Search results for: mental health detection
12010 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers
Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison
Abstract:
Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing
Procedia PDF Downloads 13212009 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy
Authors: Isao Tomita
Abstract:
The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure
Procedia PDF Downloads 42512008 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 15312007 Directly Observed Treatment Short-Course (DOTS) for TB Control Program: A Ten Years Experience
Authors: Solomon Sisay, Belete Mengistu, Woldargay Erku, Desalegne Woldeyohannes
Abstract:
Background: Tuberculosis is still the leading cause of illness in the world which accounted for 2.5% of the global burden of disease, and 25% of all avoidable deaths in developing countries. Objectives: The aim of study was to assess impact of DOTS strategy on tuberculosis case finding and treatment outcome in Gambella Regional State, Ethiopia from 2003 up to 2012 and from 2002 up to 2011, respectively. Methods: Health facility-based retrospective study was conducted. Data were collected and reported in quarterly basis using WHO reporting format for TB case finding and treatment outcome from all DOTS implementing health facilities in all zones of the region to Federal Ministry of Health. Results: A total of 10024 all form of TB cases had been registered between the periods from 2003 up to 2012. Of them, 4100 (40.9%) were smear-positive pulmonary TB, 3164 (31.6%) were smear-negative pulmonary TB and 2760 (27.5%) had extra-pulmonary TB. Case detection rate of smear-positive pulmonary TB had increased from 31.7% to 46.5% from the total TB cases and treatment success rate increased from 13% to 92% with average mean value of being 40.9% (SD= 0.1) and 55.7% (SD=0.28), respectively for the specified year periods. Moreover, the average values of treatment defaulter and treatment failure rates were 4.2% and 0.3%, respectively. Conclusion: It is possible to achieve the recommended WHO target which is 70% of CDR for smear-positive pulmonary TB, and 85% of TSR as it was already been fulfilled the targets for treatments more than 85% from 2009 up to 2011 in the region. However, it requires strong efforts to enhance case detection rate of 40.9% for smear-positive pulmonary TB through implementing alternative case finding strategies.Keywords: Gambella Region, case detection rate, directly observed treatment short-course, treatment success rate, tuberculosis
Procedia PDF Downloads 34912006 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 11312005 Youth Conflict-Related Trauma through Generations: An Ethnography on the Relationship between Health and Society in Post-Conflict Northern Ireland
Authors: Chiara Magliacane
Abstract:
This project aims to analyse the relationship between the post-conflict Northern Irish environment and youth trauma in deprived areas. Using an anthropological perspective and methodology, the study investigates the possible contribution that a socio-cultural perspective can give to the current research on the field, with a special focus on the role of transgenerational trauma. The recognition of the role that socio-economic determinants have on health is usually a challenge for social researchers. In post-conflict Northern Ireland, the overall lack of research about connections between the social context and youth trauma opens the way to the present project. Anthropological studies on social implications of mental disorders have achieved impressive results in many societies; they show how conditions of sufferance and poverty are not intrinsically given, but are the products of historical processes and events. The continuum of violence and the politics of victimhood sustains a culture of silence and fear in deprived areas; this implies the need of investigating the structural and symbolic violence that lies behind the diffusion of mental suffering. The project refers to these concepts from Medical Anthropology and looks at connections between trauma and social, political and economic structures. Accordingly, the study considers factors such as poverty, unemployment, social inequality and gender and class perspectives. At the same time, the project problematises categories such as youth and trauma. 'Trauma' is currently debated within the social sciences since the 'invention' of the Post-Traumatic Stress Disorder (PTSD) in 1980. Current critics made to its clinical conception show how trauma has been mainly analysed as a memory of the past. On the contrary, medical anthropological research focuses on wider perspectives on society and its structures; this is a new and original approach to the study of youth trauma considering that, to author’s best knowledge, there is no research of this kind regarding Northern Ireland. Methods: Qualitative interviews, participant observation. Expected Impact: Local Northern Ireland organizations, i.e. specific charities that provide mental health support. Ongoing and present connections will ensure they will hear about this research.Keywords: health and social inequalities, Northern Ireland, structural violence, youth
Procedia PDF Downloads 21512004 Intrusion Detection System Based on Peer to Peer
Authors: Alireza Pour Ebrahimi, Vahid Abasi
Abstract:
Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.Keywords: network, intrusion detection system, peer to peer, internal and external network
Procedia PDF Downloads 55312003 Safer Staff: A Survey of Staff Experiences of Violence and Aggression at Work in Coventry and Warwickshire Partnership National Health Service Trust
Authors: Rupinder Kaler, Faith Ndebele, Nadia Saleem, Hafsa Sheikh
Abstract:
Background: Workplace related violence and aggression seems to be considered an acceptable occupational hazard for staff in mental health services. There is literature evidence that healthcare workers in mental health settings are at higher risk from aggression from patients. Aggressive behaviours pose a physical and psychological threat to the psychiatric staff and can result in stress, burnout, sickness, and exhaustion. Further evidence informs that health professionals are the most exposed to psychological disorders such as anxiety, depression and post-traumatic stress disorder. Fear that results from working in a dangerous environment and exhaustion can have a damaging impact on patient care and healthcare relationship. Aim: The aim of this study is to investigate the prevalence and impact of aggressive behaviour on staff working at Coventry and Warwickshire Partnership Trust. Methodology: The study methodology included carrying out a manual, anonymised, multi-disciplinary cross-sectional survey questionnaire across all clinical and non-clinical staff at CWPT from both inpatient and community settings. Findings: The unsurprising finding was that of higher prevalence of aggressive behaviours in in-patients in comparison to community staff. Conclusion: There is a high rate of verbal and physical aggression at work and this has a negative impact on the staff emotional and physical well- being. There is also a higher reliance on colleagues for support on an informal basis than formal organisational support systems. Recommendations: A workforce that is well and functioning is the biggest resource for an organisation. Staff safety during working hours is everyone's responsibility and sits with both individual staff members and the organisation. Post-incident organisational support needs to be consolidated, and hands-on, timely support offered to help maintain emotionally well staff on CWPT. The authors recommend development of preventative and practical protocols for aggression with patient and carer involvement. Post-incident organisational support needs to be consolidated, and hands-on, timely support offered to help maintain emotionally well staff on CWPT.Keywords: safer staff, survey of staff experiences, violence and aggression, mental health
Procedia PDF Downloads 20612002 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols
Authors: V. Verma, Syed Riyaz-ul-Hassan
Abstract:
Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus
Procedia PDF Downloads 51412001 Remediation and Health: A Systematic Review of the Role of Resulting Displacement in Damaging Health and Wellbeing
Authors: Rupert G. S. Legg
Abstract:
The connection between poor health outcomes and living near contaminated land has long been understood. Less examined has been the impact of remediation on residents’ health. The cleaning process undoubtedly changes the local area in which it occurs, leading to the possibility that local housing and rental prices could increase resulting in the displacement of those least able to cope. Whether or not this potential displacement resulting from remediation has a considerable impact on health remains unknown. This review aims to determine how these health effects have been approached in the health geography literature. A systematic review of health geographies literature was conducted, searching for two-word clusters: ‘health’ and ‘remediation’ (100 articles); and ‘health’, ‘displacement’ and ‘gentrification’ (43 articles). 43 articles were selected for their relevance (7 from the first cluster, 20 from the second, and 16 from those cited within the reviewed articles). Several of the reviewed cases identified that potential displacement was a contributor to stress and worry in residents living near remediation projects. Likewise, the experience of displacement in other cases beyond remediation was linked with several mental health issues. However, no remediation cases followed-up on the ultimate effects of experiencing displacement on residents’ health. A reason identified for this was a tendency for reviewed studies to adopt a contextual or compositional approach, as opposed to a relational approach, which is more concerned with dimensions of mobility and temporality. Given that remediation and displacement both involve changing mobility and temporality, focussing solely on contextual or compositional factors is problematic. This review concludes by suggesting that more thorough, relational research is conducted into the extent to which potential displacement resulting from remediation affects health.Keywords: contamination, displacement, health geography, remediation
Procedia PDF Downloads 16612000 Muslim Social Workers and Imams’ Recommendations in Marital and Child Custody Cases of Persons with Intellectual or Mental Disability
Authors: Badran Leena, Rimmerman Arie
Abstract:
Arab society in Israel is undergoing modernization and secularization. However, its approach to disability and mental illness is still dominated by religious and traditional stereotypes, as well as folk remedies and community practices. The present study examines differences in Muslim social workers' and Imams' recommendations in marriage/divorce and child custody cases of persons with intellectual disabilities (ID) or mental illness. The study has two goals: (1) To examine differences in recommendations between Imams and Muslim social workers; (2) To explore variables related to their differential recommendations as observed in their responses to vignettes—a quantitative study using vignettes resembling existing Muslim religious (Sharia) court cases. Muslim social workers (138) and Imams (48) completed a background questionnaire, a religiosity questionnaire, and a questionnaire that included 25 vignettes constructed by the researcher based on court rulings adapted for the study. Muslim social workers tended to consider the religious recommendation when the family of a person with ID or mental illness was portrayed in the vignette as religious. The same applied to Imams, albeit to a greater extent. The findings call for raising awareness among social workers and academics regarding the importance of religion and tradition in formulating professional recommendations.Keywords: child custody, intellectual and developmental disability, marriage/divorce, mental illness, sharia court, social workers
Procedia PDF Downloads 18811999 The Association between Health-Related Quality of Life and Physical Activity in Different Domains with Other Factors in Croatian Male Police Officers
Authors: Goran Sporiš, Dinko Vuleta, Stefan Lovro
Abstract:
The purpose of the present study was to determine the associations between health-related quality of life (HRQOL) and physical activity (PA) in different domains. In this cross-sectional study, participants were 169 Croatian police officers (mean age 35.14±8.95 yrs, mean height 180.93±7.53 cm, mean weight 88.39±14.05 kg, mean body-mass index 26.90±3.39 kg/m2). The dependent variables were two general domains extracted from the HRQOL questionnaire: (1) physical component scale (PCS) and (2) mental component scale (MCS). The independent variables were job-related, transport, domestic and leisure-time PA, along with other factors: age, body-mass index, smoking status, psychological distress, socioeconomic status and time spent in sedentary behaviour. The associations between dependent and independent variables were analyzed by using multiple regression analysis. Significance was set up at p < 0.05. PCS was positively associated with leisure-time PA (β 0.28, p < 0.001) and socioeconomic status (SES) (β 0.16, p=0.005), but inversely associated with job-related PA (β -0.15, p=0.012), domestic-time PA (β -0.14, p=0.014), age (β -0.12, p=0.050), psychological distress (β -0.43, p<0.001) and sedentary behaviour (β -0.15, p=0.009). MCS was positively associated with leisure-time PA (β 0.19, p=0.013) and SES (β 0.20, p=0.002), while inversely associated with age (β -0.23, p=0.001), psychological distress (β -0.27, p<0.001) and sedentary behaviour (β -0.22, p=0.001). Our results added new information about the associations between domain-specific PA and both physical and mental component scale in police officers. Future studies should deal with the same associations in other stressful occupations.Keywords: health, fitness, police force, relations
Procedia PDF Downloads 30211998 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen
Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi
Abstract:
In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.Keywords: chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization
Procedia PDF Downloads 34311997 Stress Reduction Techniques for First Responders: Scientifically Proven Methods
Authors: Esther Ranero Carrazana, Maria Karla Ramirez Valdes
Abstract:
First responders, including firefighters, police officers, and emergency medical personnel, are frequently exposed to high-stress scenarios that significantly increase their risk of mental health issues such as depression, anxiety, and post-traumatic stress disorder (PTSD). Their work involves life-threatening situations, witnessing suffering, and making critical decisions under pressure, all contributing to psychological strain. The objectives of this research on "Stress Reduction Techniques for First Responders: Scientifically Proven Methods" are as follows. One of them is to evaluate the effectiveness of stress reduction techniques. The primary objective is to assess the efficacy of various scientifically proven stress reduction techniques explicitly tailored for first responders. Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness are scrutinized for their ability to mitigate stress-related symptoms. Furthermore, we evaluate and enhance the understanding of stress mechanisms in first responders by exploring how different techniques influence the physiological and psychological responses to stress. The study aims to deepen the understanding of stress mechanisms in high-risk professions. Additionally, the study promotes psychological resilience by seeking to identify and recommend methods that can significantly enhance the psychological resilience of first responders, thereby supporting their mental health and operational efficiency in high-stress environments. Guide training and policy development is an additional objective to provide evidence-based recommendations that can be used to guide training programs and policy development aimed at improving the mental health and well-being of first responders. Lastly, the study aims to contribute valuable insights to the existing body of knowledge in stress management, specifically tailored to the unique needs of first responders. This study involved a comprehensive literature review assessing the effectiveness of various stress reduction techniques tailored for first responders. Techniques evaluated include Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness, focusing on their ability to alleviate stress-related symptoms. The review indicates promising results for several stress reduction methods. HRV Training demonstrates the potential to reflect stress vulnerability and enhance physiological and behavioral flexibility. Interoception and Exteroception help modulate the stress response by enhancing awareness of the body's internal state and its interaction with the environment. Sensory integration plays a crucial role in adaptive responses to stress by focusing on individual senses and their integration. Therefore, body perception awareness addresses stress and anxiety through enhanced body perception and mindfulness. The evaluated techniques show significant potential in reducing stress and improving the mental health of first responders. Implementing these scientifically supported methods into routine training could significantly enhance their psychological resilience and operational effectiveness in high-stress environments.Keywords: first responders, HRV training, mental health, sensory integration, stress reduction
Procedia PDF Downloads 4411996 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 5611995 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.Keywords: space-based detection, aerial targets, optical system design, detectability characterization
Procedia PDF Downloads 17111994 A Cognitive Behavioural Therapy for Post-Traumatic Stress Disorders
Authors: Ryotaro Ishikawa
Abstract:
INTRODUCTION: Post-traumatic stress disorder (PTSD) is a psychiatric label for a collection of psychological symptoms following a traumatic event. PTSD is as a result of a traumatic experience such as rape or sexual assault. A victim may have PTSD if she/he has experienced the following symptoms for at least a month: a) Stressor, b) Intrusion symptoms, c) Avoidance, d) Negative alterations in cognitions and mood, e) Alterations in arousal and reactivity. Studies on the cognitive theory of PTSD emphasized the roles of (a) negative appraisals of trauma memories in maintaining the symptomatology of PTSD, and (b) disorganized trauma memories in the development of PTSD. Mental contamination is primarily caused by experiences involving humans (e.g. violators or perpetrators) as opposed to substances (e.g. dirt or bodily fluids). Feelings of mental contamination may evoke following experiences of ill-treatment, sexual assault, domination, degradation, manipulation, betrayal, or humiliation. Some studies have demonstrated that traumatic thoughts related to sexual assault are particularly strong predictors of mental contamination. Treatment protocols based on cognitive-behavioral therapy appear to be beneficial in reducing the severity of PTSD and mental contamination. Studies on the cognitive theory of PTSD emphasized the roles of (A) negative appraisals of trauma memories in maintaining the symptomatology of PTSD, and (B) disorganized trauma memories in the development of PTSD. We will demonstrate a feasibility study of individual CBT for PTSD and mental contamination in Japanese clinical settings. METHOD: The single-arm trial is a group setting CBT intervention. The primary outcome is the self-rated Posttraumatic Stress Diagnostic Scale, with secondary measurements of depressive severity and mental pollution questionnaire. Assessments are conducted at baseline, after a waiting period before CBT, during CBT, and after CBT. RESULTS: Participants are eligible for the study and complete the outcome measures at all assessment points. In our hypothesis, receiving CBT would lead to improvements in primary and secondary PTSD severity. CONCLUSION: We will demonstrate a feasibility study of individual CBT for PTSD and mental contamination in Japanese clinical settings. Our treatment would achieve favorable treatment outcomes for PTSD with mental contamination in Japanese clinical settings.Keywords: CBT, cognitive theory, PTSD, mental pollution
Procedia PDF Downloads 44211993 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.Keywords: canny pruning, hand recognition, machine learning, skin tracking
Procedia PDF Downloads 18811992 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection
Authors: Weihao Wang, Zhulin Zong
Abstract:
Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals
Procedia PDF Downloads 8411991 Tool for Fast Detection of Java Code Snippets
Authors: Tomáš Bublík, Miroslav Virius
Abstract:
This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and sub graph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.Keywords: AST, Java, tree matching, scripthon source code recognition
Procedia PDF Downloads 42711990 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 2811989 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 30711988 Trends in Research Regarding International Student Connectedness, A Systematic Review
Authors: Zilola Kozimova
Abstract:
Humans are highly social creatures, and our social surroundings create a large part of our daily experiences. Feeling connected and belonging at school have been studied a lot, especially in the period up to college. The need to feel connected becomes even more vital when people choose to study abroad. The number of published research in the field has increased recently, creating sufficient studies for a systematic literature review. The current study was conducted to find out existing trends and central themes in the field regarding international student connectedness. Using PRISMA 2020 and Shariff et al.’s work as the guidelines, I conducted a systematic literature review of studies regarding international student connectedness in higher education. Three steps of inclusion/exclusion criteria were used to determine the final studies to be included. The results show an increasing trend in the field as the number of related studies drastically rose after 2017. the results showed that there are three phases in the research regarding the connectedness of international students: a rejection period, a sudden increase of interest in the topic, and merging as an essential part of the mental well-being of international students. There is also a change in the themes regarding the topic, as there is a rise in the number of research published regarding international students’ mental health in recent years, connectedness being a sub-topic.Keywords: international students, connectedness, mental well-being of international students, trends, higher education
Procedia PDF Downloads 12411987 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 52811986 An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging
Authors: Muhammad Hassan Khalil, Xu Jiadong
Abstract:
Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results.Keywords: breast cancer detection, microwave imaging, tomography, tumor
Procedia PDF Downloads 41511985 Wellness Warriors: A Qualitative Exploration of Frontline Healthcare Staff Responding to Crisis
Authors: Andrea Knezevic, Padmini Pai, Julaine Allan, Katarzyna Olcoń, Louisa Smith
Abstract:
Healthcare staff are on the frontline during times of disaster and are required to support the health and wellbeing of communities despite any personal adversity and trauma they are experiencing as a result of the disaster. This study explored the experiences of healthcare staff trained as ‘Wellness Warriors’ following the 2019-2020 Australian bushfires. The findings indicated that healthcare staff developed interpersonal skills around deep listening and connecting with others which allowed them to feel differently about work and restored their faith in healthcare leadership.Keywords: Australian bushfires, burnout, health care providers, mental health, occupational trauma, post-disaster, wellbeing, workplace wellness
Procedia PDF Downloads 14211984 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging
Authors: Mohammad Esmaeilpour
Abstract:
One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions
Procedia PDF Downloads 48011983 A Survey on Genetic Algorithm for Intrusion Detection System
Authors: Prikhil Agrawal, N. Priyanka
Abstract:
With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security
Procedia PDF Downloads 30311982 Intrusion Detection Based on Graph Oriented Big Data Analytics
Authors: Ahlem Abid, Farah Jemili
Abstract:
Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud
Procedia PDF Downloads 15211981 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 390