Search results for: predicting factors
10852 Work Related and Psychosocial Risk Factors for Musculoskeletal Disorders among Workers in an Automated flexible Assembly Line in India
Authors: Rohin Rameswarapu, Sameer Valsangkar
Abstract:
Background: Globally, musculoskeletal disorders are the largest single cause of work-related illnesses accounting for over 33% of all newly reported occupational illnesses. Risk factors for MSD need to be delineated to suggest means for amelioration. Material and methods: In this current cross-sectional study, the prevalence of MSDs among workers in an electrical company assembly line, the socio-demographic and job characteristics associated with MSD were obtained through a semi-structured questionnaire. A quantitative assessment of the physical risk factors through the Rapid Upper Limb Assessment (RULA) tool, and measurement of psychosocial risk factors through a Likert scale was obtained. Statistical analysis was conducted using Epi-info software and descriptive and inferential statistics including chi-square and unpaired t test were obtained. Results: A total of 263 workers consented and participated in the study. Among these workers, 200 (76%) suffered from MSD. Most of the workers were aged between 18–27 years and majority of the workers were women with 198 (75.2%) of the 263 workers being women. A chi square test was significant for association between male gender and MSD with a P value of 0.007. Among the MSD positive group, 4 (2%) had a grand score of 5, 10 (5%) had a grand score of 6 and 186 (93%) had a grand score of 7 on RULA. There were significant differences between the non-MSD and MSD group on five out of the seven psychosocial domains, namely job demand, job monotony, co-worker support, decision control and family and environment domains. Discussion: The current cross-sectional study demonstrates a high prevalence of MSD among assembly line works with inherent physical and psychosocial risk factors and recommends that not only physical risk factors, addressing psychosocial risk factors through proper ergonomic means is also essential to the well-being of the employee.Keywords: musculoskeletal disorders, India, occupational health, Rapid Upper Limb Assessment (RULA)
Procedia PDF Downloads 34910851 Motivations, Perceptions, and Aspirations concerning Teaching as a Career for High School Students from Racially/Ethnically Diverse Backgrounds
Authors: Mi Ok Kang
Abstract:
This study explores the factors that motivate urban high school students from racially/ethnically diverse backgrounds to choose teaching as a future career. It draws on in-depth interviews with high school students of color living in an urban downtown located in an intermountain area in the U.S. Using the factors influencing teaching choice (FIT-Choice) model, this study examines the motivations, mobility experiences, and aspirations of participating high school students who self-identified as Latino/a, Tongan, and Chinese. The study identifies influential factors -both challenges and strengthening effects- that high school students of color experience in their career decision making. The study concludes that self-perceptions of teaching abilities, parental support, social connections, job security, and prior work with children during the internship in K-12 classroom motivated them to be a teacher. Limitations such as financial struggles of parents, the low social status of teaching career, and the low salary and benefit packages in the U.S. are among the factors that cause students to waver in or doubt their career choice.Keywords: career development, diversifying teaching force, FIT-Choice, high school students of color
Procedia PDF Downloads 28410850 Effect of Bank Specific and Macro Economic Factors on Credit Risk of Islamic Banks in Pakistan
Authors: Mati Ullah, Shams Ur Rahman
Abstract:
The purpose of this research study is to investigate the effect of macroeconomic and bank-specific factors on credit risk in Islamic banking in Pakistan. The future of financial institutions largely depends on how well they manage risks. Credit risk is an important type of risk affecting the banking sector. The current study has taken quarterly data for the period of 6 years, from 1st July 2014 to 30 Jun 2020. The data set consisted of secondary data. Data was extracted from the websites of the State Bank and World Bank and from the financial statements of the concerned banks. In this study, the Ordinary least square model was used for the analysis of the data. The results supported the hypothesis that macroeconomic factors and bank-specific factors have a significant effect on credit risk. Macroeconomic variables, Inflation and exchange rates have positive significant effects on credit risk. However, gross domestic product has a negative significant relationship with credit risk. Moreover, the corporate rate has no significant relation with credit risk. Internal variables, size, management efficiency, net profit share income and capital adequacy have been proven to influence positively and significantly the credit risk. However, loan to deposit-has a negative insignificance relationship with credit risk. The contribution of this article is that similar conclusions have been made regarding the influence of banking factors on credit risk.Keywords: credit risk, Islamic banks, macroeconomic variables, banks specific variable
Procedia PDF Downloads 1710849 A Study on the Motivational Factors of Women Entrepreneurship
Authors: Gladys Oppong, Saumya Singh, Pramod Pathak
Abstract:
Women entrepreneurship has started establishing itself globally. Despite various social hurdles, Indian women have proved their strength in the area of entrepreneurship. Rising pattern of women entrepreneurship in Indian context make it significant to know the reason behind it. It’s a normal perception that women with financially strong backgrounds are highly motivated to progress in the area of entrepreneurship while lack of money becomes a major restraint for others. The proposed study attempts to identify the motivational factors for becoming women entrepreneur. The research work is to be conducted on women entrepreneurs. For this purpose, factor analysis will be used. The study has identified a set of motivational factors namely family business, social status, education and qualification, self-fulfillment and achievement among others that give momentum to the women to become an entrepreneur. The outcome of the study will be helpful in developing women entrepreneurship in India.Keywords: women entrepreneurship, motivation, family business, social status
Procedia PDF Downloads 34510848 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter
Authors: Van-Thanh Ho, Jaiyoung Ryu
Abstract:
In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model
Procedia PDF Downloads 9810847 Factors Affecting the Caregiving Experience of Children with Parental Mental Illnesses: A Systematic Review
Authors: N. Anjana
Abstract:
Worldwide, the prevalence of mental illnesses is increasing. The issues of persons with mental illness and their caregivers have been well documented in the literature. However, data regarding the factors affecting the caregiving experience of children with parental mental illnesses is sparse. This systematic review aimed to examine the existing literature of the factors affecting the caregiving experience of children of parents with mental illnesses. A comprehensive search of databases such as PubMed, EBSCO, JSTOR, ProQuest Central, Taylor and Francis Online, and Google Scholar were performed to identify peer-reviewed papers examining the factors associated with caregiving experiences of children with parental mental illnesses such as schizophrenia and major depression, for the 10-year period ending November 2019. Two researchers screened studies for eligibility. One researcher extracted data from eligible studies while a second performed verification of results for accuracy and completeness. Quality appraisal was conducted by both reviewers. Data describing major factors associated with caregiving experiences of children with parental mental illnesses were synthesized and reported in narrative form. Five studies were considered eligible and included in this review. Findings are organized under major themes such as the impact of parental mental illness on children’s daily life, how children provide care to their mentally ill parents as primary carers, social and relationship factors associated with their caregiving, positive and negative experiences in caregiving and how children cope with their experiences with parental mental illnesses. Literature relating to the caregiving experiences of children with parental mental illnesses is sparse. More research is required to better understand the children’s caregiving experiences related to parental mental illnesses so as to better inform management for enhancing their mental health, wellbeing, and caregiving practice.Keywords: caregiving experience, children, parental mental illnesses, wellbeing
Procedia PDF Downloads 14110846 Foodborne Disease Risk Factors Among Women in Riyadh, Saudi Arabia
Authors: Abdullah Alsayeqh
Abstract:
The burden of foodborne diseases in Saudi Arabia is currently unknown. The objective of this study was to identify risk factors associated with these diseases among women in Riyadh. A cross-sectional study was carried out from March to July, 2013 where participants’ responses indicated that they were at risk of these diseases through improper food-holding temperature (45.28%), inadequate cooking (35.47%), cross-contamination (32.23%), and food from unsafe sources (22.39%). The claimed food safety knowledge by 22.04% of participants was not evidenced by their reported behaviors (p > 0.05). This is the first study to identify the gap in food safety knowledge among women in Riyadh which needs to be addressed by the concerned authorities in the country by engaging women more effectively in food safety educational campaigns.Keywords: foodborne diseases, risk factors, knowledge, women, Saudi Arabia
Procedia PDF Downloads 50810845 The Influence of Interest, Beliefs, and Identity with Mathematics on Achievement
Authors: Asma Alzahrani, Elizabeth Stojanovski
Abstract:
This study investigated factors that influence mathematics achievement based on a sample of ninth-grade students (N = 21,444) from the High School Longitudinal Study of 2009 (HSLS09). Key aspects studied included efficacy in mathematics, interest and enjoyment of mathematics, identity with mathematics and future utility beliefs and how these influence mathematics achievement. The predictability of mathematics achievement based on these factors was assessed using correlation coefficients and multiple linear regression. Spearman rank correlations and multiple regression analyses indicated positive and statistically significant relationships between the explanatory variables: mathematics efficacy, identity with mathematics, interest in and future utility beliefs with the response variable, achievement in mathematics.Keywords: Mathematics achievement, math efficacy, mathematics interest, factors influence
Procedia PDF Downloads 15010844 Antecedents of Sport Commitment: A Comparison Based on Demographic Factors
Authors: Navodita Mishra, T. J. Kamalanabhan
Abstract:
Purpose: The primary purpose of this study was to identify the antecedents of sports commitment among cricket players and to understand demographic variables that may impact these factors. Commitment towards one’s sports plays a crucial role in determining discipline and efforts of the player. Moreover, demographic variables would seem to play an important role in determining which factors or predictors have the greatest impact on commitment level. Design /methodology/approach: This study hypothesized the effect of demographic factors on sports commitment among cricket players. It attempts to examine the extent to which demographic factors can differentially motivate players to exhibit commitment towards their respective sport. Questionnaire survey method was adopted using purposive sampling technique. Using Multiple Regression, ANOVA, and t-test, the hypotheses were tested based on a sample of 350 players from Cricket Academy. Findings: Our main results from the multivariate analysis indicated that enjoyment and leadership of coach and peer affect the level of commitment to a greater extent whereas personal investment is a significant predictor of commitment among rural background players Moreover, level of sport commitment among players is positively related to household income, the rural background players participate in sports to a greater extent than the urban players, there is no evidence of regional differentials in commitment but age differences (i.e. U-19 vs. U-25) play an important role in the decision to continue the participation in sports.Keywords: Individual Sports Commitment, demographic indicators, cricket, player motivation
Procedia PDF Downloads 48110843 Factors Related to Employee Adherence to Rules in Kuwait Business Organizations
Authors: Ali Muhammad
Abstract:
The purpose of this study is to develop a theoretical framework which demonstrates the effect of four personal factors on employees rule following behavior in Kuwaiti business organizations. The model suggested in this study includes organizational citizenship behavior, affective organizational commitment, organizational trust, and procedural justice as possible predictors of rule following behavior. The study also attempts to compare the effects of the suggested factors on employees rule following behavior. The new model will, hopefully, extend previous research by adding new variables to the models used to explain employees rule following behavior. A discussion of issues related to rule-following behavior is presented, as well as recommendations for future research.Keywords: employee adherence to rules, organizational justice, organizational commitment, organizational citizenship behavior
Procedia PDF Downloads 45610842 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta
Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati
Abstract:
DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta
Procedia PDF Downloads 16310841 Anxiety Factors in the Saudi EFL Learners
Authors: Fariha Asif
Abstract:
The Saudi EFL learners face a number of problems in EFL learning, anxiety is the most potent one among those. It means that its resolution can lead to better language skills in Saudi students. That’s why, the study is carried out and is considered to be of interest to the Saudi language learners, educators and the policy makers because of the potentially negative impact that anxiety has on English language learning. The purpose of the study is to explore the factors that cause language anxiety in the Saudi EFL learners while learning speaking skills and the influence it casts on communication in the target language. The investigation of the anxiety-producing factors that arise while learning to communicate in the target language will hopefully broaden the insight into the issue of language anxiety and will help language teachers in making the classroom environment less stressful. The study seeks to answer the questions such as what are the psycholinguistic factors that cause language anxiety among ESL/EFL learners in learning and speaking English Language, especially in the context of the Saudi students. What are the socio-cultural factors that cause language anxiety among Saudi EFL learners in learning and speaking English Language? How is anxiety manifested in the language learning of the Saudi EFL learners? And which strategies can be used to successfully cope with language anxiety? The scope of the study is limited to the college and university English Teachers and subject specialists (males and females) in public sectors colleges and universities in Saudi Arabia. Some of the key findings of the study are:, Anxiety plays an important role in English as foreign language learning for the Saudi EFL learners. Some teachers believe that anxiety bears negatives effects for the learners, while some others think that anxiety serves a positive outcome for the learners by giving them an extra bit of motivation to do their best in English language learning. Language teachers seem to have consensus that L1 interference is one of the major factors that cause anxiety among the Saudi EFL learners. Most of the Saudi EFL learners are found to have fear of making mistakes. They don’t take initiative and opt to keep quiet and don’t respond fearing that they would make mistakes and this would ruin their image in front of their peers. Discouraging classroom environment is also counted as one of the major anxiety causing factors. The teachers, who don’t encourage learners positively, make them anxious and they start avoiding class participation. It is also found that English language teachers have their important role to minimize the negative effects of anxiety in the classes. The teachers’ positive encouragement can do wonders in this regard. A positive, motivating and encouraging class environment is essential to produce desired results in English language learning for the Saudi EFL learners.Keywords: factors, psychology, speaking, EFL
Procedia PDF Downloads 46510840 Comparative Study on Inhibiting Factors of Cost and Time Control in Nigerian Construction Practice
Authors: S. Abdulkadir, I. Y. Moh’d, S. U. Kunya, U. Nuruddeen
Abstract:
The basis of any contract formation between the client and contractor is the budgeted cost and the estimated duration of projects. These variables are paramount important to project's sponsor in a construction projects and in assessing the success or viability of construction projects. Despite the availability of various techniques of cost and time control, many projects failed to achieve their initial estimated cost and time. The paper evaluate the inhibiting factors of cost and time control in Nigerian construction practice and comparing the result with the United Kingdom practice as identified by one researcher. The populations of the study are construction professionals within Bauchi and Gombe state, Nigeria, a judgmental sampling employed in determining the size of respondents. Descriptive statistics used in analyzing the data in SPSS. Design change, project fraud and corruption, financing and payment of completed work found to be common among the top five inhibiting factors of cost and time control in the study area. Furthermore, the result had shown some comprising with slight contrast as in the case of United Kingdom practice. Study recommend the adaptation of mitigation measures developed in the UK prior to assessing its effectiveness and so also developing a mitigating measure for other top factors that are not within the one developed in United Kingdom practice. Also, it recommends a wider assessing comparison on the modify inhibiting factors of cost and time control as revealed by the study to cover almost all part of Nigeria.Keywords: comparison, cost, inhibiting factor, United Kingdom, time
Procedia PDF Downloads 44010839 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 17510838 Integration of Climatic Factors in the Meta-Population Modelling of the Dynamic of Malaria Transmission, Case of Douala and Yaoundé, Two Cities of Cameroon
Authors: Justin-Herve Noubissi, Jean Claude Kamgang, Eric Ramat, Januarius Asongu, Christophe Cambier
Abstract:
The goal of our study is to analyse the impact of climatic factors in malaria transmission taking into account migration between Douala and Yaoundé, two cities of Cameroon country. We show how variations of climatic factors such as temperature and relative humidity affect the malaria spread. We propose a meta-population model of the dynamic transmission of malaria that evolves in space and time and that takes into account temperature and relative humidity and the migration between Douala and Yaoundé. We also integrate the variation of environmental factors as events also called mathematical impulsion that can disrupt the model evolution at any time. Our modelling has been done using the Discrete EVents System Specification (DEVS) formalism. Our implementation has been done on Virtual Laboratory Environment (VLE) that uses DEVS formalism and abstract simulators for coupling models by integrating the concept of DEVS.Keywords: compartmental models, DEVS, discrete events, meta-population model, VLE
Procedia PDF Downloads 55410837 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project
Authors: Soheila Sadeghi
Abstract:
In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management
Procedia PDF Downloads 3910836 Exploring the Underlying Factors of Student Dropout in Makawanpur Multiple Campus: A Comprehensive Analysis
Authors: Uttam Aryal, Shekhar Thapaliya
Abstract:
This research paper presents a comprehensive analysis of the factors contributing to student dropout at Makawanpur Multiple Campus, utilizing primary data collected directly from dropped out as well as regular students and academic staff. Employing a mixed-method approach, combining qualitative and quantitative methods, this study examines into the complicated issue of student dropout. Data collection methods included surveys, interviews, and a thorough examination of academic records covering multiple academic years. The study focused on students who left their programs prematurely, as well as current students and academic staff, providing a well-rounded perspective on the issue. The analysis reveals a shaded understanding of the factors influencing student dropout, encompassing both academic and non-academic dimensions. These factors include academic challenges, personal choices, socioeconomic barriers, peer influences, and institutional-related issues. Importantly, the study highlights the most influential factors for dropout, such as the pursuit of education abroad, financial restrictions, and employment opportunities, shedding light on the complex web of circumstances that lead students to discontinue their education. The insights derived from this study offer actionable recommendations for campus administrators, policymakers, and educators to develop targeted interventions aimed at reducing dropout rates and improving student retention. The study underscores the importance of addressing the diverse needs and challenges faced by students, with the ultimate goal of fostering a supportive academic environment that encourages student success and program completion.Keywords: drop out, students, factors, opportunities, challenges
Procedia PDF Downloads 6410835 Comparison of Cervical Length Using Transvaginal Ultrasonography and Bishop Score to Predict Succesful Induction
Authors: Lubena Achmad, Herman Kristanto, Julian Dewantiningrum
Abstract:
Background: The Bishop score is a standard method used to predict the success of induction. This examination tends to be subjective with high inter and intraobserver variability, so it was presumed to have a low predictive value in terms of the outcome of labor induction. Cervical length measurement using transvaginal ultrasound is considered to be more objective to assess the cervical length. Meanwhile, this examination is not a complicated procedure and less invasive than vaginal touché. Objective: To compare transvaginal ultrasound and Bishop score in predicting successful induction. Methods: This study was a prospective cohort study. One hundred and twenty women with singleton pregnancies undergoing induction of labor at 37 – 42 weeks and met inclusion and exclusion criteria were enrolled in this study. Cervical assessment by both transvaginal ultrasound and Bishop score were conducted prior induction. The success of labor induction was defined as an ability to achieve active phase ≤ 12 hours after induction. To figure out the best cut-off point of cervical length and Bishop score, receiver operating characteristic (ROC) curves were plotted. Logistic regression analysis was used to determine which factors best-predicted induction success. Results: This study showed significant differences in terms of age, premature rupture of the membrane, the Bishop score, cervical length and funneling as significant predictors of successful induction. Using ROC curves found that the best cut-off point for prediction of successful induction was 25.45 mm for cervical length and 3 for Bishop score. Logistic regression was performed and showed only premature rupture of membranes and cervical length ≤ 25.45 that significantly predicted the success of labor induction. By excluding premature rupture of the membrane as the indication of induction, cervical length less than 25.3 mm was a better predictor of successful induction. Conclusion: Compared to Bishop score, cervical length using transvaginal ultrasound was a better predictor of successful induction.Keywords: Bishop Score, cervical length, induction, successful induction, transvaginal sonography
Procedia PDF Downloads 32510834 A Development Model of Factors Affecting Decision Making to Select Successor in Family Business of Thailand
Authors: Polvasut Mahaiamsiri, Piraphong Foosiri
Abstract:
The purpose of this research is to explore the model of factors affecting decision making to select successor in family business of Thailand. A Structural Equation Model (SEM) was created from relevant theories and researches. Consequently, examine and analyse, the causal relation factors of Succession Plan, Recruitment Process and Strategic Planning, whether they have direct or indirect effects on Decision Making to Select Successor in family business. Units of analysis are selected from the family business, totalling 300 sampling. Population sampling is current owners or CEO from the percentage of six district areas in Thailand with multi-stage sampling. A set of questionnaires is used to collect data. An analysis of structural equation modelling (SEM) technique using AMOS 21 program is conducted to test the hypotheses and confirmatory factor analysis is performed and shows that these variables can be tested. The finding of this study revealed that these factors are separate constructs that combine to determine decision making to select successors.Keywords: succession plan, family business, recruitment process, strategic planning, decision making to select successor
Procedia PDF Downloads 20810833 Motivating Factors of Mobile Device Applications toward Learning
Authors: Yen-Mei Lee
Abstract:
Mobile learning (m-learning) has been applied in the education field not only because it is an alternative to web-based learning but also it possesses the ‘anytime, anywhere’ learning features. However, most studies focus on the technology-related issue, such as usability and functionality instead of addressing m-learning from the motivational perspective. Accordingly, the main purpose of the current paper is to integrate critical factors from different motivational theories and related findings to have a better understand the catalysts of an individual’s learning motivation toward m-learning. The main research question for this study is stated as follows: based on different motivational perspectives, what factors of applying mobile devices as medium can facilitate people’s learning motivations? Self-Determination Theory (SDT), Uses and Gratification Theory (UGT), Malone and Lepper’s taxonomy of intrinsic motivation theory, and different types of motivation concepts were discussed in the current paper. In line with the review of relevant studies, three motivating factors with five essential elements are proposed. The first key factor is autonomy. Learning on one’s own path and applying personalized format are two critical elements involved in the factor of autonomy. The second key factor is to apply a build-in instant feedback system during m-learning. The third factor is creating an interaction system, including communication and collaboration spaces. These three factors can enhance people’s learning motivations when applying mobile devices as medium toward learning. To sum up, in the currently proposed paper, with different motivational perspectives to discuss the m-learning is different from previous studies which are simply focused on the technical or functional design. Supported by different motivation theories, researchers can clearly understand how the mobile devices influence people’s leaning motivation. Moreover, instructional designers and educators can base on the proposed factors to build up their unique and efficient m-learning environments.Keywords: autonomy, learning motivation, mobile learning (m-learning), motivational perspective
Procedia PDF Downloads 18110832 Risk Factors for High Resistance of Ciprofloxacin Against Escherichia coli in Complicated Urinary Tract Infection
Authors: Liaqat Ali, Khalid Farooq, Shafieullah Khan, Nasir Orakzai, Qudratullah
Abstract:
Objectives: To determine the risk factors for high resistance of ciprofloxacin in complicated urinary tract infections. Materials and Methods: It is an analytical study that was conducted in the department of Urology (Team ‘C’) at Institute of Kidney Diseases Hayatabad Peshawar from 1st June 2012 till 31st December 2012. Total numbers of 100 patients with complicated UTI was selected in the study. Multivariate analysis and linear regression were performed for the detection of risk factors. All the data was recorded on structured Proforma and was analyzed on SPSS version 17. Results: The mean age of the patient was 55.6 years (Range 3-82 years). 62 patients were male while 38 patients were female. 66 isolates of E-Coli were found sensitive to ciprofloxacin while 34 isolates were found Resistant for ciprofloxacin. Using multivariate analysis and linear regression, an increasing age above 50 (p=0.002) History of urinary catheterization especially for bladder outflow obstruction (p=0.001) and previous multiple use of ciprofloxacin (p=0.001) and poor brand of ciprofloxacin were found to be independent risk factors for high resistance of ciprofloxacin. Conclusion: UTI is common illness across the globe with increasing trend of antimicrobial resistance for ciprofloxacin against E Coli in complicated UTI. The risk factors for emerging resistance are increasing age, urinary catheterization and multiple use and poor brand of ciprofloxacin.Keywords: urinary tract infection, ciprofloxacin, urethral catheterization, antimicrobial resistance
Procedia PDF Downloads 35410831 Analysis of Conflict and Acceptance Factors on Water and Land Photovoltaic Facility
Authors: Taehyun Kim, Taehyun Kim, Hyunjoo Park
Abstract:
Photovoltaic facility occurs conflicts and disputes over environmental issues such as soil runoff, landscapes damage, and ecosystems damage. Because of these problems, huge social and economic cost occurred. The purpose of this study is to analyze resident‘s acceptability and conflict factors on the location of PV facilities, and suggest ways to promote resident’s acceptability and solutions for conflicts. Literature review, cases analysis, and expert interview on the acceptance and conflict factors related to the location of PV facilities are used to derive results. The results of this study are expected to contribute to the minimization of environmental impact and social conflict due to the development of renewable energy in the future.Keywords: acceptance factor, conflict factor, factor analysis, photovoltaic facility
Procedia PDF Downloads 17510830 Potential Risk Factors Associated with Sole Hemorrhages Causing Lameness in Egyptian Water Buffaloes and Native Breed Cows
Authors: Waleed El-Said Abou El-Amaiem
Abstract:
Sole hemorrhages are considered as a main cause for sub clinical laminitis. In this study we aimed at discussing the most prominent risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. The final multivariate logistic regression model showed, a significant association between sub acute ruminal acidosis (P< 0.05), limb affected (P< 0.05) and weight (P< 0.05) and sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. According to our knowledge, this is the first paper to discuss the risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows.Keywords: lameness, buffalo, sole hemorrhages, breed cows
Procedia PDF Downloads 45110829 Psychological Resilience Factors Associated with Climate Change Adaptations by Subsistence Farmers in a Rural Community, South Africa
Authors: Kgopa Bontle, Tholen Sodi
Abstract:
Climate change poses a major threat to the well-being of both people and the environment, with subsistence farmers most affected as they rely on local supply systems that are sensitive to climate variation. This study documented psychological resilience factors associated with climate change adaptations by subsistence farmers in Maruleng Municipality, Limpopo Province. A qualitative study was conducted to examine the notions of climate change by subsistence farmers, the psychological resilience factors, the strategies to cope with climate change, adaptation methods, and the development of subsistence farmers’ psychological resilience factors model. Data were collected through direct interactions with participants using a grounded theory research design. An open-ended interview was used to collect data with a sample of 15 participants selected through theoretical sampling in Maruleng Municipality. The participants were both Sepedi and Xitsonga speaking from 2 villages, mostly unemployed, pensioners and dependent on social grants. The study included both males and females who were predominately the elderly. The research findings indicate that farmers have limited knowledge of what climate change is and what causes it. Furthermore, the research reflects that although their responses were non-scientific but sensible enough to know what they were dealing with. They mentioned extreme weather, which includes hot days and less rainfall and changes in seasons, as some of the impacts brought by climate change. The results also indicated that participants have learned to adapt through several adaptation strategies, including mulching, changes in irrigation time slots and being innovative. The resilience factors that emerged from the study were a passion for farming, hope, enthusiasm, courage, acceptance/tolerance, livelihood and belief systems. Looking at the socio-economic factors of the current study setting argumentation leads to the conclusion that it is important that government should assist the subsistence farmers as it was observed from the participants that they felt neglected by the government and policymakers as they are small scale farmers and are not included like commercial farmers.Keywords: climate change, psychological resilience factors, human adaptation, subsistence farmers
Procedia PDF Downloads 12210828 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 9410827 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams
Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar
Abstract:
A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete
Procedia PDF Downloads 15910826 Sanitary Measures in Piggeries, Awareness and Risk Factors of African Swine Fever in Benue State, Nigeria
Authors: A. Asambe
Abstract:
A study was conducted to determine the level of compliance with sanitary measures in piggeries, and awareness and risk factors of African swine fever in Benue State, Nigeria. Questionnaires were distributed to 74 respondents consisting of piggery owners and attendants in different piggeries across 12 LGAs to collect data for this study. Sanitary measures in piggeries were observed to be generally very poor, though respondents admitted being aware of ASF. Piggeries located within a 1 km radius of a slaughter slab (OR=9.2, 95% CI - 3.0-28.8), piggeries near refuse dump sites (OR=3.0, 95% CI - 1.0-9.5) and piggeries where farm workers wear their work clothes outside of the piggery premises (OR=0.2, 95% CI - 0.1-0.7) showed higher chances of ASFV infection and were significantly associated (p < 0.0001), (p < 0.05) and (p < 0.01), and were identified as potential risk factors. The study concluded that pigs in Benue State are still at risk of an ASF outbreak. Proper sanitary and hygienic practices is advocated and emphasized in piggeries, while routine surveillance for ASFV antibodies in pigs in Benue State is strongly recommended to provide a reliable reference data base to plan for the prevention of any devastating ASF outbreak.Keywords: African swine fever, awareness, piggery, risk factors, sanitary measures
Procedia PDF Downloads 17710825 Study of the Influence of Non Genetic Factors Affecting over Nutrition Students in Ayutthaya Province, Thailand
Authors: Thananyada Buapian
Abstract:
Overnutrition is emerging as a morbid disease in developing and Westernized countries. Because of its comorbidity diseases, it is cost-effective to prevent and manage this disease earlier. In Thailand, this alarming disease has long been studied, but the prevalence is still higher than that in the past. Physicians should recognize it well and have a definite direction to face and combat this dangerous disease. Rapid changes in the tremendous figure of overnutrition students indicate that genetic factors are not the primary determinants since human genes have remained unchanged for a century. This study aims to assess the prevalence of overnutrition students and to investigate the non-genetic factors affecting over nutrition students. A cross-sectional school-based survey was conducted. A two-stage sampling was adopted. Respondents included 1,850 students in grades 4 to 6 in Ayutthaya Province. An anthropometric measurement and questionnaire were developed. Childhood over nutrition was defined as a weight-for-height Z-score above +2SD of NCHS/WHO references. About thirty three percent of the children were over nutrition in Ayutthaya province. Stepwise multiple logistic regression analysis showed that 8 statistically significant non genetic factors explain the variation of childhood over nutrition by 18 percent. Sex is the prime factor to explain the variation of childhood over nutrition, followed by duration of light physical activities, duration of moderate physical activities, having been breastfed, the presence of a healthy role model of the caregiver, number of siblings, birth order, and occupation of the caregiver, respectively. Non genetic factors, especially the subjects’ demographic and physical activities, as well as the caregivers’ background and family environment, should be considered in viable approach to remedy this health imbalance in children.Keywords: non genetic factors, non-genetic, over nutrition, over nutrition students
Procedia PDF Downloads 27210824 Developing a Web GIS Tool for the Evaluation of Soil Erosion of a Watershed
Authors: Y. Fekir, K. Mederbal, M. A. Hamadouche, D. Anteur
Abstract:
The soil erosion by water has become one of the biggest problems of the environment in the world, threatening the majority of countries. There are several models to evaluate erosion. These models are still a simplified representation of reality. They permit the analysis of complex systems, measurements are complementary to allow an extrapolation in time and space and may combine different factors. The empirical model of soil loss proposed by Wischmeier and Smith (Universal Soil Loss Equation), is widely used in many countries. He considers that erosion is a multiplicative function of five factors: rainfall erosivity (the R factor) the soil erodibility factor (K), topography (LS), the erosion control practices (P) and vegetation cover and agricultural practices (C). In this work, we tried to develop a tool based on Web GIS functionality to evaluate soil losses caused by erosion taking into account five factors. This tool allows the user to integrate all the data needed for the evaluation (DEM, Land use, rainfall ...) in the form of digital layers to calculate the five factors taken into account in the USLE equation (R, K, C, P, LS). Accordingly, and after treatment of the integrated data set, a map of the soil losses will be achieved as a result. We tested the proposed tool on a watershed basin located in the weste of Algeria where a dataset was collected and prepared.Keywords: USLE, erosion, web gis, Algeria
Procedia PDF Downloads 33010823 A Preliminary Study on Factors Determining the Success of High Conservation Value Area in Oil Palm Plantations
Authors: Yanto Santosa, Rozza Tri Kwatrina
Abstract:
High Conservation Value (HCV) is an area with conservation function within oil palm plantation. Despite the important role of HCV area in biodiversity conservation and various studies on HCV, there was a lack of research studying the factors determining its success. A preliminary study was conducted to identify the determinant factor of HCV that affected the diversity. Line transect method was used to calculate the species diversity of butterfly, birds, mammals, and herpetofauna species as well as their richness. Specifically for mammals, camera traps were also used. The research sites comprised of 12 HCV areas in 3 provinces of Indonesia (Central Kalimantan, Riau, and Palembang). The relationship between the HCV biophysical factor with the species number and species diversity for each wildlife class was identified using Chi-Square analysis with Cross tab (contingency table). Results of the study revealed that species diversity varied by research locations. Four factors determining the success of HCV area in relations to the number and diversity of wildlife species are land cover types for mammals, the width of area and distance to rivers for birds, and distance to settlements for butterflies.Keywords: wildlife diversity, oil palm plantation, high conservation value area, ecological factors
Procedia PDF Downloads 152