Search results for: chemical process control systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32486

Search results for: chemical process control systems

24836 Associations Between Executive Function and Physical Fitness in Preschool Children

Authors: Aleksander Veraksa, Alla Tvardovskaya, Margarita Gavrilova, Vera Yakupova, Martin Musálek

Abstract:

Considering the current agreement on the significance of executive functions, there is growing interest in determining factors that contribute to the development of these skills, especially during the preschool period. Although multiple studies have been focusing on links between physical activity, physical fitness and executive functions, this topic was more investigated in schoolchildren and adults than in preschoolers. The aim of the current study was to identify different levels of physical fitness among pre-schoolers, followed by an analysis of differences in their executive functions. Participants were 261 5-6-years old children. Inhibitory control and working memory were positively linked with physical fitness. Cognitive flexibility was not associated with physical fitness. The research findings are considered from neuropsychological grounds, Jean Piaget's theory of cognitive development, and the cultural-historical approach.

Keywords: cognitive flexibility, inhibitory control, physical activity, physical fitness, working memory.

Procedia PDF Downloads 90
24835 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 186
24834 Impact of an Eight-Week High-Intensity Interval Training with Sodium Nitrite Supplementation on TNF-α, MURF1, and PI3K in Type 2 Diabetic Rats

Authors: Samane Eftekhari Ranjbar

Abstract:

Diabetes mellitus, a metabolic disorder characterized by elevated blood glucose levels, ranks among the leading causes of adult mortality. This study investigates the impact of an eight-week high-intensity interval training (HIIT) program combined with sodium nitrite supplementation on TNF- α, MURF1, and PI3K in a type 2 diabetes rodent model. Elevated TNF-α levels have been associated with insulin resistance, while MURF1 and PI3K play roles in muscle atrophy and insulin signaling pathways, respectively. In this experimental study, 15 eight-week-old rats from the Sara Laboratory Center in Tabriz were assigned to one of five groups: healthy control, diabetic control, diabetic with sodium nitrite supplementation, diabetic with eight weeks of intermittent exercise, and diabetic with eight weeks of interval training plus sodium nitrite supplementation. The HIIT protocol was designed to span eight weeks, with five weekly sessions at specified intensities and durations. Sodium nitrite, known for its vasodilatory and cytoprotective properties, was administered via injection. The findings revealed that the HIIT program and sodium nitrite supplementation influenced the examined biomarkers. ANOVA test outcomes indicated statistically significant differences in TNF- α (P=0.001), MURF1 (P=0.001), and PI3K (P=0.001) concentrations among the various groups. The healthy control group exhibited substantially decreased TNF- α, and MURF1 levels, as well as elevated PI3K levels compared to the diabetic control group. The exercise group, in conjunction with sodium nitrite supplementation, demonstrated a significant rise in PI3K levels (P=0.001) and a decline in TNF- α levels (P=0.018) relative to the diabetic control group. These results suggest that the combined intervention may help improve insulin sensitivity and reduce inflammation. However, MURF1 levels, which are related to muscle atrophy, showed no significant difference (P=0.24). In conclusion, in type 2 diabetic rats, an eight-week high-intensity interval training program with sodium nitrite supplementation does not affect MURF1 levels but does influence PI3K and TNF- α levels. This combination may hold potential for improving insulin sensitivity and reducing inflammation in type 2 diabetes patients, warranting further investigation and potential translation to human clinical trials.

Keywords: high-intensity interval training, sodium nitrate supplementation, type 2 diabetes, tumor necrosis factor-alpha, phosphatidylinositol-3-kinase, muscle RING-finger protein-1

Procedia PDF Downloads 73
24833 Design Systems and the Need for a Usability Method: Assessing the Fitness of Components and Interaction Patterns in Design Systems Using Atmosphere Methodology

Authors: Patrik Johansson, Selina Mardh

Abstract:

The present study proposes a usability test method, Atmosphere, to assess the fitness of components and interaction patterns of design systems. The method covers the user’s perception of the components of the system, the efficiency of the logic of the interaction patterns, perceived ease of use as well as the user’s understanding of the intended outcome of interactions. These aspects are assessed by combining measures of first impression, visual affordance and expectancy. The method was applied to a design system developed for the design of an electronic health record system. The study was conducted involving 15 healthcare personnel. It could be concluded that the Atmosphere method provides tangible data that enable human-computer interaction practitioners to analyze and categorize components and patterns based on perceived usability, success rate of identifying interactive components and success rate of understanding components and interaction patterns intended outcome.

Keywords: atomic design, atmosphere methodology, design system, expectancy testing, first impression testing, usability testing, visual affordance testing

Procedia PDF Downloads 169
24832 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: community water usage, fuzzy logic, irrigation, multi-agent system

Procedia PDF Downloads 289
24831 Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying

Authors: Jinan B. Al-Dabbagh, Rozman Mohd Tahar, Mahadzir Ishak

Abstract:

TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders.

Keywords: TiAl alloys, nanocrystalline materials, mechanical alloying, materials science

Procedia PDF Downloads 352
24830 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 209
24829 Reservoir Fluids: Occurrence, Classification, and Modeling

Authors: Ahmed El-Banbi

Abstract:

Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.

Keywords: PVT models, fluid types, PVT properties, fluids classification

Procedia PDF Downloads 66
24828 Developing a GIS-Based Tool for the Management of Fats, Oils, and Grease (FOG): A Case Study of Thames Water Wastewater Catchment

Authors: Thomas D. Collin, Rachel Cunningham, Bruce Jefferson, Raffaella Villa

Abstract:

Fats, oils and grease (FOG) are by-products of food preparation and cooking processes. FOG enters wastewater systems through a variety of sources such as households, food service establishments, and industrial food facilities. Over time, if no source control is in place, FOG builds up on pipe walls, leading to blockages, and potentially to sewer overflows which are a major risk to the Environment and Human Health. UK water utilities spend millions of pounds annually trying to control FOG. Despite UK legislation specifying that discharge of such material is against the law, it is often complicated for water companies to identify and prosecute offenders. Hence, it leads to uncertainties regarding the attitude to take in terms of FOG management. Research is needed to seize the full potential of implementing current practices. The aim of this research was to undertake a comprehensive study to document the extent of FOG problems in sewer lines and reinforce existing knowledge. Data were collected to develop a model estimating quantities of FOG available for recovery within Thames Water wastewater catchments. Geographical Information System (GIS) software was used in conjunction to integrate data with a geographical component. FOG was responsible for at least 1/3 of sewer blockages in Thames Water waste area. A waste-based approach was developed through an extensive review to estimate the potential for FOG collection and recovery. Three main sources were identified: residential, commercial and industrial. Commercial properties were identified as one of the major FOG producers. The total potential FOG generated was estimated for the 354 wastewater catchments. Additionally, raw and settled sewage were sampled and analysed for FOG (as hexane extractable material) monthly at 20 sewage treatment works (STW) for three years. A good correlation was found with the sampled FOG and population equivalent (PE). On average, a difference of 43.03% was found between the estimated FOG (waste-based approach) and sampled FOG (raw sewage sampling). It was suggested that the approach undertaken could overestimate the FOG available, the sampling could only capture a fraction of FOG arriving at STW, and/or the difference could account for FOG accumulating in sewer lines. Furthermore, it was estimated that on average FOG could contribute up to 12.99% of the primary sludge removed. The model was further used to investigate the relationship between estimated FOG and number of blockages. The higher the FOG potential, the higher the number of FOG-related blockages is. The GIS-based tool was used to identify critical areas (i.e. high FOG potential and high number of FOG blockages). As reported in the literature, FOG was one of the main causes of sewer blockages. By identifying critical areas (i.e. high FOG potential and high number of FOG blockages) the model further explored the potential for source-control in terms of ‘sewer relief’ and waste recovery. Hence, it helped targeting where benefits from implementation of management strategies could be the highest. However, FOG is still likely to persist throughout the networks, and further research is needed to assess downstream impacts (i.e. at STW).

Keywords: fat, FOG, GIS, grease, oil, sewer blockages, sewer networks

Procedia PDF Downloads 202
24827 Dietary Effect of Probiotic Bacteria, Bacillus amyloliquefaciens JFP-2 Isolate from Jeju Island`s Traditional Fermented Food, on Innate Immune Response of Oplegnathus fasciatus Challenged with Vibrio anguillarum

Authors: Dong Hwi Kim, Dharaneedharan Subramanian, So Hyun Park, Ha-Ri Choi, Ji-Hyung Kim, Dong-Hoon Lee, Moon Soo Heo

Abstract:

The present study was performed to evaluate the use of Bacillus amyloliquefaciens JFP-2 isolated from a traditional fermented sea food, as probiotic bacteria in the diets for Rock-bream, Oplegnathus faciatus. A total of 180 fish (187.4 ± 2.7 g) were divided into two groups, control (C) and probiotic (P) group (90 fish per group) in triplicate. C group was fed with basal diet without probiotic, while P group was fed with B. amyloliquefaciens spores at concentration of 1.4 x 106 colony forming units per gram (CFU/g) of feed. After two months of feeding experiments, P group fish showed significant improvements in body weight (BW), weight gain (WG), specific growth rate (SGR) and food conversion ratio (FCR) compared with C group. Also, bi-weekly assessment of serum protein, glucose, fatty acid profile showed a significant increase in probiotic fed fish than that of control fish group. Similar increase in serum antioxidant and lysozyme activity was found in probiotic fed fish group. Twenty days challenge experiment shows decrease mortality in probiotic fed fish group when compared with that of control group. Hence, these results indicate that the use of B. amyloliquefaciens JFP-2 as a feed supplement, is beneficial to improve the health status of Oplegnathus fasciatus challenged with Vibrio anguillarum.

Keywords: Bacillus amyloliquefaciens, Oplegnathus fasciatus, probiotic feed, rock bream

Procedia PDF Downloads 253
24826 The Performance of Natural Light by Roof Systems in Cultural Buildings

Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo

Abstract:

This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.

Keywords: natural lighting, roof lighting systems, natural lighting in museums, comfort lighting

Procedia PDF Downloads 205
24825 Effect of Lullabies on Babies Stress and Relaxation Symptoms in the Neonatal Intensive Care Units

Authors: Meltem Kürtüncü, Işın Alkan

Abstract:

Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on stress and relaxation symptoms of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. Stress and relaxation symptoms were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Results: After lullaby concert when stress symptoms compared to infants in the experimental and control groups before the care was not detected statistically significant difference between crying, contraction, facial grimacing, flushing, cyanosis and the rates of increase in temperature. After care, crying, contractions, facial grimacing, flushing, and restlessness revealed a statistically significant difference between the groups, but as the cyanosis and temperature increased stress responses did not result in a significant difference between the groups. In the control group babies the crying, contraction, facial grimacing, flushing, and restlessness behaviors rates were found to be significantly higher than experimental group babies. After lullaby concert when relaxation symptoms compared to infants in the experimental and control groups before the care, eye contact rates who listen to lullaby from mother’s voice was found to be significantly higher than infants who listen to lullaby from stranger’s voice and infants in the control group. After care as eye contact, smiling, sucking/searching, yawning, non-crying and sleep behaviors relaxation symptoms revealed statistically significant results. In the control group, these behaviors were found statistically lower degree than the experimental groups. Conclusion: Lullaby concerts as masking the ambient noise, reducing the stress symptoms and increasing the relaxation symptoms, and also for soothing and stimulant affects, due to ease the transition to the sleep state should be preferred in the neonatal intensive care units.

Keywords: lullaby, mother voice, relaxation, stress

Procedia PDF Downloads 225
24824 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor

Authors: K. Senthil Kumar, A. Vasumalaikannan

Abstract:

In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.

Keywords: teleoperation, quadrotor, neural smith predictor, time delay

Procedia PDF Downloads 609
24823 The impact of International Trade on Maritime Ecosystems: Evidence from the California Emission Control Area and the Kelp Forests

Authors: Fabien Candau, Florian Lafferrere

Abstract:

This article analyses how an emission policy for vessels (named California’s Ocean-Going Vessel Fuel Rule) was implemented in 2009 in California impacts trade and marine biodiversity. By studying the decrease in emission levels anticipated by the policy, we measure not only the consequences for port activities but also for one of the most important marine ecosystems of the California Coast: the Kelp forests. Using the Difference in Difference (DiD) approach at the Californian ports level, we find that this policy has led to a significant decrease in trade volume during this period. Therefore, we find a positive and significant effect of shipping policy on kelp canopy and biomass growth by controlling the specific climatic and environmental characteristics of California coastal areas.

Keywords: international trade, shipping, marine biodiversity, emission control area

Procedia PDF Downloads 56
24822 Nanowire by Ac Electrodeposition Into Nanoporous Alumina Fabrication of High Aspect Ratio Metalic

Authors: M. Beyzaiea, S. Mohammadia

Abstract:

High aspect ratio metallic (silver, cobalt) nanowire arrays were fabricated using ac electrodeposition techniques into the nanoporous alumina template. The template with long pore dept fabricated by hard anodization (HA) and thinned for ac electrodeposition. Template preparation was done in short time by using HA technique and high speed thing process. The TEM and XRD investigation confirm the three dimensional nucleation growth mechanism of metallic nanowire inside the nanoporous alumina that fabricated by HA process.

Keywords: metallic, nanowire, nanoporous alumina, ac electrodeposition

Procedia PDF Downloads 268
24821 Interactive Planning of Suburban Apartment Buildings

Authors: J. Koiso-Kanttila, A. Soikkeli, A. Aapaoja

Abstract:

Construction in Finland is focusing increasingly on renovation instead of conventional new construction, and this trend will continue to grow in the coming years and decades. Renovation of the large number of suburban residential apartment buildings built in the 1960s and 1970s poses a particular challenge. However, renovation projects are demanding for the residents of these buildings, since they usually are uninitiated in construction issues. On the other hand, renovation projects generally apply the operating models of new construction. Nevertheless, the residents of an existing residential apartment building are some of the best experts on the site. Thus, in this research project we applied a relational model in developing and testing at case sites a planning process that employs interactive planning methods. Current residents, housing company managers, the city zoning manager, the contractor’s and prefab element supplier’s representatives, professional designers and researchers all took part in the planning. The entire interactive planning process progressed phase by phase as the participants’ and designers’ concerted discussion and ideation process, so that the end result was a renovation plan desired by the residents.

Keywords: apartment building renovation, interactive planning, project alliance, user-orientedness

Procedia PDF Downloads 382
24820 Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements

Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus

Abstract:

The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.

Keywords: T-RTM technology, composite, automotive, class A surface

Procedia PDF Downloads 135
24819 Empirical Measures to Enhance Germination Potential and Control Browning of Tissue Cultures of Andrographis paniculata

Authors: Nidhi Jindal, Ashok Chaudhury, Manisha Mangal

Abstract:

Andrographis paniculata, (Burm f.) Wallich ex. Nees (Family Acanthaceae) popularly known as King of Bitters, is an important medicinal herb. It has an astonishingly wide range of medicinal properties such as anti-inflammatory,antidiarrhoeal, antiviral, antimalarial, hepatoprotective, cardiovascular, anticancer, and immunostimulatory activities. It is widely cultivated in southern Asia. Though propagation of this herb generally occurs through seeds, it has many germination problems which intrigued scientists to work out on the alternative techniques for its mass production. The potential of tissue culture techniques as an alternative tool for AP multiplication was found to be promising. However, the high mortality rate of explants caused by phenolic browning of explants is one of the difficulties reported. Low multiplication rates were reported in the proliferation phase, as well as cultures decline characterized by leaf fall and loss of overall vigor. In view of above problems, a study was undertaken to overcome seed dormancy to improve germination potential and to investigate further on the possible means for successful proliferation of cultures via preventive approaches to overcome failures caused by phenolic browning. Experiments were conducted to improve germination potential and among all the chemical and mechanical trials, scarification of seeds with sand paper proved to be the best method to enhance the germination potential (82.44%) within 7 days. Similarly, several pretreatments and media combinations were tried to overcome browning of explants leading to the conclusion that addition of 0.1% citric acid and 0.2% of ascorbic acid in the media followed by rapid sub culturing of explants controlled browning and decline of explants by 67.45%.

Keywords: plant tissue culture, empirical measure, germination, tissue culture

Procedia PDF Downloads 406
24818 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 325
24817 Corrosion Behaviour of Al-Mg-Si Alloy Matrix Hybrid Composite Reinforced with Cassava Peel Ash and Silicon Carbide

Authors: B. Oji, O. Olaniran

Abstract:

The prospect of improving the corrosion property of Al 6063 alloy based hybrid composites reinforced with cassava peel ash (CPA) and silicon carbide (SiC) is the target of this research. It seeks to determine the viability of using locally sourced material (CPA) as a complimentary reinforcement for SiC to produce low cost high performance aluminum matrix composite. The CPA was mixed with the SiC in the ratios 0:1, 1:3, 1:1, 3:1 and 1:0 for 8 wt % reinforcement in the produced composites by double stir-casting method. The microstructures of the composites were studied before and after corrosion using the scanning electron microscopy which reveals the matrix (dark region) and eutectic phase (lamellar region). The corrosion rate was studied in accordance with ASTM G59-97 (2014) using an AutoLab potentiostat (Versa STAT 400) with versaSTUDIO electrochemical software which analyses the results obtained. The result showed that Al 6063 alloy exhibited good corrosion resistance in 0.3M H₂SO₄ and 3.5 wt. % NaCl solutions with sample C containing the 25% wt CPA showing the highest resistance to corrosion with corrosion rate of 0.0046 mmpy as compared to the control sample which has a value of 13.233 mmpy. Sample B, D, E, and F also showed a corrosion rate of 3.9502, 2.6903, 2.1223, and 5.7344 mmpy which indicated a better corrosion rate than the control in the acidic environment. The corrosion rate in the saline medium shows that sample E with 75% wt CPA has the lowest corrosion rate of 0.0422 mmpy as compared to the control sample with 0.0873 mmpy corrosion rate.

Keywords: Al-Mg-Si alloy, AutoLab potentiostat, Cassava Peel Ash, CPA, hybrid composite, stir-cast method

Procedia PDF Downloads 125
24816 Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite

Authors: K. Barbaro, F. Di Egidio, A. Amaddeo, G. Lupoli, S. Eramo, G. Barraco, D. Amaddeo, C. Gallottini

Abstract:

In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects.

Keywords: nano-hydroxy apatite, adipose mesenchymal stem cells, dog, morphological evaluation

Procedia PDF Downloads 467
24815 Money Laundering and Financing of Terrorism

Authors: Covadonga Mallada Fernández

Abstract:

Economic development and globalization of international markets have created a favourable atmosphere for the emergence of new forms of crime such as money laundering or financing of terrorism, which may contribute to destabilized and damage economic systems. In particular, money laundering have acquired great importance since the 11S attacks, what has caused on the one hand, the establishment and development of preventive measures and, on the other hand, a progressive hardening of penal measures. Since then, the regulations imposed to fight against money laundering have been viewed as key components also in the fight against terrorist financing. Terrorism, at the beginning, was a “national” crime connected with internal problems of the State (for instance the RAF in Germany or ETA in Spain) but in the last 20 years has started to be an international problem that is connected with the defence and security of the States. Therefore, the new strategic concept for the defense and security of NATO has a comprehensive list of security threats to the Alliance, such as terrorism, international instability, money laundering or attacks on cyberspace, among others. With this new concept, money laundering and terrorism has become a priority in the national defense. In this work we will analyze the methods to combat these new threats to the national security. We will study the preventive legislations to combat money laundering and financing of terrorism, the UIF that exchange information between States, and the hawala-Banking.

Keywords: control of financial flows, money laundering, terrorism, financing of terrorism

Procedia PDF Downloads 449
24814 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-Liclo4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan

Abstract:

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via polymerization method with different NCO/OH ratios and labelled as PU1, PU2, PU3, and PU4. Subsequently, the chemical, thermal properties and ionic conductivity of the films produced were determined. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1 due to the greatest amount of hard segment of polyurethane in PU1 as proven by soxhlet analysis. The structures of polyurethanes were confirmed by 13 nuclear magnetic resonance spectroscopy (13C NMR) and FTIR spectroscopy. Differential scanning calorimetry (DSC) analysis indicates PU 1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) of the PU-LiClO4 shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity (1.19 × 10-7 S.cm-1 at 298 K and 5.01 × 10-5 S.cm-1 at 373 K) and the lowest activation energy, Ea (0.32 eV) due to the greatest amount of hard segment formed in PU 1 induces the coordination between lithium ion and oxygen atom of carbonyl group in polyurethane. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Keywords: ionic conductivity, palm kernel oil-based monoester-OH, polyurethane, solid polymer electrolyte

Procedia PDF Downloads 413
24813 Towards Sustainable Evolution of Bioeconomy: The Role of Technology and Innovation Management

Authors: Ronald Orth, Johanna Haunschild, Sara Tsog

Abstract:

The bioeconomy is an inter- and cross-disciplinary field covering a large number and wide scope of existing and emerging technologies. It has a great potential to contribute to the transformation process of industry landscape and ultimately drive the economy towards sustainability. However, bioeconomy per se is not necessarily sustainable and technology should be seen as an enabler rather than panacea to all our ecological, social and economic issues. Therefore, to draw and maximize benefits from bioeconomy in terms of sustainability, we propose that innovative activities should encompass not only novel technologies and bio-based new materials but also multifocal innovations. For multifocal innovation endeavors, innovation management plays a substantial role, as any innovation emerges in a complex iterative process where communication and knowledge exchange among relevant stake holders has a pivotal role. The knowledge generation and innovation are although at the core of transition towards a more sustainable bio-based economy, to date, there is a significant lack of concepts and models that approach bioeconomy from the innovation management approach. The aim of this paper is therefore two-fold. First, it inspects the role of transformative approach in the adaptation of bioeconomy that contributes to the environmental, ecological, social and economic sustainability. Second, it elaborates the importance of technology and innovation management as a tool for smooth, prompt and effective transition of firms to the bioeconomy. We conduct a qualitative literature study on the sustainability challenges that bioeconomy entails thus far using Science Citation Index and based on grey literature, as major economies e.g. EU, USA, China and Brazil have pledged to adopt bioeconomy and have released extensive publications on the topic. We will draw an example on the forest based business sector that is transforming towards the new green economy more rapidly as expected, although this sector has a long-established conventional business culture with consolidated and fully fledged industry. Based on our analysis we found that a successful transition to sustainable bioeconomy is conditioned on heterogenous and contested factors in terms of stakeholders , activities and modes of innovation. In addition, multifocal innovations occur when actors from interdisciplinary fields engage in intensive and continuous interaction where the focus of innovation is allocated to a field of mutually evolving socio-technical practices that correspond to the aims of the novel paradigm of transformative innovation policy. By adopting an integrated and systems approach as well as tapping into various innovation networks and joining global innovation clusters, firms have better chance of creating an entire new chain of value added products and services. This requires professionals that have certain capabilities and skills such as: foresight for future markets, ability to deal with complex issues, ability to guide responsible R&D, ability of strategic decision making, manage in-depth innovation systems analysis including value chain analysis. Policy makers, on the other hand, need to acknowledge the essential role of firms in the transformative innovation policy paradigm.

Keywords: bioeconomy, innovation and technology management, multifocal innovation, sustainability, transformative innovation policy

Procedia PDF Downloads 120
24812 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 110
24811 Increase in the Shelf Life Anchovy (Engraulis ringens) from Flaying then Bleeding in a Sodium Citrate Solution

Authors: Santos Maza, Enzo Aldoradin, Carlos Pariona, Eliud Arpi, Maria Rosales

Abstract:

The objective of this study was to investigate the effect of flaying then bleeding anchovy (Engraulis ringens) immersed within a sodium citrate solution. Anchovy is a pelagic fish that readily deteriorates due to its high content of polyunsaturated fatty acids. As such, within the Peruvian food industry, the shelf life of frozen anchovy is explicitly 6 months, this short duration imparts a barrier to use for direct consumption human. Thus, almost all capture of anchovy by the fishing industry is eventually used in the production of fishmeal. We offer this an alternative to its typical production process in order to increase shelf life. In the present study, 100 kg of anchovies were captured and immediately mixed with ice on ship, maintaining a high quality sensory metric (e.g., with color blue in back) while still arriving for processing less than 2 h after capture. Anchovies with fat content of 3% were immediately flayed (i.e., reducing subcutaneous fat), beheaded, gutted and bled (i.e., removing hemoglobin) by immersion in water (Control) or in a solution of 2.5% sodium citrate (treatment), then subsequently frozen at -30 °C for 8 h in 2 kg batches. Subsequent glazing and storage at -25 °C for 14 months completed the experiments parameters. The peroxide value (PV), acidity (A), fatty acid profile (FAP), thiobarbituric acid reactive substances (TBARS), heme iron (HI), pH and sensory attributes of the samples were evaluated monthly. The results of the PV, TBARS, A, pH and sensory analyses displayed significant differences (p<0.05) between treatment and control sample; where the sodium citrate treated samples showed increased preservation features. Specifically, at the beginning of the study, flayed, beheaded, gutted and bled anchovies displayed low content of fat (1.5%) with moderate amount of PV, A and TBARS, and were not rejected by sensory analysis. HI values and FAP displayed varying behavior, however, results of HI did not reveal a decreasing trend. This result is indicative of the fact that levels of iron were maintained as HI and did not convert into no heme iron, which is known to be the primary catalyst of lipid oxidation in fish. According to the FAP results, the major quantity of fatty acid was of polyunsaturated fatty acid (PFA) followed by saturated fatty acid (SFA) and then monounsaturated fatty acid (MFA). According to sensory analysis, the shelf life of flayed, beheaded and gutted anchovy (control and treatment) was 14 months. This shelf life was reached at laboratory level because high quality anchovies were used and immediately flayed, beheaded, gutted, bled and frozen. Therefore, it is possible to maintain the shelf life of anchovies for a long time. Overall, this method displayed a large increase in shelf life relative to that commonly seen for anchovies in this industry. However, these results should be extrapolated at industrial scales to propose better processing conditions and improve the quality of anchovy for direct human consumption.

Keywords: citrate sodium solution, heme iron, polyunsaturated fatty acids, shelf life of frozen anchovy

Procedia PDF Downloads 284
24810 Chemicals to Remove and Prevent Biofilm

Authors: Cynthia K. Burzell

Abstract:

Aequor's Founder, a Marine and Medical Microbiologist, discovered novel, non-toxic chemicals in the ocean that uniquely remove biofilm in minutes and prevent its formation for days. These chemicals and over 70 synthesized analogs that Aequor developed can replace thousands of toxic biocides used in consumer and industrial products and, as new drug candidates, kill biofilm-forming bacteria and fungi Superbugs -the antimicrobial-resistant (AMR) pathogens for which there is no cure. Cynthia Burzell, PhD., is a Marine and Medical Microbiologist studying natural mechanisms that inhibit biofilm formation on surfaces in contact with water. In 2002, she discovered a new genus and several new species of marine microbes that produce small molecules that remove biofilm in minutes and prevent its formation for days. The molecules include new antimicrobials that can replace thousands of toxic biocides used in consumer and industrial products and can be developed into new drug candidates to kill the biofilm-forming bacteria and fungi -- including the antimicrobial-resistant (AMR) Superbugs for which there is no cure. Today, Aequor has over 70 chemicals that are divided into categories: (1) Novel natural chemicals. Lonza validated that the primary natural chemical removed biofilm in minutes and stated: "Nothing else known can do this at non-toxic doses." (2) Specialty chemicals. 25 of these structural analogs are already approved under the U.S. Environmental Protection Agency (EPA)'s Toxic Substances Control Act, certified as "green" and available for immediate sale. These have been validated for the following agro-industrial verticals: (a) Surface cleaners: The U.S. Department of Agriculture validated that low concentrations of Aequor's formulations provide deep cleaning of inert, nano and organic surfaces and materials; (b) Water treatments: NASA validated that one dose of Aequor's treatment in the International Space Station's water reuse/recycling system lasted 15 months without replenishment. DOE validated that our treatments lower energy consumption by over 10% in buildings and industrial processes. Future validations include pilot projects with the EPA to test efficacy in hospital plumbing systems. (c) Algae cultivation and yeast fermentation: The U.S. Department of Energy (DOE) validated that Aequor's treatment boosted biomass of renewable feedstocks by 40% in half the time -- increasing the profitability of biofuels and biobased co-products. DOE also validated increased yields and crop protection of algae under cultivation in open ponds. A private oil and gas company validated decontamination of oilfield water. (3) New structural analogs. These kill Gram-negative and Gram-positive bacteria and fungi alone, in combinations with each other, and in combination with low doses of existing, ineffective antibiotics (including Penicillin), "potentiating" them to kill AMR pathogens at doses too low to trigger resistance. Both the U.S. National Institutes for Health (NIH) and Department of Defense (DOD) has executed contracts with Aequor to provide the pre-clinical trials needed for these new drug candidates to enter the regulatory approval pipelines. Aequor seeks partners/licensees to commercialize its specialty chemicals and support to evaluate the optimal methods to scale-up of several new structural analogs via activity-guided fractionation and/or biosynthesis in order to initiate the NIH and DOD pre-clinical trials.

Keywords: biofilm, potentiation, prevention, removal

Procedia PDF Downloads 93
24809 Improvement of Reaction Technology of Decalin Halogenation

Authors: Dmitriy Yu. Korulkin, Ravshan M. Nuraliev, Raissa A. Muzychkina

Abstract:

In this research paper, we investigated the main regularities of a radical bromination reaction of decalin. We studied the temperature effect, durations of reaction, frequency rate of process, ratio of initial components, type and number of the initiator on decalin bromination degree. We found specified optimum conditions of synthesis of a perbromodecalin by the method of a decalin bromination. We developed the technological flowchart of receiving a perbromodecalin and the mass balance of process on the first and the subsequent loadings of components. The results of the research of antibacterial and antifungal activity of synthesized bromoderivatives have been represented.

Keywords: decalin, optimum technology, perbromodecalin, radical bromination

Procedia PDF Downloads 221
24808 Lignin Valorization: Techno-Economic Analysis of Three Lignin Conversion Routes

Authors: Iris Vural Gursel, Andrea Ramirez

Abstract:

Effective utilization of lignin is an important mean for developing economically profitable biorefineries. Current literature suggests that large amounts of lignin will become available in second generation biorefineries. New conversion technologies will, therefore, be needed to carry lignin transformation well beyond combustion to produce energy, but towards high-value products such as chemicals and transportation fuels. In recent years, significant progress on catalysis has been made to improve transformation of lignin, and new catalytic processes are emerging. In this work, a techno-economic assessment of two of these novel conversion routes and comparison with more established lignin pyrolysis route were made. The aim is to provide insights into the potential performance and potential hotspots in order to guide the experimental research and ease the commercialization by early identifying cost drivers, strengths, and challenges. The lignin conversion routes selected for detailed assessment were: (non-catalytic) lignin pyrolysis as the benchmark, direct hydrodeoxygenation (HDO) of lignin and hydrothermal lignin depolymerisation. Products generated were mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, a basis design followed by process modelling in Aspen was done using experimental yields. A design capacity of 200 kt/year lignin feed was chosen that is equivalent to a 1 Mt/y scale lignocellulosic biorefinery. The downstream equipment was modelled to achieve the separation of the product streams defined. For determining external utility requirement, heat integration was considered and when possible gasses were combusted to cover heating demand. The models made were used in generating necessary data on material and energy flows. Next, an economic assessment was carried out by estimating operating and capital costs. Return on investment (ROI) and payback period (PBP) were used as indicators. The results of the process modelling indicate that series of separation steps are required. The downstream processing was found especially demanding in the hydrothermal upgrading process due to the presence of significant amount of unconverted lignin (34%) and water. Also, external utility requirements were found to be high. Due to the complex separations, hydrothermal upgrading process showed the highest capital cost (50 M€ more than benchmark). Whereas operating costs were found the highest for the direct HDO process (20 M€/year more than benchmark) due to the use of hydrogen. Because of high yields to valuable heavy organics (32%) and MOAMON (24%), direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years). This process is found feasible with a positive net present value. However, it is very sensitive to the prices used in the calculation. The assessments at this stage are associated with large uncertainties. Nevertheless, they are useful for comparing alternatives and identifying whether a certain process should be given further consideration. Among the three processes investigated here, the direct HDO process was seen to be the most promising.

Keywords: biorefinery, economic assessment, lignin conversion, process design

Procedia PDF Downloads 256
24807 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment

Authors: Rouzbeh Jafari, Joe Nava

Abstract:

This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.

Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy

Procedia PDF Downloads 99