Search results for: Green Roof
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2345

Search results for: Green Roof

1595 Aryne Mediated, Transition-Metal Free Arylations of Quinolines for Medicinal and Materials Applications

Authors: Rakesh Kumar, Shashi Janeoo, Ankit Dhiman, Siddharth Chopra

Abstract:

Arynes are versatile reactive intermediates that offer broad opportunities in green organic synthesis. Arynes are potential aryl group surrogates for the transition metal-free environment friendly arylation reactions. Regioselective arylations of quinolines were achieved by the reactions of quinoline N-oxides with aryne intermediates generated in situ from the Kobayashi precursors. Various 2-substituted quinolines provided 3-arylated-2-substituted quinolines under ambient conditions. Acridine N-oxides also reacted well and provided unusual 4-arylacridines. Various fluorine containing 2,3-diarylquinaolines prepared using this approach were evaluated for antibacterial activity and two compounds inhibited the drug-resistant strains of S-aureus with a good selectivity index. Further, the 2,3-diarylquinolines as the potential optoelectronic materials were prepared by the aryne chemistry approach and their optical and electronic properties for such applications are under study. The aryne intermediates provide an effective Green Chemistry tool to achieve versatile arylated heteroarenes for diverse applications.

Keywords: arynes, arylation, quinolines, acridines.

Procedia PDF Downloads 92
1594 India’s Energy Transition, Pathways for Green Economy

Authors: B. Sudhakara Reddy

Abstract:

In modern economy, energy is fundamental to virtually every product and service in use. It has been developed on the dependence of abundant and easy-to-transform polluting fossil fuels. On one hand, increase in population and income levels combined with increased per capita energy consumption requires energy production to keep pace with economic growth, and on the other, the impact of fossil fuel use on environmental degradation is enormous. The conflicting policy objectives of protecting the environment while increasing economic growth and employment has resulted in this paradox. Hence, it is important to decouple economic growth from environmental degeneration. Hence, the search for green energy involving affordable, low-carbon, and renewable energies has become global priority. This paper explores a transition to a sustainable energy system using the socio-economic-technical scenario method. This approach takes into account the multifaceted nature of transitions which not only require the development and use of new technologies, but also of changes in user behaviour, policy and regulation. The scenarios that are developed are: baseline business as usual (BAU) as well as green energy (GE). The baseline scenario assumes that the current trends (energy use, efficiency levels, etc.) will continue in future. India’s population is projected to grow by 23% during 2010 –2030, reaching 1.47 billion. The real GDP, as per the model, is projected to grow by 6.5% per year on average between 2010 and 2030 reaching US$5.1 trillion or $3,586 per capita (base year 2010). Due to increase in population and GDP, the primary energy demand will double in two decades reaching 1,397 MTOE in 2030 with the share of fossil fuels remaining around 80%. The increase in energy use corresponds to an increase in energy intensity (TOE/US $ of GDP) from 0.019 to 0.036. The carbon emissions are projected to increase by 2.5 times from 2010 reaching 3,440 million tonnes with per capita emissions of 2.2 tons/annum. However, the carbon intensity (tons per US$ of GDP) decreases from 0.96 to 0.67. As per GE scenario, energy use will reach 1079 MTOE by 2030, a saving of about 30% over BAU. The penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. The study develops new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. Our scenarios are, to a great extent, based on the existing technologies. The challenges to this path lie in socio-economic-political domains. However, to attain a green economy the appropriate policy package should be in place which will be critical in determining the kind of investments that will be needed and the incidence of costs and benefits. These results provide a basis for policy discussions on investments, policies and incentives to be put in place by national and local governments.

Keywords: energy, renewables, green technology, scenario

Procedia PDF Downloads 248
1593 Magnesium Foliar Application and Phosphorien Soil Inoculation Positively Affect Pisum sativum L. Plants Grown on Sandy Calcareous Soil

Authors: Saad M. Howladar, Ashraf Sh. Osman, Mostafa M. Rady, Hassan S. Al-Zahrani

Abstract:

The effects of soil inoculation with phosphorien-containing Phosphate-Dissolving Bacteria (PDB) and/or magnesium (Mg) foliar application at the rates of 0, 0.5 and 1mM on growth, green pod and seed yields, and chemical constituents of Pisum sativum L. grown on a sandy calcareous soil were investigated. Results indicated that PDB and/or Mg significantly increased shoot length, number of branches plant–1, total leaf area plant–1 and canopy dry weight plant–1, leaf contents of pigments, soluble sugars, free proline, nitrogen, phosphorus, potassium, magnesium, and calcium, and Ca/Na ratio, while leaf Na content was reduced. PDB and/or Mg also increased green pod and seed yields. We concluded that PDB and Mg have pronounced positive effects on Pisum sativum L. plants grown on sandy calcareous soil. PDB and Mg, therefore, have the potential to be applied for various crops to overcome the adverse effects of the newly-reclaimed sandy calcareous soils.

Keywords: bio-p-fertilizer, mg foliar application, newly-reclaimed soils, Pisum sativum L.

Procedia PDF Downloads 362
1592 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.

Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme

Procedia PDF Downloads 419
1591 Monitoring Spatial Distribution of Blue-Green Algae Blooms with Underwater Drones

Authors: R. L. P. De Lima, F. C. B. Boogaard, R. E. De Graaf-Van Dinther

Abstract:

Blue-green algae blooms (cyanobacteria) is currently a relevant ecological problem that is being addressed by most water authorities in the Netherlands. These can affect recreation areas by originating unpleasant smells and toxins that can poison humans and animals (e.g. fish, ducks, dogs). Contamination events usually take place during summer months, and their frequency is increasing with climate change. Traditional monitoring of this bacteria is expensive, labor-intensive and provides only limited (point sampling) information about the spatial distribution of algae concentrations. Recently, a novel handheld sensor allowed water authorities to quicken their algae surveying and alarm systems. This study converted the mentioned algae sensor into a mobile platform, by combining it with an underwater remotely operated vehicle (also equipped with other sensors and cameras). This provides a spatial visualization (mapping) of algae concentrations variations within the area covered with the drone, and also in depth. Measurements took place in different locations in the Netherlands: i) lake with thick silt layers at the bottom, very eutrophic former bottom of the sea and frequent / intense mowing regime; ii) outlet of waste water into large reservoir; iii) urban canal system. Results allowed to identify probable dominant causes of blooms (i), provide recommendations for the placement of an outlet, day-night differences in algae behavior (ii), or the highlight / pinpoint higher algae concentration areas (iii). Although further research is still needed to fully characterize these processes and to optimize the measuring tool (underwater drone developments / improvements), the method here presented can already provide valuable information about algae behavior and spatial / temporal variability and shows potential as an efficient monitoring system.

Keywords: blue-green algae, cyanobacteria, underwater drones / ROV / AUV, water quality monitoring

Procedia PDF Downloads 207
1590 Training 'Green Ambassadors' in the Community-Action Learning Course

Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia

Abstract:

The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.

Keywords: air pollution, green ambassador, recycling, renewable energy

Procedia PDF Downloads 242
1589 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens

Authors: Amandeep Kaur, Sangeeta Sharma

Abstract:

Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.

Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead

Procedia PDF Downloads 87
1588 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University

Authors: Karishma Kashyap, Subha D. Parida

Abstract:

Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performance

Keywords: building optimization, green building, post occupancy evaluation, stakeholder engagement

Procedia PDF Downloads 357
1587 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.

Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development

Procedia PDF Downloads 83
1586 Dye Retention by a Photochemicaly Crosslinked Poly(2-Hydroxy-Ethyl-Meth-Acrylic) Network in Water

Authors: Yasmina Houda Bendahma, Tewfik Bouchaour, Meriem Merad, Ulrich Maschke

Abstract:

The purpose of this work is to study retention of dye dissolved in distilled water, by an hydrophilic acrylic polymer network. The polymer network considered is Poly (2-hydroxyethyl methacrylate) (PHEMA): it is prepared by photo-polymerization under UV irradiation in the presence of a monomer (HEMA), initiator and an agent cross-linker. PHEMA polymer network obtained can be used in the retention of dye molecules present in the wastewater. The results obtained are interesting in the study of the kinetics of swelling and de-swelling of cross linked polymer networks PHEMA in colored aqueous solutions. The dyes used for retention by the PHEMA networks are eosin Y and Malachite Green, dissolved in distilled water. Theoretical conformational study by a simplified molecular model of system cross linked PHEMA / dye (eosin Y and Malachite Green), is used to simulate the retention phenomenon (or Docking) dye molecules in cavities in nano-domains included in the PHEMA polymer network.

Keywords: dye retention, molecular modeling, photochemically crosslinked polymer network, swelling deswelling, PHEMA, HEMA

Procedia PDF Downloads 365
1585 Evaluating the Energy Efficiency Measures for an Educational Building in a Hot-Humid Region

Authors: Rafia Akbar

Abstract:

This paper assesses different Energy Efficiency Measures (EEMs) and their impact on energy consumption and carbon footprint of an educational building located in Islamabad. A base case was first developed in accordance with typical construction practices in Pakistan. Several EEMs were separately applied to the baseline design to quantify their impact on operational energy reduction of the building and the resultant carbon emissions. Results indicate that by applying these measures, there is a potential to reduce energy consumption up to 49% as compared to the base case. It was observed that energy efficient ceiling fans and lights, insulation of the walls and roof and an efficient air conditioning system for the building can provide significant energy savings. The results further indicate that the initial investment cost of these energy efficiency measures can be recovered within 6 to 7 years of building’s service life.

Keywords: CO2 savings, educational building, energy efficiency measures, payback period

Procedia PDF Downloads 166
1584 Luffa cylindrica as Alternative for Treatment of Waste in the Classroom

Authors: Obradith Caicedo, Paola Devia

Abstract:

Methylene blue (MB) and malachite green (MG) are substances commonly used in classrooms for academic purposes. Nevertheless, in most cases, there is no adequate disposal of this type of waste, their presence in the environment affects ecosystems due to the presence of color and the reduction of photosynthetic processes. In this work, we evaluated properties of fibers of Luffa cylindrica in removal from dyes of aqueous solutions through an adsorption process. The point of zero charge, acid and basic sites was also investigated. The best conditions of the adsorption process were determined under a discontinuous system, evaluating an interval of the variables 2 3 : pH value, particle size of the adsorbent and contact time. The temperature (18ºC), agitation (220 rpm) and adsorbent dosage (10g/L) were constant. Measurements were made using UV- Visible spectrophotometry. The point of zero charge for Luffa cylindrica was 4,3. The number of acidic and basic sites was 2.441 meq/g and 1,009 meq/g respectively. These indicate a prevalence of acid groups. The maximum dye sorption was found to be at a pH of 5,5 (97,1 % for MB) and 5,0 (97,7% for MG) and particle size of the adsorbent 850 µm. The equilibrium uptake was attained within 60 min. With this study, it has been shown that Luffa cylindrica can be used as efficient adsorbent for the removal of methylene blue, and malachite green from aqueous solution in classrooms.

Keywords: adsorption, dye removal, low-cost adsorbents, Luffa cylindrical

Procedia PDF Downloads 190
1583 Trophic Ecology of Sarotherodon Melanotheron Heudelotii and Tilapia Guineensis from the Banc D'Arguin National Park, Mauritania

Authors: Néné Gallé Kide, Mamadou Dia, Lemhaba Ould Yarba, Youssouf Kone, Fatimetou Mint Khalil, Hajar Bouksir, Ghislane Salhi, Younès Saoud

Abstract:

The diet of Sarotherodon melanotheron and Tilapia guineensis were investigated in the National Park of Banc d'Arguin (PNBA) from September 2012 to October 2013. A total of 499 individuals ranging in size between 219 and 400 mm total length of S. melanotheron (253 males and 246 females), and 280 individuals of T.guineensis (229 males and 51 females) ranged between 180 and 424mm total length. We used for studying the feeding habits of both two species the frequency of occurrence method. The coefficient of emptiness was 40.88% for S. melanotheron and 38.57% for T. guineensis. Both two species were herbivorous and very close feedings. Their diet consists of Seagrass, green, red, blue, and brown algae, diatoms, gastropods, bivalves, Crustaceans, and mud. The Seagrass and green algae were prey preference of these two species. The diet feeding showed that the composition varies slightly depending on the season and size of individuals.

Keywords: Cichlidae, trophic ecology, National park, Banc d'Arguin, Mauritania

Procedia PDF Downloads 794
1582 Volatile Compounds and Sensory Characteristics of Herbal Teas and Bush Tea Blends with Selected Herbal Teas South Africa

Authors: Florence Malongane, Lyndy J. McGaw, Legesse K. Debusho, Fhatuwani N. Mudau

Abstract:

Rooibos (Aspalathus linearis (Burm.f.) R.Dahlgren), honeybush (Cyclopia Vent. species), bush tea (Athrixia phylicoides DC.) and special tea (Monsonia burkeana) are traditionally consumed herbal teas in South Africa. The volatile and sensory qualities of rooibos and honeybush tea have previously been described although there is a dearth of information regarding the sensory attributes and volatile compounds analysis of special tea and bush tea. The objective of this study was to describe the sensory properties, compare the differences in descriptive sensory analysis (DSA) and volatile compounds of bush tea, special, rooibos, honeybush and the blend of bush tea with special, honeybush and rooibos in a 1:1 ratio and subsequently to determine the influence of blending bush tea with other herbal teas. DSA was used to assess the sensory attributes of the teas while gas chromatography–mass spectrometry (GC-MS) was used to quantitatively determine the volatile components of the teas. Rooibos tea and honeybush tea had an overall sweet-caramel, honey-sweet, perfume floral and woody aroma with slight astringency, consistent with the taste and aftertaste attributes. In contrast, bush tea and special tea depicted green-cut grass, dry green herbal, cooked spinach aroma as well as taste and aftertaste characteristics. GC-MS analyses revealed that the seven tea samples had similar major volatiles, including 2-furanmethanol, 2-methoxy-4-vinylphenol, acetic acid, D-limonene terpene and phytol. Cluster analysis revealed that the sweet and woody flavour of honeybush and rooibos were ascribed to the presence of á-myrcene, phenylethyl alcohol, phytol and vanillin. The bitter, medicinal flavour attributes of special tea were attributed to (-)-carvone. Blending of bush tea with rooibos and honeybush tea toned down its aversive flavour components, typically the bitter, green-cut grass and herbal properties, thus minimising the possibility of consumer aversion.

Keywords: bush tea, rooibos tea, honeybush tea, sensory, volatile compounds

Procedia PDF Downloads 181
1581 Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents

Authors: Shahid-ul-Islam, Faqeer Mohammad

Abstract:

The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry.

Keywords: annatto, antimicrobial agents, natural dyes, green textiles

Procedia PDF Downloads 318
1580 Planning Sustainable Urban Communities through Nature-Based Solutions: Perspectives from the Global South

Authors: Nike Jacobs, Elizelle Juanee Cilliers

Abstract:

In recent decades there has been an increasing strive towards broader sustainable planning practices. A wide range of literature suggests that nature-based solutions (including Green Infrastructure planning) may lead towards socio-economically and environmentally sustainable urban communities. Such research is however mainly based on practices from the Global North with very little reference to the Global South. This study argues that there is a need for Global North knowledge to be translated to Global South context, and interpreted within this unique environment, acknowledging historical and cultural differences between Global North and Global South, and ultimately providing unique solutions for the unique urban reality. This research primarily focuses on nature-based solutions for sustainable urban communities and considers a broad literature review on Global North knowledge regarding such, substantiated by an analysis of purposefully selected case studies. The investigation identifies best practices which could be translated and place such in the context of current Global South perspectives.

Keywords: global south, green infrastructure planning, nature-based solutions, sustainable urbanism, urban sustainability

Procedia PDF Downloads 257
1579 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test

Authors: Gee-Cheol Kim, Joo-Won Kang

Abstract:

Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.

Keywords: arch structure, seismic response, shaking table, spatial structure

Procedia PDF Downloads 367
1578 Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater

Authors: B. N. Makhanya, S. F. Ndulini, M. S. Mthembu

Abstract:

Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment.

Keywords: heavy metals, industrial wastewater, microalgae, physiochemical parameters

Procedia PDF Downloads 139
1577 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan

Abstract:

Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.

Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal

Procedia PDF Downloads 154
1576 Chiral Diphosphine Ligands and Their Transition Metal Diphosphine Complexes in Asymmetric Catalysis

Authors: Shannen Lorraine, Paul Maragh, Tara Dasgupta, Kamaluddin Abdur-Rashid

Abstract:

(R)-(4,4',6,6'-tetramethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (R-Ph-Garphos), and (S)-(4,4',6,6'-tetramethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (S-Ph-Garphos) are novel, nucleophilic, chiral atropisomeric ligands. The research explored the synthesis of chiral transition metal complexes containing these ligands and their applications in various asymmetric catalytic transformations. Herein, the transition metal complexes having ruthenium(II), rhodium(I) and iridium(I) metal centres will be discussed. These are air stable complexes and were characterized by CHN analysis, 1H, 13C, and 31P NMR spectroscopy, and polarimetry. Currently, there is an emphasis on 'greener' catalysts and the need for 'green' solvents in asymmetric catalysis. As such, the Ph-Garphos ligands were demethylated thereby introducing hydroxyl moieties unto the ligand scaffold. The facile tunability of the biaryl diphosphines led to the preparation of the (R)-(4,4',6,6'-tetrahydroxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (R-Ph-Garphos-OH), and (S)-(4,4',6,6'-tetrahydroxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (S-Ph-Garphos-OH) ligands. These were successfully characterized by CHN analysis, 1H, 13C, and 31P NMR spectroscopy, and polarimetry. The use of the Ph-Garphos and Ph-Garphos-OH ligands and their transition metal complexes in asymmetric hydrogenations will be reported. Additionally, the scope of the research will highlight the applicability of the Ph-Garphos-OH ligand and its transitional metal complexes as 'green' catalysts.

Keywords: catalysis, asymmetric hydrogenation, diphosphine transition metal complexes, Ph-Garphos ligands

Procedia PDF Downloads 309
1575 Comparative Efficacy of Gas Phase Sanitizers for Inactivating Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes on Intact Lettuce Heads

Authors: Kayla Murray, Andrew Green, Gopi Paliyath, Keith Warriner

Abstract:

Introduction: It is now acknowledged that control of human pathogens associated with fresh produce requires an integrated approach of several interventions as opposed to relying on post-harvest washes to remove field acquired contamination. To this end, current research is directed towards identifying such interventions that can be applied at different points in leafy green processing. Purpose: In the following the efficacy of different gas phase treatments to decontaminate whole lettuce heads during pre-processing storage were evaluated. Methods: Whole Cos lettuce heads were spot inoculated with L. monocytogenes, E. coli O157:H7 or Salmonella spp. The inoculated lettuce heads were then placed in a treatment chamber and exposed to ozone, chlorine dioxide or hydroxyl radicals at different time periods under a range of relative humidity. Survivors of the treatments were enumerated along with sensory analysis performed on the treated lettuce. Results: Ozone gas reduced L. monocytogenes by 2-log10 after ten-minutes of exposure with Salmonella and E. coli O157:H7 being decreased by 0.66 and 0.56-log cfu respectively. Chlorine dioxide gas treatment reduced L. monocytogenes and Salmonella on lettuce heads by 4 log cfu but only supported a 0.8 log cfu reduction in E. coli O157:H7 numbers. In comparison, hydroxyl radicals supported a 2.9 – 4.8 log cfu reduction of model human pathogens inoculated onto lettuce heads but required extended exposure times and relative humidity < 0.8. Significance: From the gas phase sanitizers tested, chlorine dioxide and hydroxyl radicals are the most effective. The latter process holds most promise based on the ease of delivery, worker safety and preservation of lettuce sensory characteristics. Although expose times for hydroxyl radicles was relatively long (24h) this should not be considered a limitation given the intervention is applied in store rooms or in transport containers during transit.

Keywords: gas phase sanitizers, iceberg lettuce heads, leafy green processing

Procedia PDF Downloads 408
1574 Formulation and Evaluation of Silver Nanoparticles as Drug Carrier for Cancer Therapy

Authors: Abdelhadi Adam Salih Denei

Abstract:

Silver nanoparticles (AgNPs) have been used in cancer therapy, and the area of nanomedicine has made unheard-of strides in recent years. A thorough summary of the development and assessment of AgNPs for their possible use in the fight against cancer is the goal of this review. Targeted delivery methods have been designed to optimise therapeutic efficacy by using AgNPs' distinct physicochemical features, such as their size, shape, and surface chemistry. Firstly, the study provides an overview of the several synthesis routes—both chemical and green—that are used to create AgNPs. Natural extracts and biomolecules are used in green synthesis techniques, which are becoming more and more popular since they are biocompatible and environmentally benign. It is next described how synthesis factors affect the physicochemical properties of AgNPs, emphasising how crucial it is to modify these parameters for particular therapeutic uses. An extensive analysis is conducted on the anticancer potential of AgNPs, emphasising their capacity to trigger apoptosis, impede angiogenesis, and alter cellular signalling pathways. The analysis also investigates the potential benefits of combining AgNPs with currently used cancer treatment techniques, including radiation and chemotherapy. AgNPs' safety profile for use in clinical settings is clarified by a comprehensive evaluation of their cytotoxicity and biocompatibility.

Keywords: silver nanoparticles, cancer, nanocarrier system, targeted delivery

Procedia PDF Downloads 66
1573 Preliminary Study on Chinese Traditional Garden Making Based on Water Storage Projects

Authors: Liu Fangxin, Zhao Jijun

Abstract:

Nowadays, China and the world are facing the same problems of flooding, city waterlogging and other environment issues. Throughout history, China had many excellent experiences dealing with the flood, and can be used as a significant reference for contemporary urban construction. In view of this, the research used the method of literature analysis to find out the main water storage measures in ancient cities, including reservoir storage and pond water storage. And it used the case study method to introduce the historical evolution, engineering measures and landscape design of 4 typical ancient Chinese cities in details. Then we found the pond and the reservoir were the main infrastructures for the ancient Chinese city to avoid the waterlogging and flood. At last this paper summed up the historical experience of Chinese traditional water storage and made conclusions that the establishment of a reasonable green water storage facilities could be used to solve today's rain and flood problems, and hoped to give some enlightenment of stormwater management to our modern city.

Keywords: ancient Chinese cities, water storage project, Chinese classical gardening, stormwater management, green facilities

Procedia PDF Downloads 336
1572 Sustainable Wood Stains Derived From Natural Dyes for Green Applications

Authors: Alexis Dorado, Aralyn Quintos

Abstract:

This study explores the utilization of natural dyes for wood stains as a transformative agent for wood, encompassing color alteration, grain enhancement, and protection against harm. Commonly, wood stains are petroleum-based and synthetically derived. Notably, commercially accessible wood stains exhibit around 4% greater volatility than the formulated wood stain (FWS), potentially indicating a heightened environmental impact. The application of FWS does not significantly affect the performance of polyurethane varnish. The impact of incorporating an FWS when was applied to Gmelina arborea wood sample, the initial lightness value (L*) of 68.5, a* 7.7, b* 29.2 decreased to 44.36, a* 23.49, b* 32.60, where a* denotes the red/ green value, b* denotes the yellow/ blue, indicating a shift towards darker shades. This alteration in lightness suggests that the FWS contains compounds or pigments that effectively absorb or scatter light, resulting in a change in the perceived color and visual appearance of the wood surface. Moreover, the successful formulation of an eco-friendly natural wood stain is detailed, presenting a promising alternative. This method finds applicability in the domains of furniture and handicraft creation, offering a sustainable choice for creative artisans.

Keywords: formulated wood stain (FWS), natural dyes, wood stains, eco-friendly natural wood stain,

Procedia PDF Downloads 97
1571 Advancing Net Zero Showcase in Subtropical High-Rise Commercial Building

Authors: Melody Wong

Abstract:

Taikoo Green Ribbon is the winning scheme of International Advancing Net Zero ANZ Ideas Competition 2021 and shortlisted as a finalist of top Architectural Award “AJ100 Sustainability Initiative of the Year, 2022, demonstrating city's aspirations to reach carbon neutrality by 2050. The project showcases total design solutions to blend technology and nature to create a futuristic workplace achieving net zero within a decade. The net zero building design featured with extremely low embodied carbon emission (<250 kgCO2/sqm), significant surplus in renewable energy generation (130% of energy consumption) and various carbon capture technology. The project leverages aesthetics, user-experience, sustainability, and technology to develop over 40 design features. Utilizing AI-controlled Smart Envelope system, the possibility of naturally ventilation was maximized to adjust the microclimate to foster behavourial change. The design principle – healthy and collaborative working environment is realized with a landscaped sky-track with kinetic energy pads, natural ventilated open space with edible plants across floors, and 500-seat open-space rooftop theatre to reshape and redefine the new generation of workplaces.

Keywords: NetZero, zero carbon, green, sustainability

Procedia PDF Downloads 77
1570 The Assessment of Forest Wood Biomass Potential in Terms of Sustainable Development

Authors: Julija Konstantinavičienė, Vlada Vitunskienė

Abstract:

The role of sustainable biomass, including wood biomass, is becoming more important because of European Green Deal. The New EU Forest strategy is a flagship element of the European Green Deal and a key action on the EU biodiversity strategy for 2030. The first measure of this strategy is promoting sustainable forest management, including encouraging the sustainable use of wood-based resources. The first aim of this research was to develop and present a new approach to the concept of forest wood biomass potential in terms of sustainable development, distinguishing theoretical, technical and sustainable potential and detailing its constraints. The second aim was to prepare the methodology outline of sustainable forest wood biomass potential assessment and empirically check this methodology, considering economic, social and ecological constraints. The basic methodologies of the research: the review of research (with a combination of semi-systematic and integrative review methodologies), rapid assessment method and statistical data analysis. The developed methodology of assessment of forest wood potential in terms of sustainable development can be used in Lithuania and in other countries and will let us compare this potential a different time and spatial levels. The application of the methodology will be able to serve the development of new national strategies for the wood sector.

Keywords: assessment, constraints, forest wood biomass, methodology, potential, sustainability

Procedia PDF Downloads 123
1569 Performance of Copper Coil Heat Exchangers for Heating Greenhouses: An ‎Experimental and Theoretical Investigation

Authors: Ilham ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

This study examines the manner in which a solar copper coil heating system performs in a North-South-oriented greenhouse environment. In order to retain heat during the day and release it back ‎into the greenhouse environment at night, this system relies on the circulation of water in a closed ‎loop under the roof of the greenhouse. Experimental research ‎was conducted to compare the results in two identical greenhouses. The first one has a heating system, whilst the second one ‎has not and is regarded as a control. We determined the mass of the heat transfer fluid, which ‎makes up the storage system, needed to heat the greenhouse during the night to be equivalent to ‎‎689 Kg using the heat balance of the greenhouse equipped with a heating system. The findings ‎demonstrated that when compared to a controlled greenhouse without a heating system, the climatic ‎conditions within the experimental greenhouse were greatly enhanced by the solar heating system. ‎‎

Keywords: renewable energy, storage, enviromental impact, heating, agricultural greenhouse

Procedia PDF Downloads 78
1568 Naturally Occurring Chemicals in Biopesticides' Resistance Control through Molecular Topology

Authors: Riccardo Zanni, Maria Galvez-Llompart, Ramon Garcia-Domenech, Jorge Galvez

Abstract:

Biopesticides, such as naturally occurring chemicals, pheromones, fungi, bacteria and insect predators are often a winning choice in crop protection because of their environmental friendly profile. They are considered to have lower toxicity than traditional pesticides. After almost a century of pesticides use, resistances to traditional insecticides are wide spread, while those to bioinsecticides have raised less attention, and resistance management is frequently neglected. This seems to be a crucial mistake since resistances have already occurred for many marketed biopesticides. With an eye to the future, we present here a selection of new natural occurring chemicals as potential bioinsecticides. The molecules were selected using a consolidated mathematical paradigm called molecular topology. Several QSAR equations were depicted and subsequently applied for the virtual screening of hundred thousands molecules of natural origin, which resulted in the selection of new potential bioinsecticides. The most innovative aspect of this work does not only reside in the importance of the identification of new molecules overcoming biopesticides’ resistances, but on the possibility to promote shared knowledge in the field of green chemistry through this unique in silico discipline named molecular topology.

Keywords: green chemistry, QSAR, molecular topology, biopesticide

Procedia PDF Downloads 314
1567 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy

Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma

Abstract:

Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.

Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles

Procedia PDF Downloads 204
1566 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center

Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.

Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development

Procedia PDF Downloads 82