Search results for: Coefficient of Performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14594

Search results for: Coefficient of Performance

13844 Impact of Social Media Usage and Psychological Absenteeism at Workplace on Job Performance

Authors: Quaid Farooq, Zainab Mujtaba

Abstract:

The main aim of this paper was to conduct a research regarding social media usage, psychological absenteeism and job performance at workplace in Pakistan. This research examined the effects of social media usage and psychological absenteeism at workplace on job performance of employees. It was a popular belief that social media usage and psychological absenteeism at workplace have a negative relation with job performance. However, to date there was no study to support this argument, and this compelled us to choose this topic and find out the results. Secondly, this research also found effect of social media usage on psychological absenteeism. Despite the theoretical appeal of these variables and significance in today’s workplace environment, no previous study has investigated the relationship between them in detail. Data was collected from a sample (N = 100 paired responses) of employees and supervisors from different organizations in Pakistan. Study results indicate that performance is negatively related to psychological absenteeism, and such individuals were rated as exhibiting low performance level by their supervisors. However, it had no significant relationship with social media. Moreover, psychological absenteeism was positively related to social media. Individuals, who used more social media at workplace, were more psychologically absent at work according to our results.

Keywords: employee, job performance, psychological absenteeism, social media

Procedia PDF Downloads 390
13843 Organizational Performance and Impact of Social Innovation

Authors: Alfonso Unceta, Javier Castro-Spila

Abstract:

This paper offers a conceptual and empirical exploration between the organizational performance and the impact of social innovation. The paper contributes on the social innovation field in three domains: a) It provides analytical and empirical evidence linking organizational performance to the impact of social innovation; b) it provides a first outline of impact assessment of social innovation when it is developed by a diversity of heterogeneous actors (systemic social innovation); c) it provides a first outline for the development of innovation policies to support social innovations according to a typology of organizations and a typology of impact.

Keywords: absorptive capacity, social innovation impact, organizational performance, RESINDEX, Basque Country

Procedia PDF Downloads 486
13842 Wear Behavior of Grey Cast Iron Coated with Al2O3-13TiO2 and Ni20Cr Using Detonation Spray Process

Authors: Harjot Singh Gill, Neelkanth Grover, Jwala Parshad Singla

Abstract:

The main aim of this research work is to present the effect of coating on two different grades of grey cast iron using detonation spray method. Ni20Cr and Al2O3-13TiO2 powders were sprayed using detonation gun onto GI250 and GIHC substrates and the results as well as coating surface morphology of the coating is studied by XRD and SEM/EDAX analysis. The wear resistance of Ni20Cr and Al2O3-13TiO2 has been investigated on pin-on-disc tribometer using ASTM G99 standards. Cumulative wear rate and coefficient of friction (µ) were calculated under three normal load of 30N, 40N, 50N at constant sliding velocity of 1m/s. Worn out surfaces were analyzed by SEM/EDAX. The results show significant resistance to wear with Al2O3-13TiO2 coating as compared to Ni20Cr and bare substrates. SEM/EDAX analysis and cumulative wear loss bar charts clearly explain the wear behavior of coated as well as bare sample of GI250 and GIHC.

Keywords: detonation spray, grey cast iron, wear rate, coefficient of friction

Procedia PDF Downloads 367
13841 Modelling Water Vapor Sorption and Diffusion in Hydrocolloid Particles

Authors: Andrew Terhemen Tyowua, Zhibing Zhang, Michael J. Adams

Abstract:

Water vapor sorption data at a range of temperatures (25–70 °C) have been obtained for starch (corn and wheat) and non-starch (carrageenan and xanthan gum) hydrocolloid particles in the form of a thin slab. The results reveal that the data may be more accurately described by an existing sigmoidal rather than a Fickian model. The sigmoidal model accounts for the initial surface sorption before the onset of bulk diffusion. At relatively small water activities (≤ 0.3), the absorption of the moisture caused the particles to be plasticized, but at greater activity values (> 0.3), anti-plasticization was induced. However, it was found that for the whole range of water activities and temperatures studied, the data could be characterized by a single non-dimensional number, which was termed the non-Fickian diffusion number where τ is the characteristic time of surface sorption, D is the bulk diffusion coefficient and L is the thickness of the layer of particles. The activation energy suggested that the anti-plasticization mechanism was the result of a reduction in the molecular free volume or an increase in crystallinity.

Keywords: anti-plasticization, arrhenius behavior, diffusion coefficient, hygroscopic polymers, moisture migration, non-fickian sigmoidal model

Procedia PDF Downloads 32
13840 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel

Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho

Abstract:

The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.

Keywords: matrix cooling, rib, heat transfer, gas turbine

Procedia PDF Downloads 460
13839 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: climate, reanalysis, renewable energy, solar radiation

Procedia PDF Downloads 209
13838 Performance Improvement of The Nano-Composite Based Proton Exchange Membranes (PEMs)

Authors: Yusuf Yılmaz, Kevser Dincer, Derya Saygılı

Abstract:

In this study, performance of PEMs was experimentally investigated. Coating on the cathode side of the PEMs fuel cells was accomplished with the spray method by using NaCaNiBO. A solution having 0,1 gr NaCaNiBO +10 mL methanol was prepared. This solution was taken out and filled into a spray. Then the cathode side of PEMs fuel cells was cladded with NaCaNiBO by using spray method. After coating, the membrane was left out to dry for 24 hours. The PEM fuel cells were mounted to the system in single, double, triple and fourfold manner in order to spot the best performance. The performance parameter considered was the power to current ratio. The best performance was found to occur at the 300th second with the power/current ratio of 3.55 Watt/Ampere and on the fourfold parallel mounting after the coating; whereas the poorest performance took place at the 210th second, power to current ratio of 0.12 Watt/Ampere and on the twofold parallel connection after the coating.

Keywords: nano-composites, proton exchange membranes, performance improvement, fuel cell

Procedia PDF Downloads 371
13837 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 54
13836 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks

Authors: Deepa Das, Susmita Das

Abstract:

Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.

Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO

Procedia PDF Downloads 469
13835 Influence of Strength Training on the Self-Efficacy of Sports Performance: National Collegiate Athletic Association Student-Athletes Experience of a Strength Training Program

Authors: Alfred M. Caronia

Abstract:

The aim of this pilot study was to explore an NCAA Division 1 female volleyball players’ experience of a strength and conditioning program and the result this has on self-efficacy of sport skill performance. This phenomenological study comprised of 10 college aged participants that have strength training program experience. Data was collected using semi-structured interviews and a reflective journal; the transcribed interviews were analyzed using qualitative content analysis. From the analysis, four themes emerged: performance enhancement, injury prevention, motivational experience, and learning experience. From the players’ perspective, care needs to be taken to explain the purpose of an exercise and the benefit it will have for a play performance. Other factors that play an important role in a strength training program are team motivation, individual goal setting, bonding, and communication with the strength coach, as all these items appear to be fundamentals of coaching.

Keywords: self-efficacy, skill performance, sports performance, strength training

Procedia PDF Downloads 93
13834 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 375
13833 The Relationship between Exercise Attitude and Performance with Self-Image in Elderly Men in Iran

Authors: Hadis Mahmoodsalehi, Elham Shakoor, Maryam Koushkie Jahromi

Abstract:

Background and aims: Given the importance of health promotion in elderly and attention to health factors including physical activity and self-image reinforcing, this study aimed to investigate the relationship between exercise attitude and performance with self-image concept in elderly men. Methods: In this descriptive–correlational study, 50 different daily exercise activities of the elderly men living in Iran (mean age: 60.94 years) were selected through simple sampling method. Participants completed a questionnaire regarding exercise attitude and performance and Beck self-image concept. Pearson correlation test was used for analysis of the data. Results: The results showed the significant correlation between optimism and exercise performance (p = 0.012) and exercise attitude (p = 0.005). Conclusion: Findings show that exercise performance and attitude are associated positively with optimism in elderly women. So, increasing exercise or improving attitude toward exercise can lead to improving optimism.

Keywords: elderly, exercise performance and attitude, self-image, descriptive–correlational study

Procedia PDF Downloads 564
13832 Variability Parameters for Growth and Yield Characters in Fenugreek, Trigonella spp. Genotypes

Authors: Anita Singh, Richa Naula, Manoj Raghav

Abstract:

India is a leading producer and consumer of fenugreek for its culinary uses and medicinal application. In India, most of the people are of vegetarian class. In such a situation, a leafy vegetable, such as fenugreek is of chief concern due to its high nutritional property, medicinal values and industrial uses. One of the most important factors restricting their large scale production and development of superior varieties is that very scanty knowledge about their genetic diversity, inter and intraspecific variability and genetic relationship among the species. Improvement of the crop depends upon the magnitude of genetic variability for economic characters. Therefore, the present research work was carried out to analyse the variability parameters for growth and yield character in twenty-eight fenugreek genotypes along with two standard checks Pant Ragini and Pusa Early Bunching. The experiment was laid out in Randomized Block Design with three replication during rabi season 2015-2016 at Pantnagar Centre for Plant Genetic Resources, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand. The analysis of variance revealed highly significant differences among all the genotypes for all traits. High genotypic and phenotypic coefficient variation were observed for characters, namely the number of primary branches per plant, number of leaves at 30, 45 and 60 DAS, green leaf yield per plant, green leaf yield q/ha . The genetic advance recorded highest in green leaf yield q/ha (33.93) followed by green leaf yield per plant (21.20g). Highest percent of heritability were shown by 1000 seed weight (99.12%) followed by the number of primary branches per plant (97.18%). Green leaf yield q/ha showed high heritability and high genetic advance. These superior genotypes can be further used in crop improvement programs of fenugreek.

Keywords: genetic advance, genotypic coefficient variation, heritability, phenotypic coefficient variation

Procedia PDF Downloads 323
13831 Heat Recovery System from Air-Cooled Chillers in Iranian Hospitals

Authors: Saeed Vahidifar, Mohammad Nakhaee Sharif, Mohammad Ghaffari

Abstract:

Few people would dispute the fact that one of the most common applications of energy is creating comfort in buildings, so it is probably true to say that management of energy consumption is required due to the environmental issues and increasing the efficiency of mechanical systems. From the geographical point of view, Iran is located in a warm and semi-arid region; therefore, air-cooled chillers are usually used for cooling residential buildings, commercial buildings, medical buildings, etc. In this study, a heat exchanger was designed for providing laundry hot water by utilizing condenser heat lost base on analytical results of a 540-bed hospital in the city of Mashhad in Iran. In this paper, by using the analytical method, energy consumption reduces about 13%, and coefficient of performance increases a bit. Results show that this method can help in the management of energy consumption a lot.

Keywords: air cooled chiller, energy management, environmental issues, heat exchanger, hospital laundry system

Procedia PDF Downloads 161
13830 Calibration of Contact Model Parameters and Analysis of Microscopic Behaviors of Cuxhaven Sand Using The Discrete Element Method

Authors: Anjali Uday, Yuting Wang, Andres Alfonso Pena Olare

Abstract:

The Discrete Element Method is a promising approach to modeling microscopic behaviors of granular materials. The quality of the simulations however depends on the model parameters utilized. The present study focuses on calibration and validation of the discrete element parameters for Cuxhaven sand based on the experimental data from triaxial and oedometer tests. A sensitivity analysis was conducted during the sample preparation stage and the shear stage of the triaxial tests. The influence of parameters like rolling resistance, inter-particle friction coefficient, confining pressure and effective modulus were investigated on the void ratio of the sample generated. During the shear stage, the effect of parameters like inter-particle friction coefficient, effective modulus, rolling resistance friction coefficient and normal-to-shear stiffness ratio are examined. The calibration of the parameters is carried out such that the simulations reproduce the macro mechanical characteristics like dilation angle, peak stress, and stiffness. The above-mentioned calibrated parameters are then validated by simulating an oedometer test on the sand. The oedometer test results are in good agreement with experiments, which proves the suitability of the calibrated parameters. In the next step, the calibrated and validated model parameters are applied to forecast the micromechanical behavior including the evolution of contact force chains, buckling of columns of particles, observation of non-coaxiality, and sample inhomogeneity during a simple shear test. The evolution of contact force chains vividly shows the distribution, and alignment of strong contact forces. The changes in coordination number are in good agreement with the volumetric strain exhibited during the simple shear test. The vertical inhomogeneity of void ratios is documented throughout the shearing phase, which shows looser structures in the top and bottom layers. Buckling of columns is not observed due to the small rolling resistance coefficient adopted for simulations. The non-coaxiality of principal stress and strain rate is also well captured. Thus the micromechanical behaviors are well described using the calibrated and validated material parameters.

Keywords: discrete element model, parameter calibration, triaxial test, oedometer test, simple shear test

Procedia PDF Downloads 121
13829 Quantifying Individual Performance of Pakistani Cricket Players

Authors: Kasif Khan, Azlan Allahwala, Moiz Ali, Hasan Lodhi, Umer Amjad

Abstract:

The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket, it is not sufficient to evaluate performance on the basis of average. The biasness in selecting batsman and bowler on the basis of their past performance. The objective is to predict the best player and comparing their performance on the basis of venue, opponent, weather, and particular position. On the basis of predictions and analysis, and comparison the best team is selected for next upcoming series of Pakistan. The system is based and will be built to aid analyst in finding best possible team combination of Pakistan for a particular match and by providing them with advisories so that they can select the best possible team combination. This will also help the team management in identifying a perfect batting order and the bowling order for each match.

Keywords: data analysis, Pakistan cricket players, quantifying individual performance, cricket

Procedia PDF Downloads 297
13828 Impact of Risk Management Practices on Company Performance

Authors: Syed Atif Ali, Farzan Yahya

Abstract:

This research paper covers the issue of risk management impact on the company performance. Degree of financial leverage (DFL), degree of operating leverage (DOL) and the working capital ratio (WCR) are taken as independent variables which are the representative of risk and the earning price per share (EPS), return on assets (ROA), return on equity (ROE), Sales and Net profits which are the representative of performance. Last 10 years (2004-2013) of Cement sector of Pakistan data is chosen as sample for analyze their relations by multiple regression technique. Through analyses, it is found that WCR impact adequately on the company performance because if company has enough liquidity than it perform its operations smoothly and enhance its performance very well. DFL should be control moderately because enough DFL leads performance of company downward. On the other hand, the DOL should be less because it causes the less profitability for a company from its operations.

Keywords: degree of financial leverage (DFL), degree of operating leverage (DOL), working capital ratio (WCR), earning per share (EPS), return on equity (ROE), return on assets (ROA)

Procedia PDF Downloads 455
13827 The Impact of Business Process Reengineering to the Company Performance through TQM and Enterprise Resource Planning Implementation on Manufacturing Companies in East Java, Indonesia

Authors: Widjojo Suprapto, Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana

Abstract:

Business process reengineering can be conducted by some procedure rationalization for all related departments in a company so that all data and business processes are connected. The changing of any business process is used to set up the working standard so that it gives an impact to the implementation of ERP and the company performance. After collecting and processing the data from 77 manufacturing companies, it is obtained that BPR (Business Process Reengineering) has no direct impact on the implementation of ERP (Enterprise Resource Planning) in the companies and manufacturing performance; however, it influences the implementation of TQM. The implementation of TQM influences directly the implementation of ERP, but it does not influence directly the company performance. The implementation of ERP gives a significant increase in the work performance of the manufacturing companies in East Java.

Keywords: enterprise resources planning, business process reengineering, TQM, company performance

Procedia PDF Downloads 208
13826 The Effects of Religiosity and Spiritual Intelligence on the Performance of Accountants in Ghana

Authors: Wisdom Dordudnu, George M. Y. Owusu, Samuel N. Y. Simpson

Abstract:

The recent failures of many corporate giants have generated intense research interest in the factors that influence accountants’ job performance. Against the backdrop that these factors also create an enabling environment for success at the work place, this study contributes to literature on job performance of accountants by exploring the impact of two psycho-spiritual factors: religiosity and spiritual intelligence on job performance of accountants in Ghana. The study employs a survey approach using questionnaires as the principal means of data collection to elicit responses from accountants working in the 222 certified firms of Institute of Chartered Accountants Ghana (ICAG). A structural equation modeling-based approach is employed to examine the relationship among the study constructs. Results of this study indicate that there is a positive relationship between these factors and accountants’ performance. It is expected that this study provides strong evidence and highlight the need for specific action from managers to look critically at the non-material aspect of accountants in accounting firms.

Keywords: job performance, psycho-spiritual, religiosity, spiritual intelligence

Procedia PDF Downloads 302
13825 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body

Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker

Abstract:

This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel

Procedia PDF Downloads 396
13824 Interpersonal Competence Related to the Practice Learning of Occupational Therapy Students in Hong Kong

Authors: Lik Hang Gary Wong

Abstract:

Background: Practice learning is crucial for preparing the healthcare profession to meet the real challenge upon graduation. Students are required to demonstrate their competence in managing interpersonal challenges, such as teamwork with other professionals and communicating well with the service users, during the placement. Such competence precedes clinical practice, and it may eventually affect students' actual performance in a clinical context. Unfortunately, there were limited studies investigating how such competence affects students' performance in practice learning. Objectives: The aim of this study is to investigate how self-rated interpersonal competence affects students' actual performance during clinical placement. Methods: 40 occupational therapy students from Hong Kong were recruited in this study. Prior to the clinical placement (level two or above), they completed an online survey that included the Interpersonal Communication Competence Scale (ICCS) measuring self-perceived competence in interpersonal communication. Near the end of their placement, the clinical educator rated students’ performance with the Student Practice Evaluation Form - Revised edition (SPEF-R). The SPEF-R measures the eight core competency domains required for an entry-level occupational therapist. This study adopted the cross-sectional observational design. Pearson correlation and multiple regression are conducted to examine the relationship between students' interpersonal communication competence and their actual performance in clinical placement. Results: The ICCS total scores were significantly correlated with all the SPEF-R domains, with correlation coefficient r ranging from 0.39 to 0.51. The strongest association was found with the co-worker communication domain (r = 0.51, p < 0.01), followed by the information gathering domain (r = 0.50, p < 0.01). Regarding the ICCS total scores as the independent variable and the rating in various SPEF-R domains as the dependent variables in the multiple regression analyses, the interpersonal competence measures were identified as a significant predictor of the co-worker communication (R² = 0.33, β = 0.014, SE = 0.006, p = 0.026), information gathering (R² = 0.27, β = 0.018, SE = 0.007, p = 0.011), and service provision (R² = 0.17, β = 0.017, SE = 0.007, p = 0.020). Moreover, some specific communication skills appeared to be especially important to clinical practice. For example, immediacy, which means whether the students were readily approachable on all social occasions, correlated with all the SPEF-R domains, with r-values ranging from 0.45 to 0.33. Other sub-skills, such as empathy, interaction management, and supportiveness, were also found to be significantly correlated to most of the SPEF-R domains. Meanwhile, the ICCS scores correlated differently with the co-worker communication domain (r = 0.51, p < 0.01) and the communication with the service user domain (r = 0.39, p < 0.05). It suggested that different communication skill sets would be required for different interpersonal contexts within the workplace. Conclusion: Students' self-perceived interpersonal communication competence could predict their actual performance during clinical placement. Moreover, some specific communication skills were more important to the co-worker communication but not to the daily interaction with the service users. There were implications on how to better prepare the students to meet the future challenge upon graduation.

Keywords: interpersonal competence, clinical education, healthcare professional education, occupational therapy, occupational therapy students

Procedia PDF Downloads 73
13823 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
13822 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence

Authors: Pablo Enrique Sartor Del Giudice

Abstract:

Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.

Keywords: football, penalty shootouts, Montecarlo simulation, ABBA

Procedia PDF Downloads 163
13821 Young’s Modulus Variability: Influence on Masonry Vault Behavior

Authors: Abdelmounaim Zanaz, Sylvie Yotte, Fazia Fouchal, Alaa Chateauneuf

Abstract:

This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode is the most reported mode, i.e. the four-hinge mechanism. Based on this assumption, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation CV. A relationship linking the vault bearing capacity to the modulus variation of voussoirs is proposed. The failure mechanisms, in addition to that observed in the deterministic case, are identified for each CV value as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of CV, while the number of other mechanisms and their probability of occurrence increase with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young modulus of the segments is proven, taken it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.

Keywords: masonry, mechanism, probability, variability, vault

Procedia PDF Downloads 443
13820 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 252
13819 Investigating the Effect of Different Design Factors on the Required Length of the Ambient Air Vaporizer

Authors: F. S. Alavi

Abstract:

In this study, MATLAB engineering software was used in order to model an industrial Ambient Air Vaporizer (AAV), considering combined convection and conduction heat transfers from the fins and the tube. The developed theoretical model was then used to investigate the effects of various design factors such as gas flow rate, ambient air temperature, fin thickness and etc. on total vaporizer ‘s length required. Cryogenic liquid nitrogen was selected as an input fluid, in all cases. According to the results, increasing the inlet fluid flow rate has direct linear effect on the total required length of vaporizer. Vaporizer’s required length decreases by increasing the size of fin radius or size of fin thickness. The dependency of vaporizer’s length on fin thickness’ size reduces at higher values of thickness and gradually converge to zero. For low flow rates, internal convection heat transfer coefficient depends directly on gas flow rate but it becomes constant, independent on flow rate after a specific value. As the ambient air temperature increases, the external heat transfer coefficient also increases and the total required length of vaporizer decreases.

Keywords: heat exchanger, modeling, heat transfer, design

Procedia PDF Downloads 115
13818 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame

Authors: Seyed Saeid Tabaee, Omid Bahar

Abstract:

Nowadays, using energy dissipation devices has been commonly used in structures. A high rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely complicate analysis and design of such structures. This effect may be generally represented by equivalent viscous damping. The equivalent viscous damping may be obtained from the expected hysteretic behavior under the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel moment resisting frame (MRF), which its performance is enhanced by a buckling restrained brace (BRB) system has been evaluated. Having the foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural frequency of the system. Two steel moment frame structures, one equipped with BRB, and the other without BRB are simultaneously studied. The extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, the contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.

Keywords: buckling restrained brace, direct displacement based design, dual systems, hysteretic damping, moment resisting frames

Procedia PDF Downloads 434
13817 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 193
13816 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol

Abstract:

Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: aerodynamics, boundary layer, dimple, drag, kinetic energy, turbulence

Procedia PDF Downloads 315
13815 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model

Authors: Catherine Maware, Olufemi Adetunji

Abstract:

The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.

Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance

Procedia PDF Downloads 486