Search results for: analyst forecast dispersion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1137

Search results for: analyst forecast dispersion

417 Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy

Authors: Proficiency Munsaka, Peter Baricholo, Erich Rohwer

Abstract:

Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing.

Keywords: silicon germanium photonic waveguide, supercontinuum generation, spectroscopy, mid infrared

Procedia PDF Downloads 131
416 Bank Failures: A Question of Leadership

Authors: Alison L. Miles

Abstract:

Almost all major financial institutions in the world suffered losses due to the financial crisis of 2007, but the extent varied widely. The causes of the crash of 2007 are well documented and predominately focus on the role and complexity of the financial markets. The dominant theme of the literature suggests the causes of the crash were a combination of globalization, financial sector innovation, moribund regulation and short termism. While these arguments are undoubtedly true, they do not tell the whole story. A key weakness in the current analysis is the lack of consideration of those leading the banks pre and during times of crisis. This purpose of this study is to examine the possible link between the leadership styles and characteristics of the CEO, CFO and chairman and the financial institutions that failed or needed recapitalization. As such, it contributes to the literature and debate on international financial crises and systemic risk and also to the debate on risk management and regulatory reform in the banking sector. In order to first test the proposition (p1) that there are prevalent leadership characteristics or traits in financial institutions, an initial study was conducted using a sample of the top 65 largest global banks and financial institutions according to the Banker Top 1000 banks 2014. Secondary data from publically available and official documents, annual reports, treasury and parliamentary reports together with a selection of press articles and analyst meeting transcripts was collected longitudinally from the period 1998 to 2013. A computer aided key word search was used in order to identify the leadership styles and characteristics of the chairman, CEO and CFO. The results were then compared with the leadership models to form a picture of leadership in the sector during the research period. As this resulted in separate results that needed combining, SPSS data editor was used to aggregate the results across the studies using the variables ‘leadership style’ and ‘company financial performance’ together with the size of the company. In order to test the proposition (p2) that there was a prevalent leadership style in the banks that failed and the proposition (P3) that this was different to those that did not, further quantitative analysis was carried out on the leadership styles of the chair, CEO and CFO of banks that needed recapitalization, were taken over, or required government bail-out assistance during 2007-8. These included: Lehman Bros, Merrill Lynch, Royal Bank of Scotland, HBOS, Barclays, Northern Rock, Fortis and Allied Irish. The findings show that although regulatory reform has been a key mechanism of control of behavior in the banking sector, consideration of the leadership characteristics of those running the board are a key factor. They add weight to the argument that if each crisis is met with the same pattern of popular fury with the financier, increased regulation, followed by back to business as usual, the cycle of failure will always be repeated and show that through a different lens, new paradigms can be formed and future clashes avoided.

Keywords: banking, financial crisis, leadership, risk

Procedia PDF Downloads 318
415 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 104
414 Colour Change and melenophores response in ateleost: Balantiochilous melenopterus (Bleeker) with Certain Chemicals and Drugs

Authors: Trapti Pathak

Abstract:

Fishes can change their body colour according to their surroundings by. They do so by either aggregation or dispersion of melanosomes within the skin. These movements can regulate by means of sympathetic nerves with the help of cytoskeleton. Employing the melanophores on isolated scales of the fingerling of teleost fish, it is attempted to characterise the concerned nerves and the receptors located on melenocytes along with implication of microtubules a part of cytoskeleton in the pigmentary translocation in the fish. The scales from dorso-lateral trunk of the fish represented the sympathetic– neuromelanophore preparations which were stimulated by chemical means, such as adrenergic agonist, antagonist and the microtubule-disrupting drugs such as yuhombine, dopamine, colchicine etc. Adrenaline is an adrenergic agonist which is strongly induced the dorse-dependent concentration of pigment in innervated melanophores while Yohimbine is an adrenergic antagonist which is known to block effectively the α2-adrenoceptors inhibited the action of adrenaline. Colchicine effectively interferes with melanosome aggregating action of adrenaline. From these results it is concluded that the chromatic fibres of adrenergic nature innervate the melanophores and these cells do possess α2-adrenoceptors which mediate the melanosome aggregation and the movements of pigment granules through microtubules means of transport within the cell. These movements of pigment are linked to paling or darkening achieved of teleost fish respectively when they approach to their background.

Keywords: melenophores, agonists, antagonist, colour change

Procedia PDF Downloads 77
413 Human Development Outcomes and Macroeconomic Indicators Nexus in Nigeria: An Empirical Investigation

Authors: Risikat Oladoyin S. Dauda, Onyebuchi Iwegbu

Abstract:

This study investigates the response of human development outcomes to selected macroeconomic indicators in Nigeria. Human development outcomes is measured by human development index while the selected macroeconomic variables are inflation rate, real interest rate, government capital expenditure, real exchange rate, current account balance, and savings. Structural Vector Autoregression (SVAR) technique is employed in examining the response of human development index to the macroeconomic shocks. The result from the forecast error variance decomposition and Impulse-Response analysis reveals that fiscal policy (government capital expenditure) shock is the greatest determinant of human development outcomes. This result reiterates the role which the government plays in improving the welfare of the citizenry. The fiscal policy tool is pivotal in human development which comes in the form of investment in education, health, housing, and infrastructure. Further conclusion drawn from this study is that human development outcome positively and significantly responds to shocks from real interest rate, a monetary policy transmission variable and is felt greatly in the short run period. The policy implication of this study is that if capital budget implementation falls below expectations, human development will be engendered. Hence, efforts should be made to ensure that full implementation and appraisal of government capital expenditure is taken sacrosanct as any shock from such plan, engenders human development outcome.

Keywords: human development outcome, macroeconomic outcomes, structural vector autoregression, SVAR

Procedia PDF Downloads 154
412 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI

Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz

Abstract:

Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.

Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI

Procedia PDF Downloads 520
411 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 496
410 Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser

Authors: Moustafa Ahmed, Fumio Koyama

Abstract:

Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos.

Keywords: chirp, linewidth, optical feedback, semiconductor laser

Procedia PDF Downloads 481
409 Mechanical Properties of Polyurethane Scaffolds Reinforced with Green Nanofibers for Applications in Soft Tissue Regeneration

Authors: Mustafa Abu Ghalia, Yaser Dahman

Abstract:

A new class of polyurethane (PU) reinforced with green bacterial cellulose nanofibers (BC) were prepared using a solvent casting method, with the goal of fabricating green nanocomposites. Four series classes of BC (1, 2.5, 5, and 10 wt%) were reinforced into PU matrices via BC surface modification and subsequently BC-grafted into PU throughout silane coupling agent to improve BC dispersion and its interfacial interaction. The experiment results from the tensile tester were evaluated according to the response surface method (RSM) for optimizing the impacts of variable parameters, pore size, porosity, and BC contents on the mechanical properties. The compressive strength for PU-5 BC wt% was about 9.8 MPa, and decrease when being generated prosperity to recorded at 4.9 MPa. Nielson model was applied to investigate the BC stress concentration on the PU matrices. Likewise, krenche and Hapli-Tasi model were employed to evaluate the BC nanofiber reinforcement potential and BC orientation into PU matrices. The analysis of variance (ANOVA) demonstrated that only BC loading has a significant effect in increases tensile strength, young’s modulus, and a flexural modulus of the PU-BC nanocomposites. The optimal factors of the variables experiment confirmed to be 5 wt% for BC, 230 for pore size, and 80 % for porosity. Scanning electron microscopy (SEM) micrographs showed that the uniform distribution of nanofibers in the PU matrices with the addition of BC 5 wt %. Hydrolytic degradation revealed that the weight loss in PU-BC scaffold is higher than PU-BC wt %.

Keywords: polyurethane scaffold, mechanical properties, tissue engineering, polyurethane

Procedia PDF Downloads 206
408 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 198
407 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
406 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?

Authors: Gu Pang, Bartosz Gebka

Abstract:

We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.

Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput

Procedia PDF Downloads 504
405 Urban Greenery in the Greatest Polish Cities: Analysis of Spatial Concentration

Authors: Elżbieta Antczak

Abstract:

Cities offer important opportunities for economic development and for expanding access to basic services, including health care and education, for large numbers of people. Moreover, green areas (as an integral part of sustainable urban development) present a major opportunity for improving urban environments, quality of lives and livelihoods. This paper examines, using spatial concentration and spatial taxonomic measures, regional diversification of greenery in the cities of Poland. The analysis includes location quotients, Lorenz curve, Locational Gini Index, and the synthetic index of greenery and spatial statistics tools: (1) To verify the occurrence of strong concentration or dispersion of the phenomenon in time and space depending on the variable category, and, (2) To study if the level of greenery depends on the spatial autocorrelation. The data includes the greatest Polish cities, categories of the urban greenery (parks, lawns, street greenery, and green areas on housing estates, cemeteries, and forests) and the time span 2004-2015. According to the obtained estimations, most of cites in Poland are already taking measures to become greener. However, in the country there are still many barriers to well-balanced urban greenery development (e.g. uncontrolled urban sprawl, poor management as well as lack of spatial urban planning systems).

Keywords: greenery, urban areas, regional spatial diversification and concentration, spatial taxonomic measure

Procedia PDF Downloads 286
404 Selective Synthesis of Pyrrolic Nitrogen-Doped Carbon Nanotubes Its Physicochemical Properties and Application as Pd Nanoparticles Support

Authors: L. M. Ombaka, R. S. Oosthuizen, P. G. Ndungu, V. O. Nyamori

Abstract:

Understanding the role of nitrogen species on the catalytic properties of nitrogen-doped carbon nanotubes (N-CNTs) as catalysts supports is critical as nitrogen species influence the support’s properties. To evaluate the influence of pyrrolic nitrogen on the physicochemical properties and catalytic activity of N-CNTs supported Pd (Pd/N-CNTs); N-CNTs containing varying pyrrolic contents were synthesized. The catalysts were characterised by the use of transmission electron microscope (TEM), scanning electron microscope, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Fourier transform infrared spectroscopy, and temperature programmed reduction. TEM analysis showed that the Pd nanoparticles were mainly located along the defect sites on N-CNTs. XPS analysis revealed that the abundance of Pd0 decreased while that of Pd2+ increased as the quantity of pyrrolic nitrogen increased. The increase of Pd2+ species was accredited to the formation of stable Pd-N coordination complexes which prevented further reduction of Pd2+ to Pd0 during synthesis. The formed Pd-N complexes increased the stability and dispersion of Pd2+ nanoparticles. The selective hydrogenation of nitrobenzophenone to aminobenzophenone over Pd/N-CNTs was compared to that of Pd on carbon nanotubes (Pd/CNTs). Pd/N-CNTs showed a higher catalytic activity and selectivity compared with Pd/CNTs. Pyrrolic nitrogen functional groups significantly promoted the selectivity towards aminobenzophenone formation.

Keywords: pyrrolic N-CNTs, hydrogenation reactions, chemical vapour deposition technique

Procedia PDF Downloads 358
403 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 307
402 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: climate, reanalysis, renewable energy, solar radiation

Procedia PDF Downloads 209
401 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 117
400 Enhancement of Dielectric Properties of Co-Precipitated Spinel Ferrites NiFe₂O₄/Carbon Nano Fibers Nanohybrid

Authors: Iftikhar Hussain Gul, Syeda Aatika

Abstract:

Nickel ferrite was prepared via wet chemical co-precipitation route. Carbon Nano Fibers (CNFs) were used to prepare NiFe₂O₄/CNFs nanohybrids. Polar solvent (ortho-xylene) was used for the dispersion of CNFs in ferrite matrix. X-ray diffraction patterns confirmed the formation of NiFe₂O₄/CNFs nanohybrids without any impurity peak. FTIR patterns showed two consistent characteristic absorption bands for tetrahedral and octahedral sites, confirming the formation of spinel structure of NiFe₂O₄. Scanning Electron Microscopy (SEM) images confirmed the coating of nickel ferrite nanoparticles on CNFs, which confirms the efficiency of deployed method. The dielectric properties were measured as a function of frequency at room temperature. Pure NiFe₂O₄ showed dielectric constant of 1.79 ×10³ at 100 Hz, which increased massively to 2.92 ×10⁶ at 100 Hz with the addition of 20% by weight of CNFs, proving it to be potential candidate for applications in supercapacitors. The impedance analysis showed a considerable decrease of resistance, reactance and cole-cole plot which confirms the decline of impedance on addition of CNFs. The pure NiFe₂O₄ has highest impedance values of 5.89 ×10⁷ Ohm at 100 Hz while the NiFe₂O₄/CNFs nanohybrid with CNFs (20% by weight) has the lowest impedance values of 4.25×10³ Ohm at 100 Hz, which proves this nanohybrid is useful for high-frequency applications.

Keywords: AC impedance, co-precipitation, nanohybrid, Fourier transform infrared spectroscopy, x-ray diffraction

Procedia PDF Downloads 137
399 Assessment of Adsorption Properties of Neem Leaves Wastes for the Removal of Congo Red and Methyl Orange

Authors: Muhammad B. Ibrahim, Muhammad S. Sulaiman, Sadiq Sani

Abstract:

Neem leaves were studied as plant wastes derived adsorbents for detoxification of Congo Red (CR) and Methyl Orange (MO) from aqueous solutions using batch adsorption technique. The objectives involved determining the effects of the basic adsorption parameters are namely, agitation time, adsorbent dosage, adsorbents particle size, adsorbate loading concentrations and initial pH, on the adsorption process as well as characterizing the adsorbents by determining their physicochemical properties, functional groups responsible for the adsorption process using Fourier Transform Infrared (FTIR) spectroscopy and surface morphology using scanning electron microscopy (SEM) coupled with energy dispersion X – ray spectroscopy (EDS). The adsorption behaviours of the materials were tested against Langmuir, Freundlich, etc. isotherm models. Percent adsorption increased with increase in agitation time (5 – 240 minutes), adsorbent dosage (100-500mg), initial concentration (100-300mg/L), and with decrease in particle size (≥75μm to ≤300μm) of the adsorbents. Both processes are dye pH-dependent, increasing or decreasing percent adsorption in acidic (2-6) or alkaline (8-12) range over the studied pH (2-12) range. From the experimental data the Langmuir’s separation factor (RL) suggests unfavourable adsorption for all processes, Freundlich constant (nF) indicates unfavourable process for CR and MO adsorption; while the mean free energy of adsorption

Keywords: adsorption, congo red, methyl orange, neem leave

Procedia PDF Downloads 364
398 Healthy Lifestyle and Risky Behaviors amongst Students of Physical Education High Schools

Authors: Amin Amani, Masomeh Reihany Shirvan, Mahla Nabizadeh Mashizi, Mohadese Khoshtinat, Mohammad Elyas Ansarinia

Abstract:

The purpose of this study is the relationship between a healthy lifestyle and risky behavior in physical education students of Bojnourd schools. The study sample consisted of teenagers studying in second and third grade of Bojnourd's high schools. According to level sampling, 604 students studying in the second grade, and 600 students studying in third grade were tested from physical education schools in Bojnourd. For sample selection, populations were divided into 4 area including north, East, West and South. Then according to the number of students of each area, sample size of each level was determined. Two questionnaires were used to collect data in this study which were consisted of three parts: The demographic data, Iranian teenagers' risk taking (IARS) and prevention methods with emphasize on the importance of family role were examined. The Central and dispersion indices, such as standard deviation, multiple variance analysis, and multivariate regression analysis were used. Results showed that the observed F is significant (P ≤ 0.01) and 21% of variance related to risky behavior is explained by the lack of awareness. Given the significance of the regression, the coefficients of risky behavior in teenagers in prediction equation showed that each of teenagers' risky behavior can have an impact on healthy lifestyle.

Keywords: healthy lifestyle, high-risk behavior, students, physical education

Procedia PDF Downloads 189
397 Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method

Authors: Erdem Elibol, Musa Cadırcı, Nedim Tutkun

Abstract:

Recently, colloidal quantum dots (CQDs) have drawn increasing attention due to their unique size tunability, which makes them potential candidates for numerous applications including photovoltaic, LEDs, and imaging. However, the main challenge to exploit CQDs properly is that there has not been an effective method to produce them with highly crystalline form and narrow size dispersion. Hot injection method is one of the widely used techniques to produce high-quality nanoparticles. In this method, the key parameter is to reduce the time for injection of the precursors into each other, which yields fast and constant nucleation rate and hence to highly monodisperse QDs. In conventional hot injection method, the injection of precursors is carried out using standard lab syringes with long needles. However, this technique is relatively slow and thus will result in poor optical properties in QDs. In this work, highly luminescent CdTe QDs were synthesised by transferring hot precursors into each other using cannula method. Unlike regular syringe technique, with the help of high pressure difference between two precursors’ flasks and wide cross-section of cannula, the hot cannulation process is too short which yields narrow size distribution and high quantum yield of CdTe QDs. Here QDs with full width half maximum (FWHM) of 28 nm was achieved. In addition, the photoluminescence quantum yield of our samples was measured to be about 21 ± 0.9 which is at least twice the previous record values for CdTe QDs wherein syringe was used to transfer precursors.

Keywords: CdTe, hot injection method, luminescent, quantum dots

Procedia PDF Downloads 320
396 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 324
395 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
394 Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole

Authors: S. Ataei, F. Sarrafzadeh Javadi, K. Gilani, E. Moazeni

Abstract:

Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size.

Keywords: physicochemical, non-ionic surfactant vesicles, itraconazole

Procedia PDF Downloads 461
393 Need Assessments of Midwives in Public's Health Center (Puskesmas) at Sukabumi Municipal, Province of Jawa Barat, Indonesia

Authors: Al Asyary, Meita Veruswati, Dian Ayyubi

Abstract:

Sukabumi municipal has highest rank for maternal mortality in Indonesia with 102 by 100,000 live birth with almost 80% of birth were not attended by skilled birth attendant (SBA). Although universal health coverage has been implemented, availability and sufficiency of SBA, such as midwife in this developing country, are problematic agenda for the quality of public healthcare as well as decreasing maternal mortality rate. This study aims to describe the equal distribution of midwives in Sukabumi municipal as support of government’s program named Millennium Development Goals (MDGs) that suppressed maternal mortality rate in Indonesia. We conducted an observational study with Workload Indicator of Staffing Need (WISN) analysis to present the dispersion of midwives by their activities and workloads in 37 Puskesmas. We also generated in-depth interview with several executive chief of health sections, including chief of health offices in Sukabumi municipal. It resulted inferentially that several activities in midwives’ program were differed at once of existing than needed condition ideally (ρ value = 0.002 < 0.05). Meanwhile, decision for midwives’ procurement and placement were held by un-systematically procedure such as based on where the midwife was staying, and it also progressed by neighborhood issue priorities. The absence of formal regulation in local government is a serious problem that indicated poor political commitment, while access to SBA shall be focused carefully.

Keywords: developing country, health professional resources, health policy, need assessment

Procedia PDF Downloads 168
392 Refinement of Thermal and Mechanical Properties of Poly (Lactic Acid)/Poly (Ethylene-Co-Glycidyle Methacrylate)/ Hexagonal Boron Nitride Blend-Composites through Electron-Beam Irradiation

Authors: Ashish Kumar, T. Venkatappa Rao, Subhendu Ray Chowdhury, S. V. S. Ramana Reddy

Abstract:

The main objective of this work is to determine the influence of electron beam irradiation on thermal and mechanical properties of Poly (lactic acid) (PLA)/Poly (ethylene-co-glycidyle methacrylate) (PEGM)/Hexagonal boron nitride (HBN) blend-composites. To reduce the brittleness and improve the toughness of PLA, the PLA/PEGM blend is prepared by using twin-screw Micro compounder. However, the heat deflection temperature (HDT) and other tensile properties were reduced. The HBN has been incorporated into the PLA/PEGM blend as part per hundred i.e. 5 phr and 10phr to improve the HDT. The prepared specimens of blend and blend-composites were irradiated to high energy (4.5 MeV) electron beam (E-beam) at different radiation doses to introduce the cross linking among the polymer chains and uniform dispersion of HBN particles in the PLA/PEGM/HBN blend-composites. The further improvement in the notched impact strength and HDT have been achieved in the case of PLA/PEGM/HBN blend-composites. The irradiated PLA/PEGM/HBN 5phr blend composite shows high notched impact strength and HDT as compared to other unirradiated and E-beam irradiated blend and blend-composites. The improvements in the yield strength and tensile modulus have also been noticed in the case of E-beam irradiated PLA/PEGM/HBN blend-composites as compared to unirradiated blend-composites.

Keywords: blend-composite, e-beam, HDT, PEGM, PLA

Procedia PDF Downloads 187
391 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial

Authors: Shubham Jaiswal

Abstract:

During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative

Procedia PDF Downloads 445
390 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference

Authors: Jang kyun Cho, Jeong-dong Lee

Abstract:

The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.

Keywords: innovation diffusion, agent based model, small-world network, demand forecasting

Procedia PDF Downloads 341
389 Electrokinetic Regulation of Flow in Microcrack Reservoirs

Authors: Aslanova Aida Ramiz

Abstract:

One of the important aspects of rheophysical problems in oil and gas extraction is the regulation of thermohydrodynamic properties of liquid systems using physical and physicochemical methods. It is known that the constituent parts of real fluid systems in oil and gas production are practically non-conducting, non-magnetically active components. Real heterogeneous hydrocarbon systems, from the structural point of view, consist of an infinite number of microscopic local ion-electrostatic cores distributed in the volume of the dispersion medium. According to Cohen's rule, double electric layers are formed at the contact boundaries of components in contact (oil-gas, oil-water, water-condensate, etc.) in a heterogeneous system, and as a result, each real fluid system can be represented as a complex composition of a set of local electrostatic fields. The electrokinetic properties of this structure are characterized by a certain electrode potential. Prof. F.H. Valiyev called this potential the α-factor and came up with the idea that many natural and technological rheophysical processes (effects) are essentially electrokinetic in nature, and by changing the α-factor, it is possible to adjust the physical properties of real hydraulic systems, including thermohydrodynamic parameters. Based on this idea, extensive research work was conducted, and the possibility of reducing hydraulic resistances and improving rheological properties was experimentally discovered in real liquid systems by reducing the electrical potential with various physical and chemical methods.

Keywords: microcracked, electrode potential, hydraulic resistance, Newtonian fluid, rheophysical properties

Procedia PDF Downloads 77
388 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki

Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas

Abstract:

The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.

Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5

Procedia PDF Downloads 77