywords: hausa home videos, peacebuilding, conflict, northern Nigeria
Procedia PDF Downloads 121266 Students’ Notions About Bioethical Issues - A Comparative Study in Indian Subcontinent
Authors: Astha Saxena
Abstract:
The present study is based in Indian subcontinent and aims at exploring students’ conceptions about ethical issues related to Biotechnology at both high school and undergraduate level. The data collection methods involved taking classroom notes, recording students’ observations and arguments, and focussed group discussions with students. The data was analysed using classroom discourse analysis and interpretive approaches. The findings depicted different aspects of students’ thinking, meaning making and ethical understanding with respect to complex bioethical issues such as genetically modified crops, in-vitro fertilization (IVF), human genomic project, cloning, etc., at high school as well as undergraduate level. The paper offers a comparative account of students’ arguments with respect to ethical issues in biotechnology at the high school & undergraduate level, where it shows a clear gradation in their ethical understanding from high school to undergraduate level, which can be attributed to their enhanced subject-matter knowledge. The nature of students’ arguments reveal that there is more reliance on the utilitarian aspect of these biotechnologies as against a holistic understanding about a particular bioethical issue. This study has implications for science teachers to delve into students’ thinking and notions about ethical issues in biotechnology and accordingly design appropriate pedagogical approaches.Keywords: ethical issues, biotechnology, ethical understanding, argument, ethical reasoning, pedagogy
Procedia PDF Downloads 82265 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 111264 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP
Procedia PDF Downloads 397263 Conditions That Brought Bounce-Back in Southern Europe: An Inter-Temporal and Cross-National Analysis on Female Labour Force Participation with Fuzzy Set Qualitative Comparative Analysis
Authors: A. Onur Kutlu, H. Tolga Bolukbasi
Abstract:
Since the 1990s, governments, international organizations and scholars have drawn increasing attention to the significance of women in the labour force. While advanced industrial countries in North Western Europe and North America have managed to increase female labour force participation (FLFP) in the early post world war two period, emerging economies of the 1970s have only been able to increase FLFP only a decade later. Among these areas, Southern Europe features a wave of remarkable bounce backs in FLFP. However, despite striking similarities between the features in Southern Europe and those in Turkey, Turkey has not been able to pull women into the labour force. Despite a host of institutional similarities, Turkey has failed to reach to the level of her Southern European neighbours. This paper addresses the puzzle why Turkey lag behind in FLFP in comparison to her Southern European neighbours. There are signs showing that FLFP is currently reaching a critical threshold at a time when structural factors may allow a trend. It is not known, however, the constellation of conditions which may bring rising FLFP in Turkey. In order to gain analytical leverage from similar transitions in countries that share similar labour market and welfare state regime characteristics, this paper identifies the conditions in Southern Europe that brought rising FLFP to be able to explore the prospects for Turkey. Second, this paper takes these variables in the fuzzy set Qualitative Comparative Analysis (fsQCA) as conditions which can potentially explain the outcome of rising FLFP in Portugal, Spain, Italy, Greece and Turkey. The purpose here is to identify any causal pathway there may exist that lead to rising FLFP in Southern Europe. In order to do so, this study analyses two time periods in all cases, which represent different periods for different countries. The first period is identified on the basis of low FLFP and the second period on the basis of the transition to significantly higher FLFP. Third, the conditions are treated following the standard procedures in fsQCA, which provide equifinal: two distinct paths to higher levels of FLFP in Southern Europe, each of which may potentially increase FLFP in Turkey. Based on this analysis, this paper proposes that there exist two distinct paths leading to higher levels of FLFP in Southern Europe. Among these paths, salience of left parties emerges as a sufficient condition. In cases where this condition was not present, a second path combining enlarging service sector employment, increased tertiary education among women and increased childcare enrolment rates led to increasing FLFP.Keywords: female labour force participation, fsQCA, Southern Europe, Turkey
Procedia PDF Downloads 327262 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 216261 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand
Authors: Hamed Saremi
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: anfis, dematel, brand, cosmetic product, brand value
Procedia PDF Downloads 410260 Cooperative Learning Mechanism in Intelligent Multi-Agent System
Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour
Abstract:
In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning
Procedia PDF Downloads 687259 Applications of Artificial Neural Networks in Civil Engineering
Authors: Naci Büyükkaracığan
Abstract:
Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics
Procedia PDF Downloads 415258 The Influence of Emotional Intelligence Skills on Innovative Start-Ups Coaching: A Neuro-Management Approach
Authors: Alina Parincu, Giuseppe Empoli, Alexandru Capatina
Abstract:
The purpose of this paper is to identify the most influential predictors of emotional intelligence skills, in the case of 20 business innovation coaches, on the co-creation of knowledge through coaching services delivered to innovative start-ups from Europe, funded through Horizon 2020 – SME Instrument. We considered the emotional intelligence skills (self-awareness, self-regulation, motivation, empathy and social skills) as antecedent conditions of the outcome: the quality of coaching services, perceived by the entrepreneurs who received funding within SME instrument, using fuzzy-sets qualitative comparative analysis (fsQCA) approach. The findings reveal that emotional intelligence skills, trained with neuro-management techniques, were associated with increased goal-focused business coaching skills.Keywords: neuro-management, innovative start-ups, business coaching, fsQCA
Procedia PDF Downloads 176257 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand
Authors: Waraporn Wimuktalop
Abstract:
This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding
Procedia PDF Downloads 236256 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm
Procedia PDF Downloads 433255 Benefits of Social Justice Pedagogy and Ecofeminist Discourse for Engineering Education
Authors: Hollie M. Lewis
Abstract:
A large body of corroborating research provides evidence that traditional undergraduate engineering education fails to provide students with a role and identity that requires social concern and moral reasoning. Engineering students demonstrate a low level of engagement with social and political contexts, which further declines over the course of engineering education. This detachment is thought to stem from beliefs that the role of the engineer is purely to design machines, systems, and structures. In effect, engineers objectify the world. The purpose of this paper is to provide an ecofeminist critique of engineering education and pose the benefits of social justice pedagogies incorporating ecofeminist discourse. The challenges currently facing the world stem from anthropocentric industrialization, an agenda that is historically absent of Environmental, Feminist, People of Color, and Indigenous voices. A future in which the global collective achieves its Sustainable Development Goals requires its engineers to have a solid understanding of the broader social and political contexts in which they manage projects. Engineering education must convey the influence of the professional role of engineer and encourage the practice of critical reflection and social perspective-taking, priming students with the skills to engage with varying perspectives and discourses. There will be discussed the facets of social justice pedagogies that aid students in surpassing threshold concepts in social justice.Keywords: feminism in engineering, sustainable development, engineering education, social justice pedagogies
Procedia PDF Downloads 64254 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis
Procedia PDF Downloads 486253 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.Keywords: ANFIS, fault location, underground cable, wavelet transform
Procedia PDF Downloads 515252 Evaluating Service Trustworthiness for Service Selection in Cloud Environment
Authors: Maryam Amiri, Leyli Mohammad-Khanli
Abstract:
Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction
Procedia PDF Downloads 288251 Foreign Elements In The Methodologies of USUL Fiqh: Analysing The Orientalist Thought
Authors: Ariyanti Mustapha
Abstract:
The development of Islamic jurisprudence since the first century of hijra has fascinated many orientalists to explore the historiography of Islamic legislation. The practice of uÎËl fiqh began during the lifetime of the Prophet Muhammad and was continued by the companions as the legal reasoning due to the absence of the legal injunction in the QurÉn and Sunnah. The orientalists propagated that the Roman and Jewish legislation were transplanted in Islamic jurisprudence and it was the primary reason for its progression. This article focuses on the analysis of foreign elements transplanted in the uÎËl fiqh as mentioned by Ignaz Goldziher and Joseph Schacht. They insisted the methodology of Sunna and IjtihÉd were authentically from Roman and Jewish legislation, known as Mishnah and Ha-Kol were invented and transplanted as the principles in uÎËl fiqh. The author used qualitative and comparative methods to analyze the orientalists’ views. The result showed that many erroneous facts were propagated by Goldziher and Schacht by claiming the parallels between the principles, methodologies, and fundamental concepts in uÎËl fiqh and Roman Provincial law. They insisted Sunna and IjtihÉd as an invention from the corpus of Jewish Mishnah and Ha-kol and further affirmed by Schacht that Islamic jurisprudence began in the second century of hijra. These judgments are used by the orientalists to prove the inferiority of Islamic jurisprudence. Nevertheless, many evidences has proven that Islamic legislation is capable of developing independently without any foreign transplant.Keywords: foreign transplant, ijtihad, orientalist, USUL Fiqh
Procedia PDF Downloads 164250 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa
Authors: Olumuyiwa Ojo, Masengo Ilunga
Abstract:
Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.Keywords: ANN, artificial neural network, wastewater treatment, model, development
Procedia PDF Downloads 150249 The Ocean at the Center of Geopolitics: Between an Overflowing Land and an Under-Exploited Sea
Authors: Ana Maria De Azevedo
Abstract:
We are living a remarkable period, responsible for the thriving of the human population to unprecedented levels. Still, it is empirically obvious that sustaining such a huge population puts a tremendous pressure on our planet. Once Land resources grow scarcer, there is a mounting pressure to find alternatives to support basic human needs elsewhere. Occupying most of our planet, it’s therefore natural that, is not a so distant future, humankind look for such basic subsistence means at the Ocean. Thus, once the Ocean becomes essential to Human subsistence, it is predictable it's moving to the foreground of Geopolitics. Both future technologies and uses of the Ocean, as bidding for the exploration of its resources away from the natural territory of influence of a Country, are susceptible of raising the risk of conflict between traditional political adversaries and/or the dilemma of having to balance economic interests, with various security and defense concerns. Those empirical observations suggest the need to further research on this perspective shift of the main Geopolitical axis to the Ocean, the new sources of conflict that can result thereon, and how to address them. The author suggests a systematic analysis of this problematic, to attain a political and legal international consensus, namely on what concerns updating of the 'United Nations Convention on the Law of the Sea' of 10 December 1982, and/or its annexes. To proceed with the present research, the primary analysis was based on a quantitative observation, but reasoning thereon relied essentially on a qualitative process of prospective scenarios assessment.Keywords: marine resources, ocean geopolitics, security and defense, sustainable development
Procedia PDF Downloads 155248 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio
Authors: Danilo López, Edwin Rivas, Fernando Pedraza
Abstract:
Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.Keywords: ANFIS, cognitive radio, prediction primary user, RNA
Procedia PDF Downloads 422247 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant
Procedia PDF Downloads 413