Search results for: single layer model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21545

Search results for: single layer model

20825 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 69
20824 Damage Identification Using Experimental Modal Analysis

Authors: Niladri Sekhar Barma, Satish Dhandole

Abstract:

Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.

Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification

Procedia PDF Downloads 95
20823 A Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions

Authors: Zhanzhao Fu, Chongyi Ling, Jinlan Wang

Abstract:

Water splitting and rechargeable air-based batteries are emerging as new renewable energy storage and conversion technologies. However, the discovery of suitable catalysts with high activity and low cost remains a great challenge. In this work, we report a single-atom trifunctional catalyst, namely Ti₃C₂O₂ supported single Pd atom (Pd1@Ti₃C₂O₂), for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This catalyst is selected from 12 candidates and possesses low overpotentials of 0.22 V, 0.31 V and 0.34 V for the HER, OER and ORR, respectively, making it an excellent electrocatalyst for both overall water splitting and rechargeable air-based batteries. The superior OER and ORR performance originates from the optimal d band center of the supported Pd atom. Moreover, the excellent activity can be maintained even if the single Pd atoms aggregate into small clusters. This work offers new opportunities for advancing the renewable energy storage and conversion technologies and paves a new way for the development of multifunctional electrocatalysts.

Keywords: DFT, SACs, OER, ORR, HER

Procedia PDF Downloads 58
20822 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits

Authors: Sandeep Das

Abstract:

Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysis

Keywords: ANSYS, functionally graded material, lead-acid battery, terminal post

Procedia PDF Downloads 122
20821 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 104
20820 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk

Procedia PDF Downloads 418
20819 Sol-Gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application

Authors: Arabi Nour El Houda, Iratni Aicha, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

TiO2 thin films have been prepared by the sol-gel dip-coating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral do mains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.

Keywords: thin film, dip-coating, mono-crystalline silicon, titanium oxide

Procedia PDF Downloads 417
20818 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 320
20817 Defining Methodology for Multi Model Software Process Improvement Framework

Authors: Aedah Abd Rahman

Abstract:

Software organisations may implement single or multiple frameworks in order to remain competitive. There are wide selection of generic Software Process Improvement (SPI) frameworks, best practices and standards implemented with different focuses and goals. Issues and difficulties emerge in the SPI practices from the context of software development and IT Service Management (ITSM). This research looks into the integration of multiple frameworks from the perspective of software development and ITSM. The research question of this study is how to define steps of methodology to solve the multi model software process improvement problem. The objective of this study is to define the research approach and methodologies to produce a more integrated and efficient Multi Model Process Improvement (MMPI) solution. A multi-step methodology is used which contains the case study, framework mapping and Delphi study. The research outcome has proven the usefulness and appropriateness of the proposed framework in SPI and quality practice in Malaysian software industries. This mixed method research approach is used to tackle problems from every angle in the context of software development and services. This methodology is used to facilitate the implementation and management of multi model environment of SPI frameworks in multiple domains.

Keywords: Delphi study, methodology, multi model software process improvement, service management

Procedia PDF Downloads 249
20816 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 328
20815 Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling

Authors: M. I. Aida Isma, Azni Idris, Rozita Omar, A. R. Putri Razreena

Abstract:

40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer.

Keywords: membrane bioreactor, SRT, HRT, fouling

Procedia PDF Downloads 503
20814 Single Item Presenteeism Question Reliability and Validity of Persian Version in Low Back Pain Patients

Authors: Mohammadreza Khanmohammadi, Noureddin Nakhostin Ansari, Soofia Naghdi

Abstract:

Purpose: Our study aimed to validate single item presenteeism question (SIPQ) into the Persian language for patients with low back pain. Background information: low back pain is a common health problem, and it is one of the most prevalent disorder in working people. There are the different subjective way to evaluate the effect of back pain on work productivity that one of them is by implementing single item presenteeism question. This question has not been validated into the Persian language. Method: Patients were asked to answer SIPQ and pain from 0 to 10 according to numerical rating scale (NRS). The functional rating index was administrated to evaluate construct validity. For test-retest reliability, almost 50 patients re-completed the Persian SIPQ. The construct validity of SIPQ was assessed by analyzing Spearman rank correlation between this question and the Persian version of Functional rating index questionnaire. To analyze test-retest reliability, we assessed intraclass correlation coefficient (agreement) (ICC agreement) (two-way random effects model, single measure). Results: The SIPQ score of two groups of patients (84 males, 16 females, mean age ±SD: 33.85±11.16 years, range: 19-67 years) and healthy subjects (48 male, 2 female ones, mean age ±SD: 24.24 ±8.07 years) was statistically significant. (Mann-Whitney U =198.00, P<.001). The Spearman correlation of data showed that there is a significant correlation between Persian SIPQ score and Persian FRI band (r= .559, P<.001). The ICC was .62. So, the analysis indicated good, test-retest reliability. Conclusion: This study showed that Persian version of SIPQ is reliable and valid when applied to back pain patients.

Keywords: cross cultural adaptation, economic burden, low back pain, Persian language, translation

Procedia PDF Downloads 399
20813 Geometry of the Bandaging Procedure and Its Application while Wrapping Bandages for Treatment of Leg Ulcers

Authors: Monica Puri Sikka, Subrato Ghosh Arunangshu Mukhopadhyay

Abstract:

Appropriate compression bandaging is important for compression therapeutic medical diseases. The high compression approach employed for treating venous leg ulcers should be used correctly so that sufficient (but not excessive) pressure is applied. Bandages used to treat venous disease by compression should achieve and sustain effective levels and gradients of pressure and minimise the risk of pressure trauma. To maintain graduated compression on the limb the bandage needs to be applied at same tension for each layer from ankle to the knee. In this paper the geometry for various bandaging procedures is used to wrap each layer of bandage by marking the relaxed length of the bandage. The relaxed length is calculated depending on the stretch, average circumference of the limb on which it is to be applied and the bandaging technique to be used. This paper aims at developing a scientific approach while applying the bandage to reduce the inter operator variability in applying same tension on each successive layer of bandage.

Keywords: bandaging, compression, inter operator variability, graduated, relaxed length, stretch

Procedia PDF Downloads 482
20812 Powder Assisted Sheet Forming to Fabricate Ti Capsule Magnetic Hyperthermia Implant

Authors: Keigo Nishitani, Kohei Mizuta Mizuta, Kazuyoshi Kurita, Yukinori Taniguchi

Abstract:

To establish mass production process of Ti capsule which has Fe powder inside as magnetic hyperthermia implant, we assumed that Ti thin sheet can be drawn into a φ1.0 mm die hole through the medium of Fe Powder and becomes outer shell of capsule. This study discusses mechanism of powder assisted deep drawing process by both of numerical simulation and experiment. Ti thin sheet blank was placed on die, and was covered by Fe powder layer without pressurizing. Then upper punch was indented on the Fe powder layer, and the blank can be drawn into die cavity as pressurized powder particles were extruded into die cavity from behind of the drawn blank. Distinct Element Method (DEM) has been used to demonstrate the process. To identify bonding parameters on Fe particles which are cohesion, tensile bond stress and inter particle friction angle, axial and diametrical compression failure test of Fe powder compact was conducted. Several density ratios of powder compacts in range of 0.70 - 0.85 were investigated and relationship between mean stress and equivalent stress was calculated with consideration of critical state line which rules failure criterion in consolidation of Fe powder. Since variation of bonding parameters with density ratio has been experimentally identified, and good agreement has been recognized between several failure tests and its simulation, demonstration of powder assisted sheet forming by using DEM becomes applicable. Results of simulation indicated that indent/drawing length of Ti thin sheet is promoted by smaller Fe particle size, larger indent punch diameter, lower friction coefficient between die surface and Ti sheet and certain degrees of die inlet taper angle. In the deep drawing test, we have made die-set with φ2.4 mm punch and φ1.0 mm die bore diameter. Pure Ti sheet with 100 μm thickness, annealed at 650 deg. C has been tested. After indentation, indented/drawn capsule has been observed by microscope, and its length was measured to discuss the feasibility of this capsulation process. Longer drawing length exists on progressive loading pass comparing with the case of single stroke loading. It is expected that progressive loading has an advantage of which extrusion of powder particle into die cavity with Ti sheet is promoted since powder particle layer can be rebuilt while the punch is withdrawn from the layer in each loading steps. This capsulation phenomenon is qualitatively demonstrated by DEM simulation. Finally, we have fabricated Ti capsule which has Fe powder inside for magnetic hyperthermia cancer care treatment. It is concluded that suggested method is possible to use the manufacturing of Ti capsule implant for magnetic hyperthermia cancer care.

Keywords: metal powder compaction, metal forming, distinct element method, cancer care, magnetic hyperthermia

Procedia PDF Downloads 274
20811 Static Study of Piezoelectric Bimorph Beams with Delamination Zone

Authors: Zemirline Adel, Ouali Mohammed, Mahieddine Ali

Abstract:

The FOSDT (First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.

Keywords: static, piezoelectricity, beam, delamination

Procedia PDF Downloads 405
20810 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340

Authors: Theena Thayalan, K. N. Ramesh Babu

Abstract:

Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.

Keywords: FEM, machining, residual stress, XRF

Procedia PDF Downloads 334
20809 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 297
20808 Microwave Single Photon Source Using Landau-Zener Transitions

Authors: Siddhi Khaire, Samarth Hawaldar, Baladitya Suri

Abstract:

As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication.

Keywords: quantum computing, quantum communication, quantum optics, superconducting qubits, flux qubit, charge qubit, microwave single photon source, quantum information processing

Procedia PDF Downloads 75
20807 X-Ray Photoelectron Spectroscopy Analyses of Candidate Materials for Advanced Nuclear Reactors

Authors: Marie Kudrnová, Jana Rejková

Abstract:

The samples of supplied INCONEL 601, 617, 625, and HASTELLOY C-22 alloys and experimental nickel alloy MoNiCr were examined by XPS (X-ray photoelectron spectroscopy) before and after exposure. The experiment was performed in a mixture of LiCl-KCl salt (58.2-41.8 wt. %). The exposure conditions were 440°C, pressure 0.2 MPa, 500 hours in an inert argon atmosphere. The XPS analysis shows that a thin oxide layer composed of metal oxides such as NiO, Cr₂O₃, and Nb₂O₅ was formed. After sputtering the exposed surface with Ar ions, metals were also detected in the elemental state, indicating a very thin protective oxide layer with a thickness in units of up to tens of nanometers.

Keywords: XPS, MSR, nickel alloy, metal oxides

Procedia PDF Downloads 62
20806 Light and Scanning Electron Microscopic Studies on Corneal Ontogeny in Buffalo

Authors: M. P. S. Tomar, Neelam Bansal

Abstract:

Histomorphological, histochemical and scanning electron microscopic observations were recorded in developing cornea of buffalo fetuses. The samples from fetal cornea were collected in appropriate fixative from slaughter house and Veterinary Clinics, GADVASU, Ludhiana. The microscopic slides were stained for detailed histomorphological and histochemical studies. The scanning electron microscopic studies were performed at Electron microscopy & Nanobiology Lab, PAU Ludhiana. In present study, it was observed that, in 36 days (d) fetus, the corneal epithelium was well marked single layered structure which was placed on stroma mesenchyme. Cornea appeared as the continuation of developing sclera. The thickness of cornea and its epithelium increased as well as the epithelium started becoming double layered in 47d fetus at corneo-scleral junction. The corneal thickness in this stage suddenly increased thus easily distinguished from developing sclera. The separation of corneal endothelium from stroma was evident as a single layered epithelium. The stroma possessed numerous fibroblasts in 49d stage eye. Descemet’s membrane was appeared at 52d stage. The limbus area was separated by a depression from the developing cornea in 61d stage. In 65d stage, the Bowman’s layer was more developed. Fibroblasts were arranged parallel to each other as well as parallel to the surface of developing cornea in superficial layers. These fibroblasts and fibers were arranged in wavy pattern in the center of stroma. Corneal epithelium started to be stratified as a double layered epithelium was present in this age of fetal eye. In group II (>120 Days), the corneal epithelium was stratified towards a well marked irido-corneal angle. The stromal fibroblasts followed a complete parallel arrangement in its entire thickness. In full term fetuses, a well developed cornea was observed. It was a fibrous layer which had five distinct layers. From outside to inwards were described as the outer most layer was the 7-8 layered corneal epithelial, subepithelial basement membrane (Bowman’s membrane), substantia propria or stroma, posterior limiting membrane (Descemet’s membrane) and the posterior epithelium (corneal endothelium). The corneal thickness and connective tissue elements were continued to be increased. It was 121.39 + 3.73µ at 36d stage which increased to 518.47 + 4.98 µ in group III fetuses. In fetal life, the basement membrane of corneal epithelium and endothelium depicted strong to intense periodic Acid Schiff’s (PAS) reaction. At the irido-corneal angle, the endothelium of blood vessels was also positive for PAS activity. However, cornea was found mild positive for alcian blue reaction. The developing cornea showed strong reaction for basic proteins in outer epithelium and the inner endothelium layers. Under low magnification scanning electron microscope, cornea showed two types of cells viz. light cells and dark cells. The light cells were smaller in size and had less number of microvilli in their surface than in the dark cells. Despite these surface differences between light and dark cells, the corneal surface showed the same general pattern of microvilli studding all exposed surfaces out to the cell margin. which were long (with variable height), slight tortuous slender and possessed a micro villus shaft with a very prominent knob.

Keywords: buffalo, cornea, eye, fetus, ontogeny, scanning electron microscopy

Procedia PDF Downloads 135
20805 Mathematical Model to Quantify the Phenomenon of Democracy

Authors: Mechlouch Ridha Fethi

Abstract:

This paper presents a recent mathematical model in political sciences concerning democracy. The model is represented by a logarithmic equation linking the Relative Index of Democracy (RID) to Participation Ratio (PR). Firstly the meanings of the different parameters of the model were presented; and the variation curve of the RID according to PR with different critical areas was discussed. Secondly, the model was applied to a virtual group where we show that the model can be applied depending on the gender. Thirdly, it was observed that the model can be extended to different language models of democracy and that little use to assess the state of democracy for some International organizations like UNO.

Keywords: democracy, mathematic, modelization, quantification

Procedia PDF Downloads 345
20804 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 142
20803 Design and Thermal Analysis of Power Harvesting System of a Hexagonal Shaped Small Spacecraft

Authors: Mansa Radhakrishnan, Anwar Ali, Muhammad Rizwan Mughal

Abstract:

Many universities around the world are working on modular and low budget architecture of small spacecraft to reduce the development cost of the overall system. This paper focuses on the design of a modular solar power harvesting system for a hexagonal-shaped small satellite. The designed solar power harvesting systems are composed of solar panels and power converter subsystems. The solar panel is composed of solar cells mounted on the external face of the printed circuit board (PCB), while the electronic components of power conversion are mounted on the interior side of the same PCB. The solar panel with dimensions 16.5cm × 99cm is composed of 36 solar cells (each solar cell is 4cm × 7cm) divided into four parallel banks where each bank consists of 9 solar cells. The output voltage of a single solar cell is 2.14V, and the combined output voltage of 9 series connected solar cells is around 19.3V. The output voltage of the solar panel is boosted to the satellite power distribution bus voltage level (28V) by a boost converter working on a constant voltage maximum power point tracking (MPPT) technique. The solar panel module is an eight-layer PCB having embedded coil in 4 internal layers. This coil is used to control the attitude of the spacecraft, which consumes power to generate a magnetic field and rotate the spacecraft. As power converter and distribution subsystem components are mounted on the PCB internal layer, therefore it is mandatory to do thermal analysis in order to ensure that the overall module temperature is within thermal safety limits. The main focus of the overall design is on compactness, miniaturization, and efficiency enhancement.

Keywords: small satellites, power subsystem, efficiency, MPPT

Procedia PDF Downloads 51
20802 Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal

Authors: Ashna Babu, Deepshikha Jaiswal Nagar

Abstract:

Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal.

Keywords: oxygen deficient clusters, second magnetization peak anomaly, flux jumps, vortex phase diagram

Procedia PDF Downloads 51
20801 Low Voltage and High Field-Effect Mobility Thin Film Transistor Using Crystalline Polymer Nanocomposite as Gate Dielectric

Authors: Debabrata Bhadra, B. K. Chaudhuri

Abstract:

The operation of organic thin film transistors (OFETs) with low voltage is currently a prevailing issue. We have fabricated anthracene thin-film transistor (TFT) with an ultrathin layer (~450nm) of Poly-vinylidene fluoride (PVDF)/CuO nanocomposites as a gate insulator. We obtained a device with excellent electrical characteristics at low operating voltages (<1V). Different layers of the film were also prepared to achieve the best optimization of ideal gate insulator with various static dielectric constant (εr ). Capacitance density, leakage current at 1V gate voltage and electrical characteristics of OFETs with a single and multi layer films were investigated. This device was found to have highest field effect mobility of 2.27 cm2/Vs, a threshold voltage of 0.34V, an exceptionally low sub threshold slope of 380 mV/decade and an on/off ratio of 106. Such favorable combination of properties means that these OFETs can be utilized successfully as voltages below 1V. A very simple fabrication process has been used along with step wise poling process for enhancing the pyroelectric effects on the device performance. The output characteristic of OFET after poling were changed and exhibited linear current-voltage relationship showing the evidence of large polarization. The temperature dependent response of the device was also investigated. The stable performance of the OFET after poling operation makes it reliable in temperature sensor applications. Such High-ε CuO/PVDF gate dielectric appears to be highly promising candidates for organic non-volatile memory and sensor field-effect transistors (FETs).

Keywords: organic field effect transistors, thin film transistor, gate dielectric, organic semiconductor

Procedia PDF Downloads 229
20800 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles

Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose

Abstract:

The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.

Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics

Procedia PDF Downloads 99
20799 The Achievement Model of University Social Responsibility

Authors: Le Kang

Abstract:

On the research question of 'how to achieve USR', this contribution reflects the concept of university social responsibility, identify three achievement models of USR as the society - diversified model, the university-cooperation model, the government - compound model, also conduct a case study to explore characteristics of Chinese achievement model of USR. The contribution concludes with discussion of how the university, government and society balance demands and roles, make necessarily strategic adjustment and innovative approach to repair the shortcomings of each achievement model.

Keywords: modern university, USR, achievement model, compound model

Procedia PDF Downloads 735
20798 Providing Reliability, Availability and Scalability Support for Quick Assist Technology Cryptography on the Cloud

Authors: Songwu Shen, Garrett Drysdale, Veerendranath Mannepalli, Qihua Dai, Yuan Wang, Yuli Chen, David Qian, Utkarsh Kakaiya

Abstract:

Hardware accelerator has been a promising solution to reduce the cost of cloud data centers. This paper investigates the QoS enhancement of the acceleration of an important datacenter workload: the webserver (or proxy) that faces high computational consumption originated from secure sockets layer (SSL) or transport layer security (TLS) procession in the cloud environment. Our study reveals that for the accelerator maintenance cases—need to upgrade driver/firmware or hardware reset due to hardware hang; we still can provide cryptography services by switching to software during maintenance phase and then switching back to accelerator after maintenance. The switching is seamless to server application such as Nginx that runs inside a VM on top of the server. To achieve this high availability goal, we propose a comprehensive fallback solution based on Intel® QuickAssist Technology (QAT). This approach introduces an architecture that involves the collaboration between physical function (PF) and virtual function (VF), and collaboration among VF, OpenSSL, and web application Nginx. The evaluation shows that our solution could provide high reliability, availability, and scalability (RAS) of hardware cryptography service in a 7x24x365 manner in the cloud environment.

Keywords: accelerator, cryptography service, RAS, secure sockets layer/transport layer security, SSL/TLS, virtualization fallback architecture

Procedia PDF Downloads 129
20797 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Yas Barzegaar, Atrin Barzegar

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 80
20796 Robust Single/Multi bit Memristor Based Memory

Authors: Ahmed Emara, Maged Ghoneima, Mohamed Dessouky

Abstract:

Demand for low power fast memories is increasing with the increase in IC’s complexity, in this paper we introduce a proposal for a compact SRAM based on memristor devices. The compact size of the proposed cell (1T2M compared to 6T of traditional SRAMs) allows denser memories on the same area. In this paper, we will discuss the proposed memristor memory cell for single/multi bit data storing configurations along with the writing and reading operations. Stored data stability across successive read operation will be illustrated, operational simulation results and a comparison of our proposed design with previously conventional SRAM and previously proposed memristor cells will be provided.

Keywords: memristor, multi-bit, single-bit, circuits, systems

Procedia PDF Downloads 357