Search results for: Fractional Riccati differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3109

Search results for: Fractional Riccati differential equations

2389 The Scattering in Flexible Reactive Silencer Containing Rigid Partitioning

Authors: Muhammad Afzal, Junaid Uzair Satti

Abstract:

The noise emanating from the ducting of heating, ventilation, and air-conditioning (HVAC) system is often attenuated by using the dissipative silencers. Such devices work well for the high-frequency noise but are less operative in the low-frequency noise range. The present study analyzes a reactive silencer comprising expansion chamber of the elastic membranes partitioned symmetrically by a rigid plate. The Mode-Matching scheme has been developed to solve the governing boundary value problem. The orthogonal and non-orthogonal duct modes of acoustic pressures and normal velocities are matched at interfaces. It enables to recast the differential system into the infinite system of linear algebraic of equations, which is, then truncated and inverted for the solution. The truncated solution is validated through the conservation of energy and reconstruction of matching conditions. The results for scattering energy flux and transmission loss are shown against frequency and the dimensions of the chamber. It is seen that the stop-band of the silencer can be shifted to the broadband by changing the dimensions of the chamber and the properties of the elastic membranes. The modeled reactive silencer is more efficient in low frequency regime where the passive devices are least effective.

Keywords: acoustic scattering, elastic membranes mode-matching, reactive silencer

Procedia PDF Downloads 133
2388 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.

Keywords: curved stretching sheet, finite difference method, MHD, variable thermal conductivity

Procedia PDF Downloads 180
2387 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 324
2386 Factor Analysis Based on Semantic Differential of the Public Perception of Public Art: A Case Study of the Malaysia National Monument

Authors: Yuhanis Ibrahim, Sung-Pil Lee

Abstract:

This study attempts to address factors that contribute to outline public art factors assessment, memorial monument specifically. Memorial monuments hold significant and rich message whether the intention of the art is to mark and commemorate important event or to inform younger generation about the past. Public monument should relate to the public and raise awareness about the significant issue. Therefore, by investigating the impact of the existing public memorial art will hopefully shed some lights to the upcoming public art projects’ stakeholders to ensure the lucid memorial message is delivered to the public directly. Public is the main actor as public is the fundamental purpose that the art was created. Perception is framed as one of the reliable evaluation tools to assess the public art impact factors. The Malaysia National Monument was selected to be the case study for the investigation. The public’s perceptions were gathered using a questionnaire that involved (n-115) participants to attain keywords, and next Semantical Differential Methodology (SDM) was adopted to evaluate the perceptions about the memorial monument. These perceptions were then measured with Reliability Factor and then were factorised using Factor Analysis of Principal Component Analysis (PCA) method to acquire concise factors for the monument assessment. The result revealed that there are four factors that influence public’s perception on the monument which are aesthetic, audience, topology, and public reception. The study concludes by proposing the factors for public memorial art assessment for the next future public memorial projects especially in Malaysia.

Keywords: factor analysis, public art, public perception, semantical differential methodology

Procedia PDF Downloads 486
2385 The Rayleigh Quotient for Structural Element Vibration Analysis with Finite Element Method

Authors: Falek Kamel

Abstract:

Various approaches are usually used in the dynamic analysis of beams vibrating transversally. For this, numerical methods allowing the solving of the general eigenvalue problem are utilized. The equilibrium equations describe the movement resulting from the solution of a fourth-order differential equation. Our investigation is based on the finite element method. The findings of these investigations are the vibration frequencies obtained by the Jacobi method. Two types of the elementary mass matrix are considered, representing a uniform distribution of the mass along with the element and concentrated ones located at fixed points whose number is increased progressively separated by equal distances at each evaluation stage. The studied beams have different boundary constraints representing several classical situations. Comparisons are made for beams where the distributed mass is replaced by n concentrated masses. As expected, the first calculus stage is to obtain the lowest number of beam parts that gives a frequency comparable to that issued from the Rayleigh formula. The obtained values are then compared to theoretical results based on the assumptions of the Bernoulli-Euler theory. These steps are used for the second type of mass representation in the same manner.

Keywords: structural elements, beams vibrating, dynamic analysis, finite element method, Jacobi method

Procedia PDF Downloads 149
2384 3D Dynamic Modeling of Transition Zones

Authors: Edina Koch, Péter Hudacsek

Abstract:

In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.

Keywords: culvert, dynamic load, HS small model, railway transition zone

Procedia PDF Downloads 270
2383 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption

Authors: Ashish Ashish

Abstract:

In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.

Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption

Procedia PDF Downloads 135
2382 Performance Analysis of 180 nm Low Voltage Low Power CMOS OTA for High Frequency Application

Authors: D. J. Dahigaonkar, D. G. Wakde

Abstract:

The performance analysis of low voltage low power CMOS OTA is presented in this paper. The differential input single output OTA is simulated in 180nm CMOS process technology. The simulation results indicate high bandwidth of the order of 7.04GHz with 0.766mW power consumption and transconductance of -71.20dB. The total harmonic distortion for 100mV input at a frequency of 1MHz is found to be 2.3603%. In addition to this, to establish comparative analysis of designed OTA and analyze effect of technology scaling, the differential input single output OTA is further simulated using 350nm CMOS process technology and the comparative analysis is presented in this paper.

Keywords: Operational Transconductance Amplifier, Total Harmonic Distortions, low voltage/low power, power dissipation

Procedia PDF Downloads 392
2381 Designing a Robust Controller for a 6 Linkage Robot

Authors: G. Khamooshian

Abstract:

One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.

Keywords: 3-RRS, 6 linkage, parallel robot, control

Procedia PDF Downloads 137
2380 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems

Authors: Masato Sasaki, Masayoshi Yamamoto

Abstract:

The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.

Keywords: wireless power transfer, omni-directional, orthogonal, efficiency

Procedia PDF Downloads 301
2379 On Algebraic Structure of Improved Gauss-Seide Iteration

Authors: O. M. Bamigbola, A. A. Ibrahim

Abstract:

Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.

Keywords: linear algebraic system, Gauss-Seidel iteration, algebraic structure, convergence

Procedia PDF Downloads 448
2378 Prediction of Conducted EMI Noise in a Converter

Authors: Jon Cobb, Nasir

Abstract:

Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.

Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise

Procedia PDF Downloads 1188
2377 Time and Kinematics of Moving Bodies

Authors: Muhammad Omer Farooq Saeed

Abstract:

The purpose of the proposal is to find out what time actually is! And to understand the natural phenomenon of the behavior of time and light corresponding to the motion of the bodies at relatively high speeds. The utmost concern of the paper is to deal with the possible demerits in the equations of relativity, thereby providing some valuable extensions in those equations and concepts. The idea used develops the most basic conception of the relative motion of the body with respect to space and a real understanding of time and the variation of energy of the body in different frames of reference. The results show the development of a completely new understanding of time, relative motion and energy, along with some extensions in the equations of special relativity most importantly the time dilation and the mass-energy relationship that will explain all frames of a body, all in one go. The proposal also raises serious questions on the validity of the “Principle of Equivalence” on which the General Relativity is based, most importantly a serious case of the bending light that eventually goes against its own governing concepts of space-time being proposed in the theory. The results also predict the existence of a completely new field that explains the fact just how and why bodies acquire energy in space-time. This field explains the production of gravitational waves based on time. All in all, this proposal challenges the formulas and conceptions of Special and General Relativity, respectively.

Keywords: time, relative motion, energy, speed, frame of reference, photon, curvature, space-time, time –differentials

Procedia PDF Downloads 52
2376 Development of an Experiment for Impedance Measurement of Structured Sandwich Sheet Metals by Using a Full Factorial Multi-Stage Approach

Authors: Florian Vincent Haase, Adrian Dierl, Anna Henke, Ralf Woll, Ennes Sarradj

Abstract:

Structured sheet metals and structured sandwich sheet metals are three-dimensional, lightweight structures with increased stiffness which are used in the automotive industry. The impedance, a figure of resistance of a structure to vibrations, will be determined regarding plain sheets, structured sheets, and structured sandwich sheets. The aim of this paper is generating an experimental design in order to minimize costs and duration of experiments. The design of experiments will be used to reduce the large number of single tests required for the determination of correlation between the impedance and its influencing factors. Full and fractional factorials are applied in order to systematize and plan the experiments. Their major advantages are high quality results given the relatively small number of trials and their ability to determine the most important influencing factors including their specific interactions. The developed full factorial experimental design for the study of plain sheets includes three factor levels. In contrast to the study of plain sheets, the respective impedance analysis used on structured sheets and structured sandwich sheets should be split into three phases. The first phase consists of preliminary tests which identify relevant factor levels. These factor levels are subsequently employed in main tests, which have the objective of identifying complex relationships between the parameters and the reference variable. Possible post-tests can follow up in case additional study of factor levels or other factors are necessary. By using full and fractional factorial experimental designs, the required number of tests is reduced by half. In the context of this paper, the benefits from the application of design for experiments are presented. Furthermore, a multistage approach is shown to take into account unrealizable factor combinations and minimize experiments.

Keywords: structured sheet metals, structured sandwich sheet metals, impedance measurement, design of experiment

Procedia PDF Downloads 358
2375 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 330
2374 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities

Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan

Abstract:

The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.

Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility

Procedia PDF Downloads 58
2373 Numerical Analysis and Influence of the Parameters on Slope Stability

Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali

Abstract:

A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground. 

Keywords: slope, shallow foundation, numeric method, FLAC 2D

Procedia PDF Downloads 269
2372 Simulation of Improving the Efficiency of a Fire-Tube Steam Boiler

Authors: Roudane Mohamed

Abstract:

In this study we are interested in improving the efficiency of a steam boiler to 4.5T/h and minimize fume discharge temperature by the addition of a heat exchanger against the current in the energy system, the output of the boiler. The mathematical approach to the problem is based on the use of heat transfer by convection and conduction equations. These equations have been chosen because of their extensive use in a wide range of application. A software and developed for solving the equations governing these phenomena and the estimation of the thermal characteristics of boiler through the study of the thermal characteristics of the heat exchanger by both LMTD and NUT methods. Subsequently, an analysis of the thermal performance of the steam boiler by studying the influence of different operating parameters on heat flux densities, temperatures, exchanged power and performance was carried out. The study showed that the behavior of the boiler is largely influenced. In the first regime (P = 3.5 bar), the boiler efficiency has improved significantly from 93.03 to 99.43 at the rate of 6.47% and 4.5%. For maximum speed, the change is less important, it is of the order of 1.06%. The results obtained in this study of great interest to industrial utilities equipped with smoke tube boilers for the preheating air temperature intervene to calculate the actual temperature of the gas so the heat exchanged will be increased and minimize temperature smoke discharge. On the other hand, this work could be used as a model of computation in the design process.

Keywords: numerical simulation, efficiency, fire tube, heat exchanger, convection and conduction

Procedia PDF Downloads 206
2371 Mass Polarization in Three-Body System with Two Identical Particles

Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic

Abstract:

The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.

Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions

Procedia PDF Downloads 354
2370 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 302
2369 The Link between Anthropometry and Fat-Based Obesity Indices in Pediatric Morbid Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Anthropometric measurements are essential for obesity studies. Waist circumference (WC) is the most frequently used measure, and along with hip circumference (HC), it is used in most equations derived for the evaluation of obese individuals. Morbid obesity is the most severe clinical form of obesity, and such individuals may also exhibit some clinical findings leading to metabolic syndrome (MetS). Then, it becomes a requirement to discriminate morbid obese children with (MOMetS+) and without (MOMetS-) MetS. Almost all obesity indices can differentiate obese (OB) children from children with normal body mass index (N-BMI). However, not all of them are capable of making this distinction. A recently introduced anthropometric obesity index, waist circumference + hip circumference/2 ((WC+HC)/2), was confirmed to differ OB children from those with N-BMI, however it has not been tested whether it will find clinical usage for the differential diagnosis of MOMetS+ and MOMetS-. This study was designed to find out the availability of (WC+HC)/2 for the purpose and to compare the possible preponderance of it over some other anthropometric or fat-based obesity indices. Forty-five MOMetS+ and forty-five MOMetS- children were included in the study. Participants have submitted informed consent forms. The study protocol was approved by the Non-interventional Ethics Committee of Tekirdag Namik Kemal University. Anthropometric measurements were performed. Body mass index (BMI), waist-to-hip circumference (W/H), (WC+HC)/2, trunk-to-leg fat ratio (TLFR), trunk-to-appendicular fat ratio (TAFR), trunk fat+leg fat/2 ((trunk+leg fat)/2), diagnostic obesity notation model assessment index-2 (D2I) and fat mass index (FMI) were calculated for both groups. Study data was analyzed statistically, and 0.05 for p value was accepted as the statistical significance degree. Statistically higher BMI, WC, (WC+HC)/2, (trunk+leg fat)/2 values were found in MOMetS+ children than MOMetS- children. No statistically significant difference was detected for W/H, TLFR, TAFR, D2I, and FMI between two groups. The lack of difference between the groups in terms of FMI and D2I pointed out the fact that the recently developed fat-based index; (trunk+leg fat)/2 gives much more valuable information during the evaluation of MOMetS+ and MOMetS- children. Upon evaluation of the correlations, (WC+HC)/2 was strongly correlated with D2I and FMI in both MOMetS+ and MOMetS- groups. Neither D2I nor FMI was correlated with W/H. Strong correlations were calculated between (WC+HC)/2 and (trunk+leg fat)/2 in both MOMetS- (r=0.961; p<0.001) and MOMetS+ (r=0.936; p<0.001) groups. Partial correlations between (WC+HC)/2 and (trunk+leg fat)/2 after controlling the effect of basal metabolic rate were r=0.726; p<0.001 in MOMetS- group and r=0.932; p<0.001 in MOMetS+ group. The correlation in the latter group was higher than the first group. In conclusion, recently developed anthropometric obesity index (WC+HC)/2 and fat-based obesity index (trunk+leg fat)/2 were of preponderance over the previously introduced classical obesity indices such as W/H, D2I and FMI during the differential diagnosis of MOMetS+ and MOMetS- children.

Keywords: children, hip circumference, metabolic syndrome, morbid obesity, waist circumference

Procedia PDF Downloads 276
2368 Quantum Mechanics as A Limiting Case of Relativistic Mechanics

Authors: Ahmad Almajid

Abstract:

The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.

Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics

Procedia PDF Downloads 62
2367 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 253
2366 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid

Procedia PDF Downloads 164
2365 Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion

Authors: Rachid Fermous, Rima Mebrek

Abstract:

Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

Keywords: plasma expansion, quantum degeneracy, weakly relativistic, under-dense plasma

Procedia PDF Downloads 69
2364 Study of a Lean Premixed Combustor: A Thermo Acoustic Analysis

Authors: Minoo Ghasemzadeh, Rouzbeh Riazi, Shidvash Vakilipour, Alireza Ramezani

Abstract:

In this study, thermo acoustic oscillations of a lean premixed combustor has been investigated, and a mono-dimensional code was developed in this regard. The linearized equations of motion are solved for perturbations with time dependence〖 e〗^iwt. Two flame models were considered in this paper and the effect of mean flow and boundary conditions were also investigated. After manipulation of flame heat release equation together with the equations of flow perturbation within the main components of the combustor model (i.e., plenum/ premixed duct/ and combustion chamber) and by considering proper boundary conditions between the components of model, a system of eight homogeneous equations can be obtained. This simplification, for the main components of the combustor model, is convenient since low frequency acoustic waves are not affected by bends. Moreover, some elements in the combustor are smaller than the wavelength of propagated acoustic perturbations. A convection time is also assumed to characterize the required time for the acoustic velocity fluctuations to travel from the point of injection to the location of flame front in the combustion chamber. The influence of an extended flame model on the acoustic frequencies of combustor was also investigated, assuming the effect of flame speed as a function of equivalence ratio perturbation, on the rate of flame heat release. The abovementioned system of equations has a related eigenvalue equation which has complex roots. The sign of imaginary part of these roots determines whether the disturbances grow or decay and the real part of these roots would give the frequency of the modes. The results show a reasonable agreement between the predicted values of dominant frequencies in the present model and those calculated in previous related studies.

Keywords: combustion instability, dominant frequencies, flame speed, premixed combustor

Procedia PDF Downloads 368
2363 Oscillatory Electroosmotic Flow in a Microchannel with Slippage at the Walls and Asymmetric Wall Zeta Potentials

Authors: Oscar Bautista, Jose Arcos

Abstract:

In this work, we conduct a theoretical analysis of an oscillatory electroosmotic flow in a parallel-plate microchannel taking into account slippage at the microchannel walls. The governing equations given by the Poisson-Boltzmann (with the Debye-Huckel approximation) and momentum equations are nondimensionalized from which four dimensionless parameters appear; a Reynolds angular number, the ratio between the zeta potentials of the microchannel walls, the electrokinetic parameter and the dimensionless slip length which measures the competition between the Navier slip length and the half height microchannel. The principal results indicate that the slippage has a strong influence on the magnitude of the oscillatory electroosmotic flow increasing the velocity magnitude up to 50% for the numerical values used in this work.

Keywords: electroosmotic flows, oscillatory flow, slippage, microchannel

Procedia PDF Downloads 211
2362 Y-Y’ Calculus in Physical Sciences and Engineering with Particular Reference to Fundamentals of Soil Consolidation

Authors: Sudhir Kumar Tewatia, Kanishck Tewatia, Anttriksh Tewatia

Abstract:

Advancements in soil consolidation are discussed, and further improvements are proposed with particular reference to Tewatia’s Y-Y’ Approach, which is called the Settlement versus Rate of Settlement Approach in consolidation. A branch of calculus named Y-Y' (or y versus dy/dx) is suggested (as compared to the common X-Y', x versus dy/dx, dy/dx versus x or Newton-Leibniz branch) that solves some complicated/unsolved theoretical and practical problems in physical sciences (Physics, Chemistry, Mathematics, Biology, and allied sciences) and engineering in an amazingly simple and short manner, particularly when independent variable X is unknown and X-Y' Approach can’t be used. Complicated theoretical and practical problems in 1D, 2D, 3D Primary and Secondary consolidations with non-uniform gradual loading and irregularly shaped clays are solved with elementary school level Y-Y' Approach, and it is interesting to note that in X-Y' Approach, equations become more difficult while we move from one to three dimensions, but in Y-Y' Approach even 2D/3D equations are very simple to derive, solve, and use; rather easier sometimes. This branch of calculus will have a far-reaching impact on understanding and solving the problems in different fields of physical sciences and engineering that were hitherto unsolved or difficult to be solved by normal calculus/numerical/computer methods. Some particular cases from soil consolidation that basically creeps and diffusion equations in isolation and in combination with each other are taken for comparison with heat transfer. The Y-Y’ Approach can similarly be applied in wave equations and other fields wherever normal calculus works or fails. Soil mechanics uses mathematical analogies from other fields of physical sciences and engineering to solve theoretical and practical problems; for example, consolidation theory is a replica of the heat equation from thermodynamics with the addition of the effective stress principle. An attempt is made to give them mathematical analogies.

Keywords: calculus, clay, consolidation, creep, diffusion, heat, settlement

Procedia PDF Downloads 75
2361 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer

Authors: A. Giniatoulline

Abstract:

A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.

Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid

Procedia PDF Downloads 233
2360 Mathematical Model of the Spread of Herpes Simplex Virus Type-2 in Heterosexual Relations with and without Condom Usage in a College Population

Authors: Jacob A. Braun

Abstract:

This paper uses mathematical modeling to show the spread of Herpes Simplex type-2 with and without the usage of condoms in a college population. The model uses four differential equations to calculate the data for the simulation. The dt increment used is one week. It also runs based on a fixated period. The period chosen was five years to represent time spent in college. The average age of the individual is 21, once again to represent the age of someone in college. In the total population, there are almost two times as many women who have Herpes Simplex Type-2 as men. Additionally, Herpes Simplex Type-2 does not have a known cure. The goal of the model is to show how condom usage affects women’s chances of receiving the virus in the hope of being able to reduce the number of women infected. In the end, the model demonstrates that condoms offer significant protection to women from the virus. Since fewer women are infected with the virus when condoms are used, in turn, fewer males are infected. Since Herpes Simplex Type-2 affects the carrier for their whole life, a small decrease of infections could lead to large ramifications over time. Specifically, a small decrease of infections at a young age, such as college, could have a very big effect on the long-term number of people infected with the virus.

Keywords: college, condom, Herpes, mathematical modelling

Procedia PDF Downloads 197