Search results for: thermal%20radiation
Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage
Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti
Abstract:
Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage
Procedia PDF Downloads 163High Performance Ceramic-Based Phthalonitrile Micro and Nanocomposites
Authors: M. Derradji, W. B. Liu
Abstract:
The current work discusses the effects of adding various types of ceramic fillers on the curing behavior, thermal, mechanical, anticorrosion, and UV shielding properties of the bisphenol-A based phthalonitrile resins. The effects of different ceramic filler contents and sizes as well as their surface treatments are also discussed in terms of their impact on the morphology and mechanisms of enhancement. The synergistic effect obtained by these combinations extends the use of the phthalonitrile resins to more exigent applications such as aerospace and military. The presented results reveal the significant advantages that can be obtained from the preparation of hybrid materials based on phthalonitrile resins and open the way for further research in the field.Keywords: mechanical properties, particle reinforced composites, polymer matrix composites (PMCs), thermal properties
Procedia PDF Downloads 157Study of Thermal and Mechanical Properties of Ethylene/1-Octene Copolymer Based Nanocomposites
Authors: Sharmila Pradhan, Ralf Lach, George Michler, Jean Mark Saiter, Rameshwar Adhikari
Abstract:
Ethylene/1-octene copolymer was modified incorporating three types of nanofillers differed in their dimensionality in order to investigate the effect of filler dimensionality on mechanical properties, for instance, tensile strength, microhardness etc. The samples were prepared by melt mixing followed by compression moldings. The microstructure of the novel material was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) method and Transmission electron microscopy (TEM). Other important properties such as melting, crystallizing and thermal stability were also investigated via differential scanning calorimetry (DSC) and Thermogravimetry analysis (TGA). The FTIR and XRD results showed that the composites were formed by physical mixing. The TEM result supported the homogeneous dispersion of nanofillers in the matrix. The mechanical characterization performed by tensile testing showed that the composites with 1D nanofiller effectively reinforced the polymer. TGA results revealed that the thermal stability of pure EOC is marginally improved by the addition of nanofillers. Likewise, melting and crystallizing properties of the composites are not much different from that of pure.Keywords: copolymer, differential scanning calorimetry, nanofiller, tensile strength
Procedia PDF Downloads 255Thermal Behaviors of the Strong Form Factors of Charmonium and Charmed Beauty Mesons from Three Point Sum Rules
Authors: E. Yazıcı, H. Sundu, E. Veli Veliev
Abstract:
In order to understand the nature of strong interactions and QCD vacuum, investigation of the meson coupling constants have an important role. The knowledge on the temperature dependence of the form factors is very important for the interpretation of heavy-ion collision experiments. Also, more accurate determination of these coupling constants plays a crucial role in understanding of the hadronic decays. With the increasing of CM energies of the experiments, researches on meson interactions have become one of the more interesting problems of hadronic physics. In this study, we analyze the temperature dependence of the strong form factor of the BcBcJ/ψ vertex using the three point QCD sum rules method. Here, we assume that with replacing the vacuum condensates and also the continuum threshold by their thermal version, the sum rules for the observables remain valid. In calculations, we take into account the additional operators, which appear in the Wilson expansion at finite temperature. We also investigated the momentum dependence of the form factor at T = 0, fit it into an analytic function, and extrapolate into the deep time-like region in order to obtain a strong coupling constant of the vertex. Our results are consistent with the results existing in the literature.Keywords: QCD sum rules, thermal QCD, heavy mesons, strong coupling constants
Procedia PDF Downloads 191Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace
Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini
Abstract:
Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.Keywords: energy cunsumption, energy recovery, modeling, energy eficiency
Procedia PDF Downloads 77Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis
Authors: Daniel Murrant, Andrew Quinn, Lee Chapman
Abstract:
A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.Keywords: climate change, power station cooling, UK water-energy nexus, water abstraction, water resources
Procedia PDF Downloads 300Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption
Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin
Abstract:
Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like low-cost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.Keywords: adsorbent, fly ash, heavy metal, waste
Procedia PDF Downloads 262A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test
Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim
Abstract:
In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.Keywords: Carbon Fiber Reinforced Plastic (CFRP), bending test, infrared camera, composite
Procedia PDF Downloads 402Overcoming Obstacles in UHTHigh-protein Whey Beverages by Microparticulation Process: Scientific and Technological Aspects
Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh, Seyed Jalal Razavi Zahedkolaei
Abstract:
Herein, a shelf stable (no refrigeration required) UHT processed, aseptically packaged whey protein drink was formulated by using a new strategy in microparticulate process. Applying thermal and two-dimensional mechanical treatments simultaneously, a modified protein (MWPC-80) was produced. Then the physical, thermal and thermodynamic properties of MWPC-80 were assessed using particle size analysis, dynamic temperature sweep (DTS), and differential scanning calorimetric (DSC) tests. Finally, using MWPC-80, a new RTD beverage was formulated, and shelf stability was assessed for three months at ambient temperature (25 °C). Non-isothermal dynamic temperature sweep was performed, and the results were analyzed by a combination of classic rate equation, Arrhenius equation, and time-temperature relationship. Generally, results showed that temperature dependency of the modified sample was significantly (Pvalue<0.05) less than the control one contained WPC-80. The changes in elastic modulus of the MWPC did not show any critical point at all the processed stages, whereas, the control sample showed two critical points during heating (82.5 °C) and cooling (71.10 °C) stages. Thermal properties of samples (WPC-80 & MWPC-80) were assessed using DSC with 4 °C /min heating speed at 20-90 °C heating range. Results did not show any thermal peak in MWPC DSC curve, which suggested high thermal resistance. On the other hands, WPC-80 sample showed a significant thermal peak with thermodynamic properties of ∆G:942.52 Kj/mol ∆H:857.04 Kj/mole and ∆S:-1.22Kj/mole°K. Dynamic light scattering was performed and results showed 0.7 µm and 15 nm average particle size for MWPC-80 and WPC-80 samples, respectively. Moreover, particle size distribution of MWPC-80 and WPC-80 were Gaussian-Lutresian and normal, respectively. After verification of microparticulation process by DTS, PSD and DSC analyses, a 10% why protein beverage (10% w/w/ MWPC-80, 0.6% w/w vanilla flavoring agent, 0.1% masking flavor, 0.05% stevia natural sweetener and 0.25% citrate buffer) was formulated and UHT treatment was performed at 137 °C and 4 s. Shelf life study did not show any jellification or precipitation of MWPC-80 contained beverage during three months storage at ambient temperature, whereas, WPC-80 contained beverage showed significant precipitation and jellification after thermal processing, even at 3% w/w concentration. Consumer knowledge on nutritional advantages of whey protein increased the request for using this protein in different food systems especially RTD beverages. These results could make a huge difference in this industry.Keywords: high protein whey beverage, micropartiqulation, two-dimentional mechanical treatments, thermodynamic properties
Procedia PDF Downloads 78The Influence of Mycelium Species and Incubation Protocols on Heat and Moisture Transfer Properties of Mycelium-Based Composites
Authors: Daniel Monsalve, Takafumi Noguchi
Abstract:
Mycelium-based composites (MBC) are made by growing living mycelium on lignocellulosic fibres to create a porous composite material which can be lightweight, and biodegradable, making them suitable as a sustainable thermal insulation. Thus, they can help to reduce material extraction while improving the energy efficiency of buildings, especially when agricultural by-products are used. However, as MBC are hygroscopic materials, moisture can reduce their thermal insulation efficiency. It is known that surface growth, or “mycelium skin”, can form a natural coating due to the hydrophobic properties in the mycelium cell wall. Therefore, this research aims to biofabricate a homogeneous mycelium skin and measure its influence on the final composite material by testing material properties such as thermal conductivity, vapour permeability and water absorption by partial immersion over 24 hours. In addition, porosity, surface morphology and chemical composition were also analyzed. The white-rot fungi species Pleurotus ostreatus, Ganoderma lucidum, and Trametes versicolor were grown on 10 mm hemp fibres (Cannabis sativa), and three different biofabrication protocols were used during incubation, varying the time and surface treatment, including the addition of pre-colonised sawdust. The results indicate that density can be reduced by colonisation time, which will favourably impact thermal conductivity but will negatively affect vapour and liquid water control. Additionally, different fungi can exhibit different resistance to prolonged water absorption, and due to osmotic sensitivity, mycelium skin may also diminish moisture control. Finally, a collapse in the mycelium network after water immersion was observed through SEM, indicating how the microstructure is affected, which is also dependent on fungi species and the type of skin achieved. These results help to comprehend the differences and limitations of three of the most common species used for MBC fabrication and how precise engineering is needed to effectively control the material output.Keywords: mycelium, thermal conductivity, vapor permeability, water absorption
Procedia PDF Downloads 47Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances
Authors: Weic-Ting Chen, Jo-Ming Tseng
Abstract:
Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment.Keywords: ammonium nitrate, incompatible substances, differential scanning calorimeters, advanced reactive system screening tool, safety parameters
Procedia PDF Downloads 100Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones
Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García
Abstract:
Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).Keywords: process optimization, RGB models, thermal models, , UAV, workflow
Procedia PDF Downloads 142Heat Transfer Analysis of Helical Grooved Passages near the Leading Edge Region in Gas Turbine Blade
Authors: Harishkumar Kamath, Chandrakant R. Kini, N. Yagnesh Sharma
Abstract:
Gas turbines are highly effective engineered prime movers for converting energy from thermal form (combustion stage) to mechanical form – are widely used for propulsion and power generation systems. One method of increasing both the power output and thermal efficiency is to increase the temperature of the gas entering the turbine. In the advanced gas turbines of today, the turbine inlet temperature can be as high as 1500°C; however, this temperature exceeds the melting temperature of the metal blade. With modern gas turbines operating at extremely high temperatures, it is necessary to implement various cooling methods, so the turbine blades and vanes endure in the path of the hot gases. Merely passing coolant air through the blade does not provide adequate cooling; therefore, it is necessary to implement techniques that will further enhance the heat transfer from the blade walls. It is seen that by incorporating helical grooved passages into the leading edge built on turbulence and higher flow rates through the passages, the blade can be cooled effectively. It seen from the analysis helical grooved passages with diameter 5 mm, helical pitch of 50 mm and 8 starts results in better cooling of turbine blade and gives the best thermal performance.Keywords: blade cooling, helical grooves, leading edge, numerical analysis
Procedia PDF Downloads 268A New Perspective: The Use of Low-Cost Phase Change Material in Building Envelope System
Authors: Andrey A. Chernousov, Ben Y. B. Chan
Abstract:
The use of the low-cost paraffinic phase change material can be rather effective in smart building envelopes in the South China region. Particular attention has to be paid to the PCM optimization as an exploitation conditions and the envelope insulation changes its thermal characteristics. The studied smart building envelope consists of a reinforced aluminum exterior, polymeric insulation foam, phase change material and reinforced interior gypsum board. A prototype sample was tested to validate the numerical scheme using EnergryPlus software. Three scenarios of insulation thermal resistance loss (ΔR/R = 0%, 25%, 50%) were compared with the different PCM thicknesses (tP=0, 1, 2.5, 5 mm). The comparisons were carried out for a west facing enveloped office building (50 storey). PCM optimization was applied to find the maximum efficiency for the different ΔR/R cases. It was found, during the optimization, that the PCM is an important smart component, lowering the peak energy demand up to 2.7 times. The results are not influenced by the insulation aging in terms of ΔR/R during long-term exploitation. In hot and humid climates like Hong Kong, the insulation core of the smart systems is recommended to be laminated completely. This can be very helpful in achieving an acceptable payback period.Keywords: smart building envelope, thermal performance, phase change material, energy efficiency, large-scale sandwich panel
Procedia PDF Downloads 738Device-integrated Micro-thermocouples for Reliable Temperature Measurement of GaN HEMTs
Authors: Hassan Irshad Bhatti, Saravanan Yuvaraja, Xiaohang Li
Abstract:
GaN-based devices, such as high electron mobility transistors (HEMTs), offer superior characteristics for high-power, high-frequency, and high-temperature applications [1]. However, this exceptional electrical performance is compromised by undesirable self-heating effects under high-power applications [2, 3]. Some of the issues caused by self-heating are current collapse, thermal runway and performance degradation [4, 5]. Therefore, accurate and reliable methods for measuring the temperature of individual devices on a chip are needed to monitor and control the thermal behavior of GaN-based devices [6]. Temperature measurement at the micro/nanoscale is a challenging task that requires specialized techniques such as Infrared microscopy, Raman thermometry, and thermoreflectance. Recently, micro-thermocouples (MTCs) have attracted considerable attention due to their advantages of simplicity, low cost, high sensitivity, and compatibility with standard fabrication processes [7, 8]. A micro-thermocouple is a junction of two different metal thin films, which generates a Seebeck voltage related to the temperature difference between a hot and cold zone. Integrating MTC in a device allows local temperature to be measured with high sensitivity and accuracy [9]. This work involves the fabrication and integration of micro-thermocouples (MTCs) to measure the channel temperature of GaN HEMT. Our fabricated MTC (Platinum-Chromium junction) has shown a sensitivity of 16.98 µV/K and can measure device channel temperature with high precision and accuracy. The temperature information obtained using this sensor can help improve GaN-based devices and provide thermal engineers with useful insights for optimizing their designs.Keywords: Electrical Engineering, Thermal engineering, Power Devices, Semiconuctors
Procedia PDF Downloads 28Numerical Calculation of Heat Transfer in Water Heater
Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala
Abstract:
This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation, and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. Results show that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.Keywords: heat exchanger, heat transfer rate, numerical calculation, thermal images
Procedia PDF Downloads 619Technological Measures to Reduce the Environmental Impact of Swimming Pools
Authors: Fátima Farinha, Miguel J. Oliveira, Gina Matias, Armando Inverno, Jânio Monteiro, Cristiano Cabrita
Abstract:
In the last decades, the construction of swimming pools for recreational activities has grown exponentially in southern Europe. Swimming pools are used both for private use in villas and for collective use in hotels or condominiums. However, they have a high environmental impact, mainly in terms of water and energy consumption, being used for a short period of time, depending significantly on favorable atmospheric conditions. Contrary to what would be expected, not enough research has been conducted to reduce the negative impact of this equipment. In this context, this work proposes and analyses technological measures to reduce the environmental impacts of swimming pools, such as thermal insulation of the tank, water balance in order to detect leaks and optimize the backwash process, integration of renewable energy generation, and a smart control system that meets the requirements of the user. The work was developed within the scope of the Ecopool+++ project, which aims to create innovative heated pools with reduced thermal losses and integration of SMART energy plus water management systems. The project is in the final phase of its development, with very encouraging results.Keywords: swimming pools, sustainability, thermal losses, water management system
Procedia PDF Downloads 111Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris
Abstract:
Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging
Procedia PDF Downloads 368Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray
Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry
Abstract:
Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion
Procedia PDF Downloads 100Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines
Authors: V. Radulescu, S. Dumitru
Abstract:
Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow
Procedia PDF Downloads 167Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid
Authors: Morteza Ghanbarpour, Rahmatollah Khodabandeh
Abstract:
In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system.Keywords: heat pipe, nanofluid, thermodynamics, entropy generation, thermal resistance
Procedia PDF Downloads 475Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns
Authors: Raahil Sheikh, Abhishek Maurya, Priya Gujjar, Himanshu Dwivedi, Prathamesh Minde
Abstract:
UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided.Keywords: UAV, drone, autonomous system, thermal imaging
Procedia PDF Downloads 79On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 86Study and Calibration of Autonomous UAV Systems With Thermal Sensing With Multi-purpose Roles
Authors: Raahil Sheikh, Prathamesh Minde, Priya Gujjar, Himanshu Dwivedi, Abhishek Maurya
Abstract:
UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoidedKeywords: UAV, autonomous systems, drones, geo thermal imaging
Procedia PDF Downloads 90Effect of Multi Walled Carbon Nanotubes on Pyrolysis Behavior of Unsaturated Polyester Resin
Authors: Rosli Mohd Yunus, A. K. M. Moshiul Alam, Mohammad Dalour Beg
Abstract:
In the case of advance polymeric materials reinforcement and thermal stability of matrix is a focused arena of researchers. The distribution of carbon nanotubes (CNTs) in polymer matrix influences material properties. In this study, multi-walled carbon nanotubes (MWCNTs) have been dispersed in unsaturated polyester resin (UPR) through solution mixing and sonication techniques using tetra hydro furan (THF) solvent. Nanocomposites have been fabricated with solution mixing and without solution mixing. Viscosity, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM) investigations have been conducted to study the distribution as well as interaction between matrix and MWCNT. The differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and pyrolysis behavior have been conducted to study the thermal degradation and stability of nanocomposites. In addition, the SEM micrographs of nanocomposite residual chars were exhibited more packed together. Incorporation of CNT enhances crystallinity and mechanical and thermal properties of the nanocomposites. Correlations among MWCNTs dispersion, nucleation, fracture morphology and various properties have been made.Keywords: char, multiwall carbon nanotubes, nano composite, pyrolysis
Procedia PDF Downloads 363Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings
Authors: Sandeep Bandarwadkar, Tadas Zdankus
Abstract:
To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.Keywords: heat transfer, accumulation of heat, underground building, soil charge
Procedia PDF Downloads 76The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE
Authors: Lakrim Abderrazak, Tahri Driss
Abstract:
This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.
Procedia PDF Downloads 583Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 405Effect of Injector Installation Angle on the Thermal Behaviors of UWS in a Diesel SCR Catalytic Muffler Systems
Authors: Man Young Kim
Abstract:
To reduce the NOx emission in a Diesel vehicle, such various after treatment systems as SCR, LNC, and LNT are frequently visited as promising systems. Among others, urea-based SCR systems are known to be stable, effective technologies that can reduce NOx emissions most efficiently from diesel exhaust systems. In this study, therefore, effect of urea injector installation angle on the evaporation and mixing characteristics is investigated to find optimum operation conditions. It can be found that the injection angle significantly affects the thermal behavior of the urea-water solution in the diesel exhaust gases.Keywords: selective catalytic reduction (SCR), evaporation, thermolysis, urea-water solution (UWS), injector installation angle
Procedia PDF Downloads 368Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials
Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco
Abstract:
Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites
Procedia PDF Downloads 272