Search results for: neural regeneration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2306

Search results for: neural regeneration

1586 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 43
1585 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 39
1584 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 212
1583 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
1582 Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 490
1581 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 177
1580 Programmed Speech to Text Summarization Using Graph-Based Algorithm

Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba

Abstract:

Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculations

Keywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization

Procedia PDF Downloads 219
1579 Review: Wavelet New Tool for Path Loss Prediction

Authors: Danladi Ali, Abdullahi Mukaila

Abstract:

In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.

Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency

Procedia PDF Downloads 449
1578 Retrofitting Adaptive Reuse into Palaces of Northern India

Authors: Shefali Nayak

Abstract:

The architectural appeal, familiarity, and idiom of culturally significant structures are due to societal attachment to various movements, historical association or deviation. Generally, the urge to preserve a building in the northern part of India is driven either by emotional dogma or rational thinking, but, it is also influenced by traditional affinity. The northern region of India has an assortment of palaces and Havelis belonging to various time periods and families with vernacular yet signature style of architecture. Many of them are either successfully conserved by being put into adaptive reuse and some of them have been midst controversies and continued to remain in ruins. The research focuses on comparing successful examples of adaptive reuse such as Neemrana, Mehrangargh Fort palace with a few other merchant havelis converted into heritage hotels. Furthermore, evaluates the architectural aspects of structure, materials, plumbing and electrical installations, as well as specific challenges faced by heritage professionals practicing sustainability, while respecting traditional feelings of various stakeholders. This paper concludes through the analysis of the case study that, its highly unlikely for sustainable design cannot be used as a stand-alone application for heritage structures or cities, it needs the support of architecture conservation to be put into practice. However, it is often demanding to fit a new use of a building into an aged structure. This paper records modern-day generic requirements that reflect challenges faced by different architects, while conserving a heritage structure and retrofitting it into today's requisites. The research objective is to establish how conservation, restoration, and urban regeneration are closely related to sustainable architecture in historical cities.

Keywords: architecture conservation, architecture heritage, adaptive reuse, retrofitting, sustainability, urban regeneration

Procedia PDF Downloads 182
1577 Portuguese City Reconstructed from Public Space: The Example of the Requalification of Cacém Central Area

Authors: Rodrigo Coelho

Abstract:

As several authors have pointed out (such as Jordi Borja, or Oriol Bohigas), the necessity to “make center” presents itself not only as a imperative response to deal with the processes of dissolution of peripheral urbanization, as it should be assumed, from the point of view its symbolic and functional meaning, as a key concept to think and act on the enlarged city. The notion of re-centralization (successfully applied in urban periphery recompositions, such as in Barcelona or Lyon), understood from the redefinition of mobility, the strengthening of core functions, and from the creation or consolidation of urban fabrics (always articulated with policies of creation and redevelopment of public spaces), seems to become one of the key strategies over the challenge of making the city on the “city periphery”. The question we want to address in this paper concerns, essentially, the importance of public space in the (re) construction of the contemporary "shapeless city” sectors (which, in general, we associate to urban peripheries). We will seek demonstrate, from the analysis of a Portuguese case study–The Cacém Central Area requalification, integrated in Polis Program (National Program for Urban Rehabilitation and Environmental Improvement of Cities, released in 1999 by the Portuguese government), the conditions under which the public space project can act, subsequently, in the urban areas of recent formation, where, in many situations, the public space did not have a structuring role in its urbanization, seeing its presence reduced to a residual character. More specifically, we intend to demonstrate with this example the methodological and urban design aspects that led to the regeneration of a disqualified and degraded urban area, by intervening consistently and profoundly in public space (with well defined objectives and criteria, and framed in a more comprehensive strategy, attentive to the various scales of urban design).

Keywords: public space, urban design, urban regeneration, urban and regional studies

Procedia PDF Downloads 579
1576 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 316
1575 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model

Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo

Abstract:

Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.

Keywords: PNN, related change, state-combination, logical coupling, software entity

Procedia PDF Downloads 438
1574 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
1573 STAT6 Mediates Local and Systemic Fibrosis and Type Ii Immune Response via Macrophage Polarization during Acute and Chronic Pancreatitis in Murine Model

Authors: Hager Elsheikh, Matthias Sendler, Juliana Glaubnitz

Abstract:

In pancreatitis, an inflammatory reaction occurs in the pancreatic secretory cells due to premature activation of proteases, leading to pancreatic self-digestion and necrotic cell death of acinar cells. Acute pancreatitis in patients is characterized by a severe immune reaction that could lead to serious complications, such as organ failure or septic shock, if left untreated. Chronic pancreatitis is a recurrence of episodes of acute pancreatitis resulting in a fibro-inflammatory immune response, in which the type 2 immune response is primarily driven by AAMs in the pancreas. One of the most important signaling pathways for M2 macrophage activation is the IL-4/STAT6 pathway. Pancreatic fibrosis is induced by the hyperactivation of pancreatic stellate cells by dysregulation in the inflammatory response, leading to further damage, autodigestion and possibly necrosis of pancreatic acinar cells. The aim of this research is to investigate the effect of STAT6 knockout in disease severity and development of fibrosis wound healing in the presence of different macrophage populations, regulated by the type 2 immune response, after inducing chronic and/or acute pancreatitis in mice models via cerulean injection. We further investigate the influence of the JAK/STAT6 signaling pathway on the balance of fibrosis and regeneration in STAT6 deficient and wild-type mice. The characterization of resident and recruited macrophages will provide insight into the influence of the JAK/STAT6 signaling pathway on infiltrating cells and, ultimately, tissue fibrosis and disease severity.

Keywords: acute and chronic pancreatitis, tissue regeneration, macrophage polarization, Gastroenterology

Procedia PDF Downloads 69
1572 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 205
1571 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 284
1570 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography

Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu

Abstract:

Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.

Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli

Procedia PDF Downloads 256
1569 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 453
1568 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 187
1567 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration

Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez

Abstract:

Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.

Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering

Procedia PDF Downloads 154
1566 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 410
1565 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns

Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz

Abstract:

This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.

Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns

Procedia PDF Downloads 58
1564 Sterilization Effects of Low Concentration of Hydrogen Peroxide Solution on 3D Printed Biodegradable Polyurethane Nanocomposite Scaffold for Heart Valve Regeneration

Authors: S. E. Mohmad-Saberi, W. Song, N. Oliver, M. Adrian, T.C. Hsu, A. Darbyshire

Abstract:

Biodegradable polyurethane (PU) has emerged as a potential material to promote repair and regeneration of damaged/diseased tissues in heart valve regeneration due to its excellent biomechanical profile. Understanding the effects of sterilization on their properties is vital since they are more sensitive and more critical of porous structures compared to bulk ones. In this study, the effects of low concentration of hydrogen peroxide (H₂O₂) solution sterilization has been investigated to determine whether the procedure would be efficient and non-destructive to porous three-dimensional (3D) elastomeric nanocomposite, polyhedral oligomeric silsesquioxane-terminated poly (ethylene-diethylene glycol succinate-sebacate) urea-urethane (POSS-EDSS-PU) scaffold. All the samples were tested for sterility following sterilization using phosphate buffer saline (PBS) as control and 5 % v/v H₂O₂ solution. The samples were incubated in tryptic soy broth for the cultivation of microorganisms under agitation at 37˚C for 72 hours. The effects of the 5 % v/v H₂O₂ solution sterilization were evaluated in terms of morphology, chemical and mechanical properties using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and tensile tester apparatus. Toxicity effects of the 5 % v/v H₂O₂ solution decontamination were studied by in vitro cytotoxicity test, where the cellular responses of human dermal fibroblast (HDF) were examined. A clear, uncontaminated broth using 5 % v/v H₂O₂ solution method indicated efficient sterilization after 3 days, while the non-sterilized control shows clouding broth indicated contamination. The morphology of 3D POSS-EDSS-PU scaffold appeared to have similar morphology after sterilization with 5 % v/v H₂O₂ solution regarding of pore size and surface. FTIR results show that the sterilized samples and non-sterilized control share the same spectra pattern, confirming no significant alterations over the surface chemistry. For the mechanical properties of the H₂O₂ solution-treated scaffolds, the tensile strain was not significantly decreased, however, become significantly stiffer after the sterilization. No cytotoxic effects were observed after the 5 % v/v H₂O₂ solution sterilization as confirmed by cell viability assessed by Alamar Blue assay. The results suggest that low concentration of 5 % v/v hydrogen peroxide solution can be used as an alternative method for sterilizing biodegradable 3D porous scaffold with micro/nano-architecture without structural deformation. This study provides the understanding of the sterilization effects on biomechanical profile and cell proliferation of 3D POSS-EDSS-PU scaffolds.

Keywords: biodegradable, hydrogen peroxide solution, POSS-EDSS-PU, sterilization

Procedia PDF Downloads 161
1563 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
1562 Classification of Multiple Cancer Types with Deep Convolutional Neural Network

Authors: Nan Deng, Zhenqiu Liu

Abstract:

Thousands of patients with metastatic tumors were diagnosed with cancers of unknown primary sites each year. The inability to identify the primary cancer site may lead to inappropriate treatment and unexpected prognosis. Nowadays, a large amount of genomics and transcriptomics cancer data has been generated by next-generation sequencing (NGS) technologies, and The Cancer Genome Atlas (TCGA) database has accrued thousands of human cancer tumors and healthy controls, which provides an abundance of resource to differentiate cancer types. Meanwhile, deep convolutional neural networks (CNNs) have shown high accuracy on classification among a large number of image object categories. Here, we utilize 25 cancer primary tumors and 3 normal tissues from TCGA and convert their RNA-Seq gene expression profiling to color images; train, validate and test a CNN classifier directly from these images. The performance result shows that our CNN classifier can archive >80% test accuracy on most of the tumors and normal tissues. Since the gene expression pattern of distant metastases is similar to their primary tumors, the CNN classifier may provide a potential computational strategy on identifying the unknown primary origin of metastatic cancer in order to plan appropriate treatment for patients.

Keywords: bioinformatics, cancer, convolutional neural network, deep leaning, gene expression pattern

Procedia PDF Downloads 301
1561 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 381
1560 Formation of Physicalist and Mental Consciousness from a Continuous Four-Dimensional Continuum

Authors: Nick Alex

Abstract:

Consciousness is inseparably connected with energy. Based on panpsychism, consciousness is a fundamental substance that emerged with the birth of the Universe from a continuous four-dimensional continuum. It consists of a physicalist form of consciousness characteristic of all matter and a mental form characteristic of neural networks. Due to the physicalist form of consciousness, metabolic processes were formed, and life in the form of living matter emerged. It is the same for all living matter. Mental consciousness began to develop 3000 million years after the birth of the Universe due to the physicalist form of consciousness, with the emergence of neural networks. Mental consciousness is individualized in contrast to physicalist consciousness. It is characterized by cognitive abilities, self-identity, and the ability to influence the world around us. Each level of consciousness is in its own homeostasis environment.

Keywords: continuum, physicalism, neurons, metabolism

Procedia PDF Downloads 35
1559 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 143
1558 Hepatic Regenerative Capacity after Acetaminophen-Induced Liver Injury in Mouse Model

Authors: N. F. Hamid, A. Kipar, J. Stewart, D. J. Antoine, B. K. Park, D. P. Williams

Abstract:

Acetaminophen (APAP) is a widely used analgesic that is safe at therapeutic doses. The mouse model of APAP has been extensively used for studies on pathogenesis and intervention of drug induced liver injury based on the CytP450 mediated formation of N-acetyl-p-benzo-quinoneimine and, more recently, as model for mechanism based biomarkers. Delay of the fasted CD1 mice to rebound to the basal level of hepatic GSH compare to fed mice is reported in this study. Histologically, 15 hours fasted mice prior to APAP treatment leading to overall more intense cell loss with no evidence of apoptosis as compared to non-fasted mice, where the apoptotic cells were clearly seen on cleaved caspase-3 immunostaining. After 15 hours post APAP administration, hepatocytes underwent stage of recovery with evidence of mitotic figures in fed mice and return to completely no histological difference to control at 24 hours. On the contrary, the evidence of ongoing cells damage and inflammatory cells infiltration are still present on fasted mice until the end of the study. To further measure the regenerative capacity of the hepatocytes, the inflammatory mediators of cytokines that involved in the progression or regression of the toxicity like TNF-α and IL-6 in liver and spleen using RT-qPCR were also included. Yet, quantification of proliferating cell nuclear antigen (PCNA) has demonstrated the time for hepatic regenerative in fasted is longer than that to fed mice. Together, these data would probably confirm that fasting prior to APAP treatment does not only modulate liver injury, but could have further effects to delay subsequent regeneration of the hepatocytes.

Keywords: acetaminophen, liver, proliferating cell nuclear antigen, regeneration, apoptosis

Procedia PDF Downloads 435
1557 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 158