Search results for: sustainable smart city
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8194

Search results for: sustainable smart city

484 Evaluation of Toxicity of Root-bark Powder of Securidaca Longepedunculata Enhanced with Diatomaceous Earth Fossilshield Against Callosobruchus Maculatus (F.) (Coleoptera-Bruchidea)

Authors: Mala Tankam Carine, Kekeunou Sévilor, Nukenine Elias

Abstract:

Storage and preservation of agricultural products remain the only conditions ensuring the almost permanent availability of foodstuffs. However, infestations due to insects and microorganisms often occur. Callosobruchus maculatus is a pest that causes a lot of damage to cowpea stocks in the tropics. Several methods are adopted to limit their damage, but the use of synthetic chemical insecticides is the most widespread. Biopesticides in sustainable agriculture respond to several environmental, economic and social concerns while offering innovative opportunities that are ecologically and economically viable for producers, workers, consumers and ecosystems. Our main objective is to evaluate the insecticidal efficacy of binary combinations of Fossilshield with root-bark powder of Securidaca longepedunculata against Callosobruchus maculatus in stored cowpea Vigna unguiculata. Laboratory bioassays were conducted in stored grains to evaluate the toxicity of root-bark powder of Securidaca longepedunculata alone or combined with diatomaceous earth Fossil-Shield ® against C. maculatus. Twenty-hour-old adults of C. maculatus were exposed to 50g of cowpea seeds treated with four doses (10, 20, 30, and 40g/kg) of root-bark powder of S. longepedunculata, on the one hand, and (0.5, 1, 1.5, and 2 g/kg) on DE and binary combinations on the other hand. 0g/kg corresponded to untreated control. Adult mortality was recorded up to 7 days (d) post-treatment, whereas the number of F1 progeny was assessed after 30 d. Weight loss and germinative ability were conducted after 120 d. All treatments were arranged according to a completely randomized block with four replicates. The combined mixture of S. longepedunculata and DE controlled the beetle faster compared to the root-bark powder of S. longepedunculata alone. According to the Co-toxicity coefficient, additive effect of binary combinations was recorded at 3-day post-exposure time with the mixture 25% FossilShield + 75% S. longepedunculata. A synergistic action was observed after 3-d post-exposure at mixture 50% FossilShield + 50% S. longepedunculata and at 1-d and 3-d post-exposure periods at mixture 75% FossilShield + 25% S. longepedunculata. The mixture 25% FossilShield + 75% S. longepedunculata induced a decreased progeny of 6 times fewer individuals for 4.5 times less weight loss and 2, 9 times more sprouted grains than with root-bark powder of S. longepedunculata. The combination of FossilShield + S. longepedunculata was more potent than root-bark powder of S. longepedunculata alone, although the root-bark powder of S. longepedunculata caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with FossilShield as a grain protectant in an integrated pest management approach is discussed.

Keywords: diatomaceous earth, cowpea, callosobruchus maculatus, securidaca longepedunculata, combined action, co-toxicity coefficient

Procedia PDF Downloads 48
483 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application

Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay

Abstract:

Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.

Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery

Procedia PDF Downloads 105
482 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies

Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo

Abstract:

Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.

Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants

Procedia PDF Downloads 281
481 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia

Authors: Habib Alshuwaikhat, Nahid Hossain

Abstract:

Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.

Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation

Procedia PDF Downloads 475
480 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 203
479 Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example

Authors: masmoudi Jabri Khaoula, Zitouni Hana, Bousselmi Latifa, Akrout Hanen

Abstract:

Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period.

Keywords: activated sludge model (ASM3h), membrane bioreactor (MBR), poultry slaughter wastewater (PSWW), reuse

Procedia PDF Downloads 28
478 The Treatment of Nitrate Polluted Groundwater Using Bio-electrochemical Systems Inoculated with Local Groundwater Sediments

Authors: Danish Laidin, Peter Gostomski, Aaron Marshall, Carlo Carere

Abstract:

Groundwater contamination of nitrate (NO3-) is becoming more prevalent in regions of intensive and extensive agricultural activities. Household nitrate removal involves using ion exchange membranes and reverse osmosis (RO) systems, whereas industrial nitrate removal may use organic carbon substrates (e.g. methanol) for heterotrophic microbial denitrification. However, these approaches both require high capital investment and operating costs. In this study, denitrification was demonstrated using bio-electrochemical systems (BESs) inoculated from sediments and microbial enrichment cultures. The BES reactors were operated continuously as microbial electrolytic cells (MECs) with a poised potential of -0.7V and -1.1V vs Ag/AgCl. Three parallel MECs were inoculated using hydrogen-driven denitrifying enrichments, stream sediments, and biofilm harvested from a denitrifying biotrickling filter, respectively. These reactors were continuously operated for over a year as various operating conditions were investigated to determine the optimal conditions for electroactive denitrification. The mass loading rate of nitrate was varied between 10 – 70 mg NO3-/d, and the maximum observed nitrate removal rate was 22 mg NO3- /(cm2∙d) with a current of 2.1 mA. For volumetric load experiments, the dilution rate of 1 mM NO3- feed was varied between 0.01 – 0.1 hr-1 to achieve a nitrate loading rate similar to the mass loading rate experiments. Under these conditions, the maximum rate of denitrification observed was 15.8 mg NO3- /(cm2∙d) with a current of 1.7mA. Hydrogen (H2) was supplied intermittently to investigate the hydrogenotrophic potential of the denitrifying biofilm electrodes. H2 supplementation at 0.1 mL/min resulted in an increase of nitrate removal from 0.3 mg NO3- /(cm2∙d) to 3.4 mg NO3- /(cm2∙d) in the hydrogenotrophically subcultured reactor but had no impact on the reactors which exhibited direct electron transfer properties. Results from this study depict the denitrification performance of the immobilized biofilm electrodes, either by direct electron transfer or hydrogen-driven denitrification, and the contribution of the planktonic cells present in the growth medium. Other results will include the microbial community analysis via 16s rDNA amplicon sequencing, varying the effect of poising cathodic potential from 0.7V to 1.3V vs Ag/AgCl, investigating the potential of using in-situ electrochemically produced hydrogen for autotrophic denitrification and adjusting the conductivity of the feed solution to mimic groundwater conditions. These findings highlight the overall performance of sediment inoculated MECs in removing nitrate and will be used for the future development of sustainable solutions for the treatment of nitrate polluted groundwater.

Keywords: bio-electrochemical systems, groundwater, electroactive denitrification, microbial electrolytic cell

Procedia PDF Downloads 44
477 Assessment of Water Reuse Potential in a Metal Finishing Factory

Authors: Efe Gumuslu, Guclu Insel, Gülten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tuğba Olmez Hanci, Didem Okutman Tas, Fatoş Germirli Babuna, Derya Firat Ertem, Ökmen Yildirim, Özge Erturan, Betül Kirci

Abstract:

Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes.

Keywords: enamel coating, painting, reuse, wastewater

Procedia PDF Downloads 347
476 Vieira Da Silva's Tiles at Universidade Federal Rural Do Rio de Janeiro: A Conservation and Restoration Project

Authors: Adriana Anselmo Oliveira

Abstract:

The present project showcases a tile work from the Franco-Portuguese artist Maria Helena Vieira da Silva (1908-1992). It is a set of 8 panels composed of figurative and geometric tiles, with extra tiles framing nearby doors and windows in a study room in the (UFRRJ, Universidade Federal Rural do Rio de Janeiro). The aforementioned work was created between 1942 and 1943, during the artist's 6 year exile in the Brazilian city. This one-of-a-kind tileset was designed and made by Vieira da Silva between 1942 and 1943. Over the years, several units were lost, which led to their replacement in the nineties. However, these replacements don't do justice to the original work of art. In 2007, a project was initiated to fully repair and maintain the set. Three panels are removed and restored, but the project is halted. To this day, the three fully restored panels remain in boxes. In 2016 a new restoration project is submitted by the (Faculdade de Belas Artes da Universidade de Lisboa) in collaboration with de (Fundacão Árpád Szenes-Vieira da Silva). There are many varied opinions on restoring and conserving older pieces of art, however, we have the moral duty to safeguard the original materials used by the artist along with the artists original vision and also to care for the future generations of students who will use the space in which the tile-work was inserted. Many tiles have been replaced by white tiles, tiles with a divergent colour pallet and technique, and in a few cases, the incorrect place or way around. These many factors make it increasingly difficult to maintain the artists original vision and destroy and chance of coherence within the artwork itself. The conservative technician cannot make new images to fill the empty spaces or mark the remaining images with their own creative input. with reliable photographic documentation that can provide us with the necessary vision to allow us to proceed with an accurate reconstruction, we have the obligation to proceed and return the piece of art to its true form, as in its current state, it is impossible to maintain its original glory. Using the information we have, we must find a way to differentiate the original tiles from the reconstructions in order to recreate and reclaim the original message from the artist. The objective of this project is to understand the significance of tiles in Vieira da Silva's art as well as the influence they had on the artist's pictorial language since the colour definition on tile work is vastly different from the painting process as the materials change during their merger. Another primary goal is to understand what the previous interventions achieved besides increasing the artworks durability. The main objective is to submit a proposal that can salvage the artist's visual intention and supports it for posteriority. In summary, this proposal goes further than the usual conservative interventions as it intends to recreate the original artistic worth, prioritising the aesthetics and keeping its soul alive.

Keywords: Vieira da Silva, tiles, conservation, restoration

Procedia PDF Downloads 129
475 A Comparative Study of the Impact of the Total Fertility Rate (TFR) on Trends in the Second Demographic Transition in Rwanda

Authors: Etienne Gatera

Abstract:

Many studies have been conducted on SDT. Most of them focus on developed countries because of influencing factors such as; education, health, labor force, female labor force participation, industrialization, urbanization and migration. However, this thesis project paper aims to assess the impact of the total fertility rate (TFR) on the trends of the SDR in Rwanda. We will mainly be based in Rwanda after the 1994 genocide. Rwanda is located in East Africa, with approximately 13 million inhabitants. Thus, after the 1994 Tutsi genocide. The population growth rate exploded out of control with 6.17 children per woman in 1995. However, it's declined to 4.2 in 2014-2015 and declining to 4.1% in 2019-2020. Respectively with 3.4 children per woman in urban areas and 4.3 in rural areas. According to the National Institute of Statistics of Rwanda. Rwanda's population is expected to continue to grow for the rest of the century and reach 33.35 million people in 2099, with 2.1 children per woman in 2050. However, this project document aims to demonstrate the impact of the TFR on SDT trends in Rwanda. Thus, the decline in the TFR in Rwanda began with the introduction of family planning practices, which now account for 47.5% in 2019. Childbearing with three children for rural women compared to two children in the city, the increase in Divorce and separation caused by the behavior called "Kuza n'ijoro" or "coming at night" similar to cohabitation in developed countries. The decline in remarriage is caused by single mothers behavior who prefer to raise their children rather than remarry. Therefore, the study used probability sampling with (Stratified random sampling) method with a survey questionnaire of 1067 respondents in the 5 Districts (3 in rural areas and two in urban areas), with the target group of women Age between 15-49. The study demonstrated that the age of marriage in rural areas is two years higher than in urban areas. Divorce is more common in urban is with 6.2% with 5.2% in rural areas. However, separation is more common in rural areas than in urban areas, with a lower rate of 3%, due to the higher system called "Kuza n'ijoro" or "come at night", similar to cohabitation in developed countries. The study revealed that more than 85% of divorced people prefer to remain single, which confirms the low remarriage rate. Childbearing has started to decrease, especially for young singles in urban areas, due to the economic situation, with national statistics showing that unemployment in the youth community is still 16% higher. Therefore, the study concluded by confirming the hypothesis based on the results of the TFR indicators such as marriage, remarriage, divorce, separation, divorce, Kuza n'ijoro, childbearing] and abortion. The study consists of four sections, an introduction and background, a review of the literature, a description of the data and methodology, an analysis of the data, discussion results and a conclusion.

Keywords: Kuza n'ijoro, Rwanda, second demographic transition (SDT), total fertility rate (TFR)

Procedia PDF Downloads 149
474 Management of Non-Revenue Municipal Water

Authors: Habib Muhammetoglu, I. Ethem Karadirek, Selami Kara, Ayse Muhammetoglu

Abstract:

The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW.

Keywords: NRW, water losses, pressure management, SCADA, apparent water losses, urban water distribution networks

Procedia PDF Downloads 371
473 A Study on Relationship between Firm Managers Environmental Attitudes and Environment-Friendly Practices for Textile Firms in India

Authors: Anupriya Sharma, Sapna Narula

Abstract:

Over the past decade, sustainability has gone mainstream as more people are worried about environment-related issues than ever before. These issues are of even more concern for industries which leave a significant impact on the environment. Following these ecological issues, corporates are beginning to comprehend the impact on their business. Many such initiatives have been made to address these emerging issues in the consumer-driven textile industry. Demand from customers, local communities, government regulations, etc. are considered some of the major factors affecting environmental decision-making. Research also shows that motivations to go green are inevitably determined by the way top managers perceive environmental issues as managers personal values and ethical commitment act as a motivating factor towards corporate social responsibility. Little empirical research has been conducted to examine the relationship between top managers’ personal environmental attitudes and corporate environmental behaviors for the textile industry in the Indian context. The primary purpose of this study is to determine the current state of environmental management in textile industry and whether the attitude of textile firms’ top managers is significantly related to firm’s response to environmental issues and their perceived benefits of environmental management. To achieve the aforesaid objectives of the study, authors used structured questionnaire based on literature review. The questionnaire consisted of six sections with a total length of eight pages. The first section was based on background information on the position of the respondents in the organization, annual turnover, year of firm’s establishment and so on. The other five sections of the questionnaire were based upon (drivers, attitude, and awareness, sustainable business practices, barriers to implementation and benefits achieved). To test the questionnaire, a pretest was conducted with the professionals working in corporate sustainability and had knowledge about the textile industry and was then mailed to various stakeholders involved in textile production thereby covering firms top manufacturing officers, EHS managers, textile engineers, HR personnel and R&D managers. The results of the study showed that most of the textile firms were implementing some type of environmental management practice, even though the magnitude of firm’s involvement in environmental management practices varied. The results also show that textile firms with a higher level of involvement in environmental management were more involved in the process driven technical environmental practices. It also identified that firm’s top managers environmental attitudes were correlated with perceived advantages of environmental management as textile firm’s top managers are the ones who possess managerial discretion on formulating and deciding business policies such as environmental initiatives.

Keywords: attitude and awareness, Environmental management, sustainability, textile industry

Procedia PDF Downloads 212
472 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System

Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua

Abstract:

Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.

Keywords: biofiltration, green wall, greywater, sustainability

Procedia PDF Downloads 193
471 The Growth Role of Natural Gas Consumption for Developing Countries

Authors: Tae Young Jin, Jin Soo Kim

Abstract:

Carbon emissions have emerged as global concerns. Intergovernmental Panel of Climate Change (IPCC) have published reports about Green House Gases (GHGs) emissions regularly. United Nations Framework Convention on Climate Change (UNFCCC) have held a conference yearly since 1995. Especially, COP21 held at December 2015 made the Paris agreement which have strong binding force differently from former COP. The Paris agreement was ratified as of 4 November 2016, they finally have legal binding. Participating countries set up their own Intended Nationally Determined Contributions (INDC), and will try to achieve this. Thus, carbon emissions must be reduced. The energy sector is one of most responsible for carbon emissions and fossil fuels particularly are. Thus, this paper attempted to examine the relationship between natural gas consumption and economic growth. To achieve this, we adopted the Cobb-Douglas production function that consists of natural gas consumption, economic growth, capital, and labor using dependent panel analysis. Data were preprocessed with Principal Component Analysis (PCA) to remove cross-sectional dependency which can disturb the panel results. After confirming the existence of time-trended component of each variable, we moved to cointegration test considering cross-sectional dependency and structural breaks to describe more realistic behavior of volatile international indicators. The cointegration test result indicates that there is long-run equilibrium relationship between selected variables. Long-run cointegrating vector and Granger causality test results show that while natural gas consumption can contribute economic growth in the short-run, adversely affect in the long-run. From these results, we made following policy implications. Since natural gas has positive economic effect in only short-run, the policy makers in developing countries must consider the gradual switching of major energy source, from natural gas to sustainable energy source. Second, the technology transfer and financing business suggested by COP must be accelerated. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).

Keywords: developing countries, economic growth, natural gas consumption, panel data analysis

Procedia PDF Downloads 208
470 Studies on Optimizing the Level of Liquid Biofertilizers in Peanut and Maize and Their Economic Analysis

Authors: Chandragouda R. Patil, K. S. Jagadeesh, S. D. Kalolgi

Abstract:

Biofertilizers containing live microbial cells can mobilize one or more nutrients to plants when applied to either seed or rhizosphere. They form an integral part of nutrient management strategies for sustainable production of agricultural crops. Annually, about 22 tons of lignite-based biofertilizers are being produced and supplied to farmers at the Institute of Organic Farming, University of Agricultural Sciences, Dharwad, Karnataka state India. Although carrier based biofertilizers are common, they have shorter shelf life, poor quality, high contamination, unpredictable field performance and high cost of solid carriers. Hence, liquid formulations are being developed to increase their efficacy and broaden field applicability. An attempt was made to develop liquid formulation of strains of Rhizobium NC-92 (Groundnut), Azospirillum ACD15 both nitrogen-fixing biofertilizers and Pseudomonas striata an efficient P-solubilizing bacteria (PSB). Different concentration of amendments such as additives (glycerol and polyethylene glycol), adjuvants (carboxyl methyl cellulose), gum arabica (GA), surfactant (polysorbate) and trehalose specifically for Azospirillum were found essential. Combinations of formulations of Rhizobium and PSB for groundnut and Azospirillum and PSB for maize were evaluated under field conditions to determine the optimum level of inoculum required. Each biofertilizer strain was inoculated at the rate of 2, 4, 8 ml per kg of seeds and the efficacy of each formulation both individually and in combinations was evaluated against the lignite-based formulation at the rate of 20 g each per kg seeds and a un-inoculated set was included to compare the inoculation effect. The field experiment had 17 treatments in three replicates and the best level of inoculum was decided based on net returns and cost: benefit ratio. In peanut, the combination of 4 ml of Rhizobium and 2 ml of PSB resulted in the highest net returns and higher cost to benefit ratio of 1:2.98 followed by treatment with a combination of 2 ml per kg each of Rhizobium and PSB with a B;C ratio of 1:2.84. The benefits in terms of net returns were to the extent of 16 percent due to inoculation with lignite based formulations while it was up to 48 percent due to the best combination of liquid biofertilizers. In maize combination of liquid formulations consisting of 4 ml of Azospirillum and 2 ml of PSB resulted in the highest net returns; about 53 percent higher than the un-inoculated control and 20 percent higher than the treatment with lignite based formulation. In both the crops inoculation with lignite based formulations significantly increased the net returns over un-inoculated control while levels higher or lesser than 4 ml of Rhizobium and Azospirillum and higher or lesser than 2 ml of PSB were not economical and hence not optimal for these two crops.

Keywords: Rhizobium, Azospirillum, phosphate solubilizing bacteria, liquid formulation, benefit-cost ratio

Procedia PDF Downloads 471
469 Phytomining for Rare Earth Elements: A Comparative Life Cycle Assessment

Authors: Mohsen Rabbani, Trista McLaughlin, Ehsan Vahidi

Abstract:

the remediation of polluted sites with heavy metals, such as rare earth elements (REEs), has been a primary concern of researchers to decontaminate the soil. Among all developed methods to address this concern, phytoremediation has been established as efficient, cost-effective, easy-to-use, and environmentally friendly way, providing a long-term solution for addressing this global concern. Furthermore, this technology has another great potential application in the metals production sector through returning metals buried in soil via metals cropping. Considering the significant metal concentration in hyper-accumulators, the utilization of bioaccumulated metals to extract metals from plant matter has been proposed as a sub-economic area called phytomining. As a recent, more advanced technology to eliminate such pollutants from the soil and produce critical metals, bioharvesting (phytomining/agromining) has been considered another compromising way to produce metals and meet the global demand for critical/target metals. The bio-ore obtained from phytomining can be safely disposed of or introduced to metal production pathways to obtain the most demanded metals, such as REEs. It is well-known that some hyperaccumulators, e.g., fern Dicranopteris linearis, can be used to absorb REE metals from the polluted soils and accumulate them in plant organs, such as leaves and stems. After soil remediation, the plant species can be harvested and introduced to the downstream steps, namely crushing/grinding, leaching, and purification processes, to extract REEs from plant matter. This novel interdisciplinary field can fill the gap between agriculture, mining, metallurgy, and the environment. Despite the advantages of agromining for the REEs production industry, key issues related to the environmental sustainability of the entire life cycle of this new concept have not been assessed yet. Hence, a comparative life cycle assessment (LCA) study was conducted to quantify the environmental footprints of REEs phytomining. The current LCA study aims to estimate and calculate environmental effects associated with phytomining by considering critical factors, such as climate change, land use, and ozone depletion. The results revealed that phytomining is an easy-to-use and environmentally sustainable approach to either eliminate REEs from polluted sites or produce REEs, offering a new source of such metals production. This LCA research provides guidelines for researchers active in developing a reliable relationship between agriculture, mining, metallurgy, and the environment to encounter soil pollution and keep the earth green and clean.

Keywords: phytoremediation, phytomining, life cycle assessment, environmental impacts, rare earth elements, hyperaccumulator

Procedia PDF Downloads 42
468 An Analysis of the Strategic Pathway to Building a Successful Mobile Advertising Business in Nigeria: From Strategic Intent to Competitive Advantage

Authors: Pius A. Onobhayedo, Eugene A. Ohu

Abstract:

Nigeria has one of the fastest growing mobile telecommunications industry in the world. In the absence of fixed connection access to the Internet, access to the Internet is primarily via mobile devices. It, therefore, provides a test case for how to penetrate the mobile market in an emerging economy. We also hope to contribute to a sparse literature on strategies employed in building successful data-driven mobile businesses in emerging economies. We, therefore, sought to identify and analyse the strategic approach taken in a successful locally born mobile data-driven business in Nigeria. The analysis was carried out through the framework of strategic intent and competitive advantages developed from the conception of the company to date. This study is based on an exploratory investigation of an innovative digital company based in Nigeria specializing in the mobile advertising business. The projected growth and high adoption of mobile in this African country, coinciding with the smartphone revolution triggered by the launch of iPhone in 2007 opened a new entrepreneurial horizon for the founder of the company, who reached the conclusion that ‘the future is mobile’. This dream led to the establishment of three digital businesses, designed for convergence and complementarity of medium and content. The mobile Ad subsidiary soon grew to become a truly African network with operations and campaigns across West, East and South Africa, successfully delivering campaigns in several African countries including Nigeria, Kenya, South Africa, Ghana, Uganda, Zimbabwe, and Zambia amongst others. The company recently declared a 40% year-end profit which was nine times that of the previous financial year. This study drew from an in-depth interview with the company’s founder, analysis of primary and secondary data from and about the business, as well as case studies of digital marketing campaigns. We hinge our analysis on the strategic intent concept which has been proposed to be an engine that drives the quest for sustainable strategic advantage in the global marketplace. Our goal was specifically to identify the strategic intents of the founder and how these were transformed creatively into processes that may have led to some distinct competitive advantages. Along with the strategic intents, we sought to identify the respective absorptive capacities that constituted favourable antecedents to the creation of such competitive advantages. Our recommendations and findings will be pivotal information for anybody wishing to invest in the world’s fastest technology business space - Africa.

Keywords: Africa, competitive advantage, competitive strategy, digital, mobile business, marketing, strategic intent

Procedia PDF Downloads 420
467 Wadjda, a Film That Quietly Sets the Stage for a Cultural Revolution in Saudi Arabia

Authors: Anouar El Younssi

Abstract:

This study seeks to shed some light on the political and social ramifications and implications of Haifaa al-Mansour’s 2012 film Wadjda. The film made international headlines following its release, and was touted as the first film ever to be shot in its entirety inside the Kingdom of Saudi Arabia, and also the first to be directed by a female (Haifaa al-Mansour). Wadjda revolves around a simple storyline: A teenage Saudi girl living in the capital city Riyadh—named Wadjda—wants to have a bicycle just like her male teenage neighbor and friend Abdullah, but her ultra-conservative Saudi society places so many constraints on its female population—including not allowing girls and women to ride bicycles. Wadjda, who displays a rebellious spirit, takes concrete steps to save money in order to realize her dream of buying a bicycle. For example, she starts making and selling sports bracelets to her school mates, and she decides to participate in a Qur’an competition in hopes of winning a sum of money that comes with the first prize. In the end, Wadjda could not beat the system on her own, but the film reverses course, and the audience gets a happy ending: Wadjda’s mother, whose husband has decided to take a second wife, defies the system and buys her daughter the very bicycle Wadjda has been dreaming of. It is quite significant that the mother takes her daughter’s side on the subject of the bicycle at the end of the film, for this shows that she finally came to the realization that she and her daughter are both oppressed by the cultural norms prevalent in Saudi society. It is no coincidence that this change of heart and action on the part of the mother takes place immediately after the wedding night celebrating her husband’s second marriage. Gender inequality is thus placed front and center in the film. Nevertheless, a major finding of this study is that the film carries out its social critique in a soft and almost covert manner. The female actors in the film never issue a direct criticism of Saudi society or government; the criticism is consistently implied and subtle throughout. It is a criticism that relies more on showing than telling. The film shows us—rather than tells us directly—what is wrong, and lets us, the audience, decide and make a judgment. In fact, showing could arguably be more powerful and impactful than telling. Regarding methodology, this study will focus on and analyze the visuals and a number of key utterances by the main actor Wadjda in order to corroborate the study’s argument about the film’s bent on critiquing patriarchy. This research will attempt to establish a link between the film as an art object and as a social text. Ultimately, Wadjda sends a message of hope, that change is possible and that it is already happening slowly inside the Kingdom. It also sends the message that an insurrectional approach regarding women’s rights in Saudi Arabia is perhaps not the right one, at least at this historical juncture.

Keywords: bicycle, gender inequality, social critique, Wadjda, women’s rights

Procedia PDF Downloads 100
466 Howard Mold Count of Tomato Pulp Commercialized in the State of São Paulo, Brazil

Authors: M. B. Atui, A. M. Silva, M. A. M. Marciano, M. I. Fioravanti, V. A. Franco, L. B. Chasin, A. R. Ferreira, M. D. Nogueira

Abstract:

Fungi attack large amount of fruits and those who have suffered an injury on the surface are more susceptible to the growth, as they have pectinolytic enzymes that destroy the edible portion forming an amorphous and soft dough. The spores can reach the plant by the wind, rain and insects and fruit may have on its surface, besides the contaminants from the fruit trees, land and water, forming a flora composed mainly of yeasts and molds. Other contamination can occur for the equipment used to harvest, for the use of boxes and contaminated water to the fruit washing, for storage in dirty places. The hyphae in tomato products indicate the use of raw materials contaminated or unsuitable hygiene conditions during processing. Although fungi are inactivated in heat processing step, its hyphae remain in the final product and search for detection and quantification is an indicator of the quality of raw material. Howard Method count of fungi mycelia in industrialized pulps evaluates the amount of decayed fruits existing in raw material. The Brazilian legislation governing processed and packaged products set the limit of 40% of positive fields in tomato pulps. The aim of this study was to evaluate the quality of the tomato pulp sold in greater São Paulo, through a monitoring during the four seasons of the year. All over 2010, 110 samples have been examined; 21 were taking in spring, 31 in summer, 31 in fall and 27 in winter, all from different lots and trademarks. Samples have been picked up in several stores located in the city of São Paulo. Howard method was used, recommended by the AOAC, 19th ed, 2011 16:19:02 technique - method 965.41. Hundred percent of the samples contained fungi mycelia. The count average of fungi mycelia per season was 23%, 28%, 8,2% and 9,9% in spring, summer, fall and winter, respectively. Regarding the spring samples of the 21 samples analyzed, 14.3% were off-limits proposed by the legislation. As for the samples of the fall and winter, all were in accordance with the legislation and the average of mycelial filament count has not exceeded 20%, which can be explained by the low temperatures during this time of the year. The acquired samples in the summer and spring showed high percentage of fungal mycelium in the final product, related to the high temperatures in these seasons. Considering that the limit of 40% of positive fields is accepted for the Brazilian Legislation (RDC nº 14/2014), 3 spring samples (14%) and 6 summer samples (19%) will be over this limit and subject to law penalties. According to gathered data, 82% of manufacturers of this product manage to keep acceptable levels of fungi mycelia in their product. In conclusion, only 9.2% samples were for the limits established by Resolution RDC. 14/2014, showing that the limit of 40% is feasible and can be used by these segment industries. The result of the filament count mycelial by Howard method is an important tool in the microscopic analysis since it measures the quality of raw material used in the production of tomato products.

Keywords: fungi, howard, method, tomato, pulps

Procedia PDF Downloads 356
465 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 228
464 Analysis of Thermal Comfort in Educational Buildings Using Computer Simulation: A Case Study in Federal University of Parana, Brazil

Authors: Ana Julia C. Kfouri

Abstract:

A prerequisite of any building design is to provide security to the users, taking the climate and its physical and physical-geometrical variables into account. It is also important to highlight the relevance of the right material elements, which arise between the person and the agent, and must provide improved thermal comfort conditions and low environmental impact. Furthermore, technology is constantly advancing, as well as computational simulations for projects, and they should be used to develop sustainable building and to provide higher quality of life for its users. In relation to comfort, the more satisfied the building users are, the better their intellectual performance will be. Based on that, the study of thermal comfort in educational buildings is of relative relevance, since the thermal characteristics in these environments are of vital importance to all users. Moreover, educational buildings are large constructions and when they are poorly planned and executed they have negative impacts to the surrounding environment, as well as to the user satisfaction, throughout its whole life cycle. In this line of thought, to evaluate university classroom conditions, it was accomplished a detailed case study on the thermal comfort situation at Federal University of Parana (UFPR). The main goal of the study is to perform a thermal analysis in three classrooms at UFPR, in order to address the subjective and physical variables that influence thermal comfort inside the classroom. For the assessment of the subjective components, a questionnaire was applied in order to evaluate the reference for the local thermal conditions. Regarding the physical variables, it was carried out on-site measurements, which consist of performing measurements of air temperature and air humidity, both inside and outside the building, as well as meteorological variables, such as wind speed and direction, solar radiation and rainfall, collected from a weather station. Then, a computer simulation based on results from the EnergyPlus software to reproduce air temperature and air humidity values of the three classrooms studied was conducted. The EnergyPlus outputs were analyzed and compared with the on-site measurement results to be possible to come out with a conclusion related to the local thermal conditions. The methodological approach included in the study allowed a distinct perspective in an educational building to better understand the classroom thermal performance, as well as the reason of such behavior. Finally, the study induces a reflection about the importance of thermal comfort for educational buildings and propose thermal alternatives for future projects, as well as a discussion about the significant impact of using computer simulation on engineering solutions, in order to improve the thermal performance of UFPR’s buildings.

Keywords: computer simulation, educational buildings, EnergyPlus, humidity, temperature, thermal comfort

Procedia PDF Downloads 365
463 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 9
462 Encouraging the Uptake of Entrepreneurship by Graduates of Higher Education Institutions in South Africa

Authors: Chux Gervase Iwu, Simon Nsengimane

Abstract:

Entrepreneurship stimulates socio-economic development in many countries, if not all. It creates jobs and decreases unemployment and inequality. There are other benefits that are accruable from entrepreneurship, namely the empowerment of women and the promotion of better livelihoods. Innovation has become a weapon for business competition, growth, and sustainability. Paradoxically, it is a threat to businesses because products can be duplicated; new products may decrease the market share of existing ones or delete them from the market. This creates a constant competitive environment that calls for updates, innovation, and the invention of new products and services. Thus, the importance of higher education in instilling a good entrepreneurial mindset in students has become even more critical. It can be argued that the business environment is under enormous pressure from several factors, including the fourth industrial revolution, which calls for the adoption and use of information and communication technology, which is the catalyst for many innovations and organisational changes. Therefore, it is crucial that higher education students are equipped with relevant knowledge and skills to respond effectively to the needs of the business environment and create a vibrant entrepreneurship ecosystem. In South Africa, entrepreneurship education or some form of it has been a privilege for economic and management fields of study, leaving behind other fields. Entrepreneurship should not be limited to business faculties but rather extended to other fields of study. This is perhaps the reason for low levels of entrepreneurship uptake among South African graduates if they are compared with the graduates in other countries. There may be other reasons for the low entrepreneurship uptake. Some of these have been documented in extant literature to include (1) not enough time was spent teaching entrepreneurship in the business faculties, (2) the skills components in the curricula are insufficient, and (3) the overall attitudes/mindsets necessary to establish and run sustainable enterprises seem absent. Therefore, four important areas are recognised as crucial for the effective implementation of entrepreneurship education: policy, private sector engagement, curriculum development, and teacher development. The purpose of this research is to better comprehend the views, aspirations, and expectations of students and faculty members to design an entrepreneurial teaching model for higher education institutions. A qualitative method will be used to conduct a purposive interview with undergraduate and graduate students in select higher institutions. Members of faculty will also be included in the sample as well as, where possible, two or more government personnel responsible for higher education policy development. At present, interpretative analysis is proposed for the analysis of the interviews with the support of Atlas Ti. It is hoped that an entrepreneurship education model in the South African context is realised through this study.

Keywords: entrepreneurship education, higher education institution, graduate unemployment, curriculum development

Procedia PDF Downloads 53
461 Association between Obstetric Factors with Affected Areas of Health-Related Quality of Life of Pregnant Women

Authors: Cinthia G. P. Calou, Franz J. Antezana, Ana I. O. Nicolau, Eveliny S. Martins, Paula R. A. L. Soares, Glauberto S. Quirino, Dayanne R. Oliveira, Priscila S. Aquino, Régia C. M. B. Castro, Ana K. B. Pinheiro

Abstract:

Introduction: As an integral part of the health-disease process, gestation is a period in which the social insertion of women can influence, in a positive or negative way, the course of the pregnancy-puerperal cycle. Thus, evaluating the quality of life of this population can redirect the implementation of innovative practices in the quest to make them more effective and real for the promotion of a more humanized care. This study explores the associations between the obstetric factors with affected areas of health-related quality of life of pregnant women with habitual risk. Methods: This is a cross-sectional, quantitative study conducted in three public facilities and a private service that provides prenatal care in the city of Fortaleza, Ceara, Brazil. The sample consisted of 261 pregnant women who underwent low-risk prenatal care and were interviewed from September to November 2014. The collection instruments were a questionnaire containing socio-demographic and obstetric variables, in addition to the Brazilian version of the Mother scale Generated Index (MGI) characterized by being a specific and objective instrument, consisting of a single sheet and subdivided into three stages. It allows identifying the areas of life of the pregnant woman that are most affected, which could go unnoticed by the pre-formulated measurement instruments. The obstetric data, as well as the data concerning the application of the MGI scale, were compiled and analyzed through the statistical program Statistical Package for the Social Sciences (SPSS), version 20.0. After the compilation, a descriptive analysis was carried out. Then, associations were made between some variables. The tests applied were the Pearson Chi-Square and the Fisher's exact test. The odds ratio was also calculated. These associations were considered statistically significant when the p (probability) value was less than or equal to a level of 5% (α = 0.05) in the tests performed. Results: The variables that negatively reflected the quality of life of the pregnant women and presented a significant association with the polaciuria were: gestational age (p = 0.022) and parity (p = 0.048). Episodes of nausea and vomiting also showed significant with gestational age correlation (p = 0.0001). Evaluating the crossing of stress, we observed a significant association with parity (p = 0.0001). In turn, emotional lability revealed dependence on the variable type of delivery (p = 0.009). Conclusion: The health professionals involved in the assistance to the pregnant woman can understand how the process of gestation is experienced, considering all its peculiar transformations; to meet their individual needs, stimulating their autonomy and their power of choice, envisaging the achievement of a better quality of life related to health in the perspective of health promotion.

Keywords: health-related quality of life, obstetric nursing, pregnant women, prenatal care

Procedia PDF Downloads 263
460 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 270
459 Installation of an Inflatable Bladder and Sill Walls for Riverbank Erosion Protection and Improved Water Intake Zone Smokey Hill River – Salina, Kansas

Authors: Jeffrey A. Humenik

Abstract:

Environmental, Limited Liability Corporation (EMR) provided civil construction services to the U.S. Army Corps of Engineers, Kansas City District, for the placement of a protective riprap blanket on the west bank of the Smoky Hill River, construction of 2 shore abutments and the construction of a 140 foot long sill wall spanning the Smoky Hill River in Salina, Kansas. The purpose of the project was to protect the riverbank from erosion and hold back water to a specified elevation, creating a pool to ensure adequate water intake for the municipal water supply. Geotextile matting and riprap were installed for streambank erosion protection. An inflatable bladder (AquaDam®) was designed to the specific river dimension and installed to divert the river and allow for dewatering during the construction of the sill walls and cofferdam. AquaDam® consists of water filled polyethylene tubes to create aqua barriers and divert water flow or prevent flooding. A challenge of the project was the fact that 100% of the sill wall was constructed within an active river channel. The threat of flooding of the work area, damage to the aqua dam by debris, and potential difficulty of water removal presented a unique set of challenges to the construction team. Upon completion of the West Sill Wall, floating debris punctured the AquaDam®. The manufacturing and delivery of a new AquaDam® would delay project completion by at least 6 weeks. To keep the project ahead of schedule, the decision was made to construct an earthen cofferdam reinforced with rip rap for the construction of the East Abutment and East Sill Wall section. During construction of the west sill wall section, a deep scour hole was encountered in the wall alignment that prevented EMR from using the natural rock formation as a concrete form for the lower section of the sill wall. A formwork system was constructed, that allowed the west sill wall section to be placed in two horizontal lifts of concrete poured on separate occasions. The first sectional lift was poured to fill in the scour hole and act as a footing for the second sectional lift. Concrete wall forms were set on the first lift and anchored to the surrounding riverbed in a manner that the second lift was poured in a similar fashion as a basement wall. EMR’s timely decision to keep the project moving toward completion in the face of changing conditions enabled project completion two (2) months ahead of schedule. The use of inflatable bladders is an effective and cost-efficient technology to divert river flow during construction. However, a secondary plan should be part of project design in the event debris transported by river punctures or damages the bladders.

Keywords: abutment, AquaDam®, riverbed, scour

Procedia PDF Downloads 122
458 Secondhand Clothing and the Future of Fashion

Authors: Marike Venter de Villiers, Jessica Ramoshaba

Abstract:

In recent years, the fashion industry has been associated with the exploitation of both people and resources. This is largely due to the emergence of the fast fashion concept, which entails rapid and continual style changes where clothes quickly lose their appeal, become out-of-fashion, and are then disposed of. This cycle often entails appalling working conditions in sweatshops with low wages, child labor, and a significant amount of textile waste that ends up in landfills. Although the awareness of the negative implications of ‘mindless fashion production and consumption’ is growing, fast fashion remains to be a popular choice among the youth. This is especially prevalent in South Africa, a poverty-stricken country where a vast number of young adults are unemployed and living in poverty. Despite being in poverty, the celebrity conscious culture and fashion products frequently portrayed on the growing intrusive social media platforms in South Africa pressurizes the consumers to purchase fashion and luxury products. Young adults are therefore more vulnerable to the temptation to purchase fast fashion products. A possible solution to the detrimental effects that the fast fashion industry has on the environment is the revival of the secondhand clothing trend. Although the popularity of secondhand clothing has gained momentum among selected consumer segments, the adoption rate of such remains slow. The main purpose of this study was to explore consumers’ perceptions of the secondhand clothing trend and to gain insight into factors that inhibit the adoption of secondhand clothing. This study also aimed to investigate whether consumers are aware of the negative implications of the fast fashion industry and their likelihood to shift their clothing purchases to that of secondhand clothing. By means of a quantitative study, fifty young females were asked to complete a semi-structured questionnaire. The researcher approached females between the ages of 18 and 35 in a face-to-face setting. The results indicated that although they had an awareness of the negative consequences of fast fashion, they lacked detailed insight into the pertinent effects of fast fashion on the environment. Further, a number of factors inhibit their decision to buy from secondhand stores: firstly, the accessibility to the latest trends was not always available in secondhand stores; secondly, the convenience of shopping from a chain store outweighs the inconvenience of searching for and finding a secondhand store; and lastly, they perceived secondhand clothing to pose a hygiene risk. The findings of this study provide fashion marketers, and secondhand clothing stores, with insight into how they can incorporate the secondhand clothing trend into their strategies and marketing campaigns in an attempt to make the fashion industry more sustainable.

Keywords: eco-friendly fashion, fast fashion, secondhand clothing, eco-friendly fashion

Procedia PDF Downloads 109
457 Designing Entrepreneurship Education Contents for Entrepreneurial Intention Building among Undergraduates in India

Authors: Sumita Srivastava

Abstract:

Despite several measures taken by the Government of India, entrepreneurship is still not perceived as a viable career option by the young generation. Although the rate of startups has improved a little after the penetration of e portals as business platforms, still the numbers are not very significant. It is also important to note that entrepreneurial initiatives are mostly taken up by graduates of premier institutions of India like Indian Institute of Technology (IITs) and Indian Institute of Management (IIMs). The scenario is not very satisfactory amongst the masses graduating from mainstream universities of the country. Indian youth at large are not attracted towards entrepreneurship as a career choice. The reason probably lies in the social fabric of the country and inappropriate education system which does not support the entrepreneurship at large amongst youth in the country. Education is critical to the development of an economy from the poverty level to the level of self-sustenance and development. The current curriculum in the majority of business schools in India prepares the average graduate to become employed by the available firms or business owners in society. For graduates in other streams, employment opportunities are very limited. The aim of this study was to identify and design entrepreneurship education contents to encourage undergraduates to pursue entrepreneurship as a career choice. This comprehensive study was conducted in multiple stages. Extensive research was conducted at each stage with an appropriate methodology. These stages of the project study were interconnected with each other, and each preceding stage provided inputs for the following stage of the study. In the first stage of the study, an empirical analysis was conducted to understand the current state of entrepreneurial intentions of undergraduates of Agra city. Various stakeholders were contacted at the stage, including students (n = 500), entrepreneurs (n = 20) and academicians and field experts (n = 10). At the second stage of the project study, a systems science technique, Nominal Group Technique (NGT) was used to identify the critical elements of entrepreneurship education in India based upon the findings of stage 1. The application of the Nominal Group Technique involved a workshop format; 15 domain experts participated in the workshop. Throughout the process, a democratic process was followed to avoid individual dominance and premature focusing on a single idea. The study obtained 63 responses from experts for effective entrepreneurship education in India. The responses were reduced to seven elements after a few thematic iterations. These elements were then segregated into content (knowledge, skills and attitude) and learning interaction on the basis of experts’ responses. After identifying critical elements of entrepreneurship education in the previous stage, the course was designed and validated at stage 3 of the project. Scientific methods were used at this stage to validate the curriculum contents and training interventions experimentally. The educational and training interventions designed through this study would not only help in developing entrepreneurial intentions but also creating skills relevant to the local entrepreneurial opportunities in the vicinity.

Keywords: curriculum design, entrepreneurial intention, entrepreneuship education, nominal group technique

Procedia PDF Downloads 106
456 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 121
455 Digital Subsistence of Cultural Heritage: Digital Media as a New Dimension of Cultural Ecology

Authors: Dan Luo

Abstract:

With the climate change can exacerbate exposure of cultural heritage to climatic stressors, scholars pin their hope on digital technology can help the site avoid surprises. Virtual museum has been regarded as a highly effective technology that enables people to gain enjoyable visiting experience and immersive information about cultural heritage. The technology clearly reproduces the images of the tangible cultural heritage, and the aesthetic experience created by new media helps consumers escape from the realistic environment full of uncertainty. The new cultural anchor has appeared outside the cultural sites. This article synthesizes the international literature on the virtual museum by developing diagrams of Citespace focusing on the tangible cultural heritage and the alarmingly situation has emerged in the process of resolving climate change: (1) Digital collections are the different cultural assets for public. (2) The media ecology change people ways of thinking and meeting style of cultural heritage. (3) Cultural heritage may live forever in the digital world. This article provides a typical practice information to manage cultural heritage in a changing climate—the Dunhuang Mogao Grottoes in the far northwest of China, which is a worldwide cultural heritage site famous for its remarkable and sumptuous murals. This monument is a typical synthesis of art containing 735 Buddhist temples, which was listed by UNESCO as one of the World Cultural Heritage sites. The caves contain some extraordinary examples of Buddhist art spanning a period of 1,000 years - the architectural form, the sculptures in the caves, and the murals on the walls, all together constitute a wonderful aesthetic experience. Unfortunately, this magnificent treasure cave has been threatened by increasingly frequent dust storms and precipitation. The Dunhuang Academy has been using digital technology since the last century to preserve these immovable cultural heritages, especially the murals in the caves. And then, Dunhuang culture has become a new media culture after introduce the art to the world audience through exhibitions, VR, video, etc. The paper chooses qualitative research method that used Nvivo software to encode the collected material to answer this question. The author paid close attention to the survey in Dunhuang City, including participated in 10 exhibition and 20 salons that are Dunhuang-themed on network. What’s more, 308 visitors were interviewed who are fans of the art and have experienced Dunhuang culture online(6-75 years).These interviewees have been exposed to Dunhuang culture through different media, and they are acutely aware of the threat to this cultural heritage. The conclusion is that the unique halo of the cultural heritage was always emphasized, and digital media breeds twin brothers of cultural heritage. In addition, the digital media make it possible for cultural heritage to reintegrate into the daily life of the masses. Visitors gain the opportunity to imitate the mural figures through enlarged or emphasized images but also lose the perspective of understanding the whole cultural life. New media construct a new life aesthetics apart from the Authorized heritage discourse.

Keywords: cultural ecology, digital twins, life aesthetics, media

Procedia PDF Downloads 57