Search results for: predictive accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4529

Search results for: predictive accuracy

3809 Central Vascular Function and Relaxibility in Beta-thalassemia Major Patients vs. Sickle Cell Anemia Patients by Abdominal Aorta and Aortic Root Speckle Tracking Echocardiography

Authors: Gehan Hussein, Hala Agha, Rasha Abdelraof, Marina George, Antoine Fakhri

Abstract:

Background: β-Thalassemia major (TM) and sickle cell disease (SCD) are inherited hemoglobin disorders resulting in chronic hemolytic anemia. Cardiovascular involvement is an important cause of morbidity and mortality in these groups of patients. The narrow border is between overt myocardial dysfunction and clinically silent left ventricular (LV) and / or right ventricular (RV) dysfunction in those patients. 3 D Speckle tracking echocardiography (3D STE) is a novel method for the detection of subclinical myocardial involvement. We aimed to study myocardial affection in SCD and TM using 3D STE, comparing it with conventional echocardiography, correlate it with serum ferritin level and lactate dehydrogenase (LDH). Methodology: Thirty SCD and thirty β TM patients, age range 4-18 years, were compared to 30 healthy age and sex matched control group. Cases were subjected to clinical examination, laboratory measurement of hemoglobin level, serum ferritin, and LDH. Transthoracic color Doppler echocardiography, 3D STE, tissue Doppler echocardiography, and aortic speckle tracking were performed. Results: significant reduction in global longitudinal strain (GLS), global circumferential strain (GCS), and global area strain (GAS) in SCD and TM than control (P value <0.001) there was significantly lower aortic speckle tracking in patients with TM and SCD than control (P value< 0.001). LDH was significantly higher in SCD than both TM and control and it correlated significantly positive mitral inflow E, (p value:0.022 and 0.072. r: 0.416 and -0.333 respectively) lateral E/E’ (p value.<0.001and 0.818. r. 0.618 and -0. 044.respectively) and septal E/E’ (p value 0.007 and 0.753& r value 0.485 and -0.060 respectively) in SCD but not TM and significant negative correlation between LDH and aortic root speckle tracking (value 0.681& r. -0.078.). The potential diagnostic accuracy of LDH in predicting vascular dysfunction as represented by aortic root GCS with a sensitivity 74% and aortic root GCS was predictive of LV dysfunction in SCD patients with sensitivity 100% Conclusion: 3D STE LV and RV systolic dysfunction in spite of their normal values by conventional echocardiography. SCD showed significantly lower right ventricular dysfunction and aortic root GCS than TM and control. LDH can be used to screen patients for cardiac dysfunction in SCD, not in TM

Keywords: thalassemia major, sickle cell disease, 3d speckle tracking echocardiography, LDH

Procedia PDF Downloads 170
3808 An Investigation into the Use of Overset Mesh for a Vehicle Aerodynamics Case When Driving in Close Proximity

Authors: Kushal Kumar Chode, Remus Miahi Cirstea

Abstract:

In recent times, the drive towards more efficient vehicles and the increase in the number of vehicle on the roads has driven the aerodynamic researchers from studying the vehicle in isolation towards understanding the benefits of vehicle platooning. Vehicle platooning is defined as a series of vehicles traveling in close proximity. Due to the limitations in size and load measurement capabilities for the wind tunnels facilities, it is very difficult to perform this investigation experimentally. In this paper, the use of chimera or overset meshing technique is used within the STARCCM+ software to model the flow surrounding two identical vehicle models travelling in close proximity and also during an overtaking maneuver. The results are compared with data obtained from a polyhedral mesh and identical physics conditions. The benefits in terms of computational time and resources and the accuracy of the overset mesh approach are investigated.

Keywords: chimera mesh, computational accuracy, overset mesh, platooning vehicles

Procedia PDF Downloads 350
3807 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)

Authors: Zeki Oralhan, Mahmut Tokmakçı

Abstract:

SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.

Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP

Procedia PDF Downloads 266
3806 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 59
3805 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 474
3804 A Computer-Aided System for Detection and Classification of Liver Cirrhosis

Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy

Abstract:

This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).

Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy

Procedia PDF Downloads 461
3803 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 300
3802 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 122
3801 Stress Hyperglycaemia and Glycaemic Control Post Cardiac Surgery: Relaxed Targets May Be Acceptable

Authors: Nicholas Bayfield, Liam Bibo, Charley Budgeon, Robert Larbalestier, Tom Briffa

Abstract:

Introduction: Stress hyperglycaemia is common following cardiac surgery. Its optimal management is uncertain and may differ by diabetic status. This study assesses the in-hospital glycaemic management of cardiac surgery patients and associated postoperative outcomes. Methods: A retrospective cohort analysis of all patients undergoing cardiac surgery at Fiona Stanley Hospital from February 2015 to May 2019 was undertaken. Management and outcomes of hyperglycaemia following cardiac surgery were assessed. Follow-up was assessed to 1 year postoperatively. Multivariate regression modelling was utilised. Results: 1050 non-diabetic patients and 689 diabetic patients were included. In the non-diabetic cohort, patients with mild (peak blood sugar level [BSL] < 14.3), transient stress hyperglycaemia managed without insulin were not at an increased risk of wound-related morbidity (P=0.899) or mortality at 1 year (P=0.483). Insulin management was associated with wound-related readmission to hospital (P=0.004) and superficial sternal wound infection (P=0.047). Prolonged or severe stress hyperglycaemia was predictive of hospital re-admission (P=0.050) but not morbidity or mortality (P=0.546). Diabetes mellitus was an independent risk factor 1-year mortality (OR; 1.972 [1.041–3.736], P=0.037), graft harvest site wound infection (OR; 1.810 [1.134–2.889], P=0.013) and wound-related readmission (OR; 1.866 [1.076–3.236], P=0.026). In diabetics, postoperative peak BSL > 13.9mmol/L was predictive of graft harvest site infections (OR; 3.528 [1.724-7.217], P=0.001) and wound-related readmission OR; 3.462 [1.540-7.783], P=0.003) regardless of modality of management. A peak BSL of 10.0-13.9 did not increase the risk of morbidity/mortality compared to a peak BSL of < 10.0 (P=0.557). Diabetics with a peak BSL of 13.9 or less did not have significantly increased morbidity/mortality outcomes compared to non-diabetics (P=0.418). Conclusion: In non-diabetic patients, transient mild stress hyperglycaemia following cardiac surgery does not uniformly require treatment. In diabetic patients, postoperative hyperglycaemia with peak BSL exceeding 13.9mmol/L was associated with wound-related morbidity and hospital readmission following cardiac surgery.

Keywords: cardiac surgery, pulmonary embolism, pulmonary embolectomy, cardiopulmonary bypass

Procedia PDF Downloads 162
3800 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 280
3799 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
3798 Localization Mobile Beacon Using RSSI

Authors: Sallama Resen, Celal Öztürk

Abstract:

Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments.

Keywords: bluetooth low energy, child safety, mobile beacons, received signal strength

Procedia PDF Downloads 346
3797 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System

Authors: Hao Wang, Shuguo Pan

Abstract:

The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.

Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm

Procedia PDF Downloads 99
3796 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers

Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin

Abstract:

Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.

Keywords: anxiety, emotional valence, childhood, lexical access

Procedia PDF Downloads 288
3795 Screening Tools and Its Accuracy for Common Soccer Injuries: A Systematic Review

Authors: R. Christopher, C. Brandt, N. Damons

Abstract:

Background: The sequence of prevention model states that by constant assessment of injury, injury mechanisms and risk factors are identified, highlighting that collecting and recording of data is a core approach for preventing injuries. Several screening tools are available for use in the clinical setting. These screening techniques only recently received research attention, hence there is a dearth of inconsistent and controversial data regarding their applicability, validity, and reliability. Several systematic reviews related to common soccer injuries have been conducted; however, none of them addressed the screening tools for common soccer injuries. Objectives: The purpose of this study was to conduct a review of screening tools and their accuracy for common injuries in soccer. Methods: A systematic scoping review was performed based on the Joanna Briggs Institute procedure for conducting systematic reviews. Databases such as SPORT Discus, Cinahl, Medline, Science Direct, PubMed, and grey literature were used to access suitable studies. Some of the key search terms included: injury screening, screening, screening tool accuracy, injury prevalence, injury prediction, accuracy, validity, specificity, reliability, sensitivity. All types of English studies dating back to the year 2000 were included. Two blind independent reviewers selected and appraised articles on a 9-point scale for inclusion as well as for the risk of bias with the ACROBAT-NRSI tool. Data were extracted and summarized in tables. Plot data analysis was done, and sensitivity and specificity were analyzed with their respective 95% confidence intervals. I² statistic was used to determine the proportion of variation across studies. Results: The initial search yielded 95 studies, of which 21 were duplicates, and 54 excluded. A total of 10 observational studies were included for the analysis: 3 studies were analysed quantitatively while the remaining 7 were analysed qualitatively. Seven studies were graded low and three studies high risk of bias. Only high methodological studies (score > 9) were included for analysis. The pooled studies investigated tools such as the Functional Movement Screening (FMS™), the Landing Error Scoring System (LESS), the Tuck Jump Assessment, the Soccer Injury Movement Screening (SIMS), and the conventional hamstrings to quadriceps ratio. The accuracy of screening tools was of high reliability, sensitivity and specificity (calculated as ICC 0.68, 95% CI: 52-0.84; and 0.64, 95% CI: 0.61-0.66 respectively; I² = 13.2%, P=0.316). Conclusion: Based on the pooled results from the included studies, the FMS™ has a good inter-rater and intra-rater reliability. FMS™ is a screening tool capable of screening for common soccer injuries, and individual FMS™ scores are a better determinant of performance in comparison with the overall FMS™ score. Although meta-analysis could not be done for all the included screening tools, qualitative analysis also indicated good sensitivity and specificity of the individual tools. Higher levels of evidence are, however, needed for implication in evidence-based practice.

Keywords: accuracy, screening tools, sensitivity, soccer injuries, specificity

Procedia PDF Downloads 179
3794 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication

Authors: S. H. J. Liu

Abstract:

This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.

Keywords: peer corrective feedback, computer-mediated communication (CMC), second or foreign language (L2 or FL) learning, Wikispaces

Procedia PDF Downloads 245
3793 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold

Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho

Abstract:

The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.

Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold

Procedia PDF Downloads 142
3792 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program

Authors: Carla Van De Sande, Jana Vandenberg

Abstract:

Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.

Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice

Procedia PDF Downloads 205
3791 Climate Change Winners and Losers: Contrasting Responses of Two Aphaniops Species in Oman

Authors: Aziza S. Al Adhoobi, Amna Al Ruheili, Saud M. Al Jufaili

Abstract:

This study investigates the potential effects of climate change on the habitat suitability of two Aphaniops species (Teleostei: Aphaniidae) found in the Oman Mountains and the Southwestern Arabian Coast. Aphaniops kruppi, an endemic species, is found in various water bodies such as wadis, springs, aflaj, spring-fed streams, and some coastal backwaters. Aphaniops stoliczkanus, on the other hand, inhabits brackish and freshwater habitats, particularly in the lower parts of wadies and aflaj, and exhibits euryhaline characteristics. Using Maximum Entropy Modeling (MaxEnt) in conjunction with ArcGIS (10.8.2) and CHELSA bioclimatic variables, topographic indices, and other pertinent environmental factors, the study modeled the potential impacts of climate change based on three Representative Concentration Pathways (RCPs 2.6, 7.0, 8.5) for the periods 2011-2040, 2041-2070, and 2071-2100. The model demonstrated exceptional predictive accuracy, achieving AUC values of 0.992 for A. kruppi and 0.983 for A. stoliczkanus. For A. kruppi, the most influential variables were the mean monthly climate moisture index (Cmi_m), the mean diurnal range (Bio2), and the sediment transport index (STI), accounting for 39.9%, 18.3%, and 8.4%, respectively. As for A. stoliczkanus, the key variables were the sediment transport index (STI), stream power index (SPI), and precipitation of the coldest quarter (Bio19), contributing 31%, 20.2%, and 13.3%, respectively. A. kruppi showed an increase in habitat suitability, especially in low and medium suitability areas. By 2071-2100, high suitability areas increased slightly by 0.05% under RCP 2.6, but declined by -0.02% and -0.04% under RCP 7.0 and 8.5, respectively. A. stoliczkanus exhibited a broader range of responses. Under RCP 2.6, all suitability categories increased by 2071-2100, with high suitability areas increasing by 0.01%. However, low and medium suitability areas showed mixed trends under RCP 7.0 and 8.5, with declines of -0.17% and -0.16%, respectively. The study highlights that climatic and topographical factors significantly influence the habitat suitability of Aphaniops species in Oman. Therefore, species-specific conservation strategies are crucial to address the impacts of climate change.

Keywords: Aphaniops kruppi, Aphaniops stoliczkanus, Climate change, Habitat suitability, MaxEnt

Procedia PDF Downloads 17
3790 Phonological Encoding and Working Memory in Kannada Speaking Adults Who Stutter

Authors: Nirmal Sugathan, Santosh Maruthy

Abstract:

Background: A considerable number of studies have evidenced that phonological encoding (PE) and working memory (WM) skills operate differently in adults who stutter (AWS). In order to tap these skills, several paradigms have been employed such as phonological priming, phoneme monitoring, and nonword repetition tasks. This study, however, utilizes a word jumble paradigm to assess both PE and WM using different modalities and this may give a better understanding of phonological processing deficits in AWS. Aim: The present study investigated PE and WM abilities in conjunction with lexical access in AWS using jumbled words. The study also aimed at investigating the effect of increase in cognitive load on phonological processing in AWS by comparing the speech reaction time (SRT) and accuracy scores across various syllable lengths. Method: Participants were 11 AWS (Age range=19-26) and 11 adults who do not stutter (AWNS) (Age range=19-26) matched for age, gender and handedness. Stimuli: Ninety 3-, 4-, and 5-syllable jumbled words (JWs) (n=30 per syllable length category) constructed from Kannada words served as stimuli for jumbled word paradigm. In order to generate jumbled words (JWs), the syllables in the real words were randomly transpositioned. Procedures: To assess PE, the JWs were presently visually using DMDX software and for WM task, JWs were presented through auditory mode through headphones. The participants were asked to silently manipulate the jumbled words to form a Kannada real word and verbally respond once. The responses for both tasks were audio recorded using record function in DMDX software and the recorded responses were analyzed using PRAAT software to calculate the SRT. Results: SRT: Mann-Whitney test results demonstrated that AWS performed significantly slower on both tasks (p < 0.001) as indicated by increased SRT. Also, AWS presented with increased SRT on both the tasks in all syllable length conditions (p < 0.001). Effect of syllable length: Wilcoxon signed rank test was carried out revealed that, on task assessing PE, the SRT of 4syllable JWs were significantly higher in both AWS (Z= -2.93, p=.003) and AWNS (Z= -2.41, p=.003) when compared to 3-syllable words. However, the findings for 4- and 5-syllable words were not significant. Task Accuracy: The accuracy scores were calculated for three syllable length conditions for both PE and PM tasks and were compared across the groups using Mann-Whitney test. The results indicated that the accuracy scores of AWS were significantly below that of AWNS in all the three syllable conditions for both the tasks (p < 0.001). Conclusion: The above findings suggest that PE and WM skills are compromised in AWS as indicated by increased SRT. Also, AWS were progressively less accurate in descrambling JWs of increasing syllable length and this may be interpreted as, rather than existing as a uniform deficiency, PE and WM deficits emerge when the cognitive load is increased. AWNS exhibited increased SRT and increased accuracy for JWs of longer syllable length whereas AWS was not benefited from increasing the reaction time, thus AWS had to compromise for both SRT and accuracy while solving JWs of longer syllable length.

Keywords: adults who stutter, phonological ability, working memory, encoding, jumbled words

Procedia PDF Downloads 240
3789 Perception of Predictive Confounders for the Prevalence of Hypertension among Iraqi Population: A Pilot Study

Authors: Zahraa Albasry, Hadeel D. Najim, Anmar Al-Taie

Abstract:

Background: Hypertension is considered as one of the most important causes of cardiovascular complications and one of the leading causes of worldwide mortality. Identifying the potential risk factors associated with this medical health problem plays an important role in minimizing its incidence and related complications. The objective of this study is to explore the prevalence of receptor sensitivity regarding assess and understand the perception of specific predictive confounding factors on the prevalence of hypertension (HT) among a sample of Iraqi population in Baghdad, Iraq. Materials and Methods: A randomized cross sectional study was carried out on 100 adult subjects during their visit to the outpatient clinic at a certain sector of Baghdad Province, Iraq. Demographic, clinical and health records alongside specific screening and laboratory tests of the participants were collected and analyzed to detect the potential of confounding factors on the prevalence of HT. Results: 63% of the study participants suffered from HT, most of them were female patients (P < 0.005). Patients aged between 41-50 years old significantly suffered from HT than other age groups (63.5%, P < 0.001). 88.9% of the participants were obese (P < 0.001) and 47.6% had diabetes with HT. Positive family history and sedentary lifestyle were significantly higher among all hypertensive groups (P < 0.05). High salt and fatty food intake was significantly found among patients suffered from isolated systolic hypertension (ISHT) (P < 0.05). A significant positive correlation between packed cell volume (PCV) and systolic blood pressure (SBP) (r = 0.353, P = 0.048) found among normotensive participants. Among hypertensive patients, a positive significant correlation found between triglycerides (TG) and both SBP (r = 0.484, P = 0.031) and diastolic blood pressure (DBP) (r = 0.463, P = 0.040), while low density lipoprotein-cholesterol (LDL-c) showed a positive significant correlation with DBP (r = 0.443, P = 0.021). Conclusion: The prevalence of HT among Iraqi populations is of major concern. Further consideration is required to detect the impact of potential risk factors and to minimize blood pressure (BP) elevation and reduce the risk of other cardiovascular complications later in life.

Keywords: Correlation, Hypertension, Iraq, Risk factors

Procedia PDF Downloads 128
3788 Study of Harmonics Estimation on Analog kWh Meter Using Fast Fourier Transform Method

Authors: Amien Rahardjo, Faiz Husnayain, Iwa Garniwa

Abstract:

PLN used the kWh meter to determine the amount of energy consumed by the household customers. High precision of kWh meter is needed in order to give accuracy results as the accuracy can be decreased due to the presence of harmonic. In this study, an estimation of active power consumed was developed. Based on the first year study results, the largest deviation due to harmonics can reach up to 9.8% in 2200VA and 12.29% in 3500VA with kWh meter analog. In the second year of study, deviation of digital customer meter reaches 2.01% and analog meter up to 9.45% for 3500VA household customers. The aim of this research is to produce an estimation system to calculate the total energy consumed by household customer using analog meter so the losses due to irregularities PLN recording of energy consumption based on the measurement used Analog kWh-meter installed is avoided.

Keywords: harmonics estimation, harmonic distortion, kWh meters analog and digital, THD, household customers

Procedia PDF Downloads 483
3787 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load

Authors: Sanjin Kršćanski, Josip Brnić

Abstract:

Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.

Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending

Procedia PDF Downloads 305
3786 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia

Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang

Abstract:

Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.

Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography

Procedia PDF Downloads 195
3785 Arabic Light Stemmer for Better Search Accuracy

Authors: Sahar Khedr, Dina Sayed, Ayman Hanafy

Abstract:

Arabic is one of the most ancient and critical languages in the world. It has over than 250 million Arabic native speakers and more than twenty countries having Arabic as one of its official languages. In the past decade, we have witnessed a rapid evolution in smart devices, social network and technology sector which led to the need to provide tools and libraries that properly tackle the Arabic language in different domains. Stemming is one of the most crucial linguistic fundamentals. It is used in many applications especially in information extraction and text mining fields. The motivation behind this work is to enhance the Arabic light stemmer to serve the data mining industry and leverage it in an open source community. The presented implementation works on enhancing the Arabic light stemmer by utilizing and enhancing an algorithm that provides an extension for a new set of rules and patterns accompanied by adjusted procedure. This study has proven a significant enhancement for better search accuracy with an average 10% improvement in comparison with previous works.

Keywords: Arabic data mining, Arabic Information extraction, Arabic Light stemmer, Arabic stemmer

Procedia PDF Downloads 308
3784 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: control, identification, robot, co-manipulation, sensor-less

Procedia PDF Downloads 160
3783 Predictors of Recent Work-Related Injury in a Rapidly Developing Country: Results from a Worker Survey in Qatar

Authors: Ruben Peralta, Sam Thomas, Nazia Hirani, Ayman El-Menyar, Hassan Al-Thani, Mohammed Al-Thani, Mohammed Al-Hajjaj, Rafael Consunji

Abstract:

Moderate to severe work-related injuries [WRI's] are a leading cause of trauma admission in Qatar but information on risk factors for their incidence are lacking. This study aims to document and analyze the predictive characteristics for WRI to inform the creation of targeted interventions to improve worker safety in Qatar. This study was conducted as part of the NPRP grant # 7 - 1120 - 3 - 288, titled "A Unified Registry for Occupational Injury Prevention in Qatar”. 266 workers were interviewed using a standard questionnaire, during ‘World Day for Safety and Health at Work’, a Ministry of Public Health event, none refused interview. Nurses and doctors from the Hamad Trauma Center conducted the interviews. Questions were translated into the worker’s native language when it was deemed necessary. Standard information on epidemiologic characteristics and incidence of work-related injury were collected and compared between nationalities and those injured versus those not injured. 262 males and 4 females were interviewed. 17 [6.4%] reported a WRI in the last 24 months. More than half of the injured worked in construction [59%] followed by water supply [11.8%]. Factors significantly associated with recent injury were: Working for a company with > 500 employees and speaking Hindi. Protective characteristics included: Being from the Philippines or Sri Lanka, speaking Arabic, working in healthcare, an office or trading and company size between 100-500 employees. Years of schooling and working in Qatar were not predictive factor for WRI. The findings from this survey should guide future research that will better define worker populations at an increased risk for WRI and inform recruiters and sending countries. A focus on worker language skills, interventions in the construction industry and occupational safety in large companies is needed.

Keywords: occupational injury, prevention, safety, trauma, work related injury

Procedia PDF Downloads 323
3782 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 57
3781 Upon Further Reflection: More on the History, Tripartite Role, and Challenges of the Professoriate

Authors: Jeffrey R. Mueller

Abstract:

This paper expands on the role of the professor by detailing the origins of the profession, adding some of the unique contributions of North American Universities, as well as some of the best practice recommendations, to the unique tripartite role of the professor. It describes current challenges to the profession including the ever-controversial student rating of professors. It continues with the significance of empowerment to the role of the professor. It concludes with a predictive prescription for the future of the professoriate and the role of the university-level educational administrator toward that end.

Keywords: professoriate history, tripartite role, challenges, empowerment, shared governance, administratization

Procedia PDF Downloads 401
3780 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59