Search results for: ERA-5 analysis data
41556 Adolescent Sleep Hygiene Scale and Adolescent Sleep Wake Scale: Factorial Analysis and Validation for Indian Population
Authors: Sataroopa Mishra, Mona Basker, Sneha Varkki, Ram Kumar Pandian, Grace Rebekah
Abstract:
Background: Sleep deprivation is a matter of public health importance among adolescents. We used adolescent sleep wake scale and adolescent sleep hygiene scale to determine the sleep quality and sleep hygiene respectively of school going adolescents in Vellore city of India. The objective of the study was to do factorial analysis of the scales and validate it for use in local population. Methods: Observational questionnaire based cross sectional study. Setting: Community based school survey in a semi-urban setting in three schools in Vellore city. Data collection: Non probability sample was collected form students studying in standard 9 and 11. Students filled Adolescent Sleep Wake scale (ASWS) and Adolescent Sleep Hygiene Scale (ASHS) translated into vernacular language. Data Analysis: Exploratory Factorial Analysis was used to see the factor loading of various components of the two scales. Confirmatory factorial analysis is subsequently planned for assessing the internal validity of the scales.Results: 557 adolescents were included in the study of 12 – 17 years old. Exploratory factorial analysis of adolescent sleep hygiene scale indicated significant factor loading for 18 items from 28 items originally devised by the authors and has been reconstructed to four domains instead of 9 domains in the original scale namely sleep stability, cognitive – emotional, Physiological - bed time routine - behavioural arousal factor (activites before bedtime and during bed time), Sleep environment (lighting and bed sharing). Factorial analysis of Adolescent sleep wake scale showed factor loading of 18 items out of 28 items in original scale reconstructed into 5 aspects of sleep quality. Conclusions: The factorial analysis gives a reconstructed scale useful for the local population. Further a confirmatory factorial analysis has been subsequently planned to determine the internal consistency of the scale for local population.Keywords: factorial analysis, sleep hygiene, sleep quality, adolescent sleep scale
Procedia PDF Downloads 29441555 Big Data in Construction Project Management: The Colombian Northeast Case
Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez
Abstract:
In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.Keywords: big data, building information modeling, tecnology, project manamegent
Procedia PDF Downloads 12941554 Collaboration of Game Based Learning with Models Roaming the Stairs Using the Tajribi Method on the Eye PAI Lessons at the Ummul Mukminin Islamic Boarding School, Makassar South Sulawesi
Authors: Ratna Wulandari, Shahidin
Abstract:
This article aims to see how the Game Based Learning learning model with the Roaming The Stairs game makes a tajribi method can make PAI lessons active and interactive learning. This research uses a qualitative approach with a case study type of research. Data collection methods were carried out using interviews, observation, and documentation. Data analysis was carried out through the stages of data reduction, data display, and verification and drawing conclusions. The data validity test was carried out using the triangulation method. and drawing conclusions. The results of the research show that (1) children in grades 9A, 9B, and 9C like learning PAI using the Roaming The Stairs game (2) children in grades 9A, 9B, and 9C are active and can work in groups to solve problems in the Roaming The Stairs game (3) the class atmosphere becomes fun with learning method, namely learning while playing.Keywords: game based learning, Roaming The Stairs, Tajribi PAI
Procedia PDF Downloads 2341553 Assessment of Land Suitability for Tea Cultivation Using Geoinformatics in the Mansehra and Abbottabad District, Pakistan
Authors: Nasir Ashraf, Sajid Rahid Ahmad, Adeel Ahmad
Abstract:
Pakistan is a major tea consumer country and ranked as the third largest importer of tea worldwide. Out of all beverage consumed in Pakistan, tea is the one with most demand for which tea import is inevitable. Being an agrarian country, Pakistan should cultivate its own tea and save the millions of dollars cost from tea import. So the need is to identify the most suitable areas with favorable weather condition and suitable soils where tea can be planted. This research is conducted over District Mansehra and District Abbottabad in Khyber Pakhtoonkhwah Province of Pakistan where the most favorable conditions for tea cultivation already exist and National Tea Research Institute has done successful experiments to cultivate high quality tea. High tech approach is adopted to meet the objectives of this research by using the remotely sensed data i.e. Aster DEM, Landsat8 Imagery. The Remote Sensing data was processed in Erdas Imagine, Envi and further analyzed in ESRI ArcGIS spatial analyst for final results and representation of result data in map layouts. Integration of remote sensing data with GIS provided the perfect suitability analysis. The results showed that out of all study area, 13.4% area is highly suitable while 33.44% area is suitable for tea plantation. The result of this research is an impressive GIS based outcome and structured format of data for the agriculture planners and Tea growers. Identification of suitable tea growing areas by using remotely sensed data and GIS techniques is a pressing need for the country. Analysis of this research lets the planners to address variety of action plans in an economical and scientific manner which can lead tea production in Pakistan to meet demand. This geomatics based model and approach may be used to identify more areas for tea cultivation to meet our demand which we can reduce by planting our own tea, and our country can be independent in tea production.Keywords: agrarian country, GIS, geoinformatics, suitability analysis, remote sensing
Procedia PDF Downloads 39041552 Exploring Students' Understanding about Bullying in Private Colleges in Rawalpindi, Pakistan
Authors: Alveena Khan
Abstract:
The objective of this research is to explore students’ understanding about bullying and different bullying types. Nowadays bullying is considered as an important social issue around the world because it has long lasting effects on students’ lives. Sometimes due to bullying students commit suicide, they lose confidence and become isolated. This research used qualitative research approach. In order to generate data, triangulation was considered for the verification and reliability of the generated data. Semi-structured interview, non-participant observation, and case studies were conducted. This research focused on five major private colleges and 20 students (both female and male) participated in Rawalpindi, Pakistan. The data generated included approximately 45 hours of total interviews. Thematic analysis was used for data analysis and followed grounded theory to generate themes. The findings of the research highlights that bullying does prevail in studied private colleges, mostly in the form of verbal and physical bullying. No specific gender difference was found in experiencing verbal and physical bullying. Furthermore, from students’ point of view, college administrators are responsible to deal with bullying. The researcher suggests that there must be a proper check and balance system and anti-bullying programs should be held in colleges to create a protective and healthy environment in which students do not face bullying.Keywords: bullying, college student, physical and verbal bullying, qualitative research
Procedia PDF Downloads 16041551 The Effect of Foot Progression Angle on Human Lower Extremity
Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae
Abstract:
The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.Keywords: finite element analysis, gait analysis, human model, motion capture
Procedia PDF Downloads 33641550 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis
Authors: Hamd Rezaeifar, Hamid Reza Sahriari
Abstract:
Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.Keywords: accident, data mining, neural network, GIS
Procedia PDF Downloads 4841549 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region
Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski
Abstract:
Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.Keywords: lightning, urbanization, thunderstorms, climatology
Procedia PDF Downloads 7641548 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics
Authors: Janne Engblom, Elias Oikarinen
Abstract:
A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.Keywords: dynamic model, fixed effects, panel data, price dynamics
Procedia PDF Downloads 151041547 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed
Authors: Tesfay Mekonnen Weldegerima
Abstract:
Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed
Procedia PDF Downloads 7041546 A Systematic Review on Challenges in Big Data Environment
Authors: Rimmy Yadav, Anmol Preet Kaur
Abstract:
Big Data has demonstrated the vast potential in streamlining, deciding, spotting business drifts in different fields, for example, producing, fund, Information Technology. This paper gives a multi-disciplinary diagram of the research issues in enormous information and its procedures, instruments, and system identified with the privacy, data storage management, network and energy utilization, adaptation to non-critical failure and information representations. Other than this, result difficulties and openings accessible in this Big Data platform have made.Keywords: big data, privacy, data management, network and energy consumption
Procedia PDF Downloads 31341545 Post-occupancy Evaluation of Greenway Based on Multi-source data : A Case Study of Jincheng Greenway in Chengdu
Authors: Qin Zhu
Abstract:
Under the development concept of Park City, Tianfu Greenway system, as the basic and pre-configuration element of Chengdu Global Park construction, connects urban open space with linear and circular structures and undertakes and exerts the ecological, cultural and recreational functions of the park system. Chengdu greenway construction is in full swing. In the process of greenway planning and construction, the landscape effect of greenway on urban quality improvement is more valued, and the long-term impact of crowd experience on the sustainable development of greenway is often ignored. Therefore, it is very important to test the effectiveness of greenway construction from the perspective of users. Taking Jincheng Greenway in Chengdu as an example, this paper attempts to introduce multi-source data to construct a post-occupancy evaluation model of greenway and adopts behavior mapping method, questionnaire survey method, web text analysis and IPA analysis method to comprehensively evaluate the user 's behavior characteristics and satisfaction. According to the evaluation results, we can grasp the actual behavior rules and comprehensive needs of users so that the experience of building greenways can be fed back in time and provide guidance for the optimization and improvement of built greenways and the planning and construction of future greenways.Keywords: multi-source data, greenway, IPA analysis, post -occupancy evaluation (POE)
Procedia PDF Downloads 6141544 Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation
Authors: M. Sarai Atab, A. Smallbone, A. P. Roskilly
Abstract:
A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively.Keywords: brackish water, exergy, irrigation, reverse osmosis (RO)
Procedia PDF Downloads 17541543 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data
Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa
Abstract:
A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation
Procedia PDF Downloads 20241542 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 45541541 The Development of Statistical Analysis in Agriculture Experimental Design Using R
Authors: Somruay Apichatibutarapong, Chookiat Pudprommart
Abstract:
The purpose of this study was to develop of statistical analysis by using R programming via internet applied for agriculture experimental design. Data were collected from 65 items in completely randomized design, randomized block design, Latin square design, split plot design, factorial design and nested design. The quantitative approach was used to investigate the quality of learning media on statistical analysis by using R programming via Internet by six experts and the opinions of 100 students who interested in experimental design and applied statistics. It was revealed that the experts’ opinions were good in all contents except a usage of web board and the students’ opinions were good in overall and all items.Keywords: experimental design, r programming, applied statistics, statistical analysis
Procedia PDF Downloads 36941540 Survey on Big Data Stream Classification by Decision Tree
Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi
Abstract:
Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.Keywords: big data, data streams, classification, decision tree
Procedia PDF Downloads 52241539 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 38441538 Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation
Authors: Péter Tanos, József Kovács, Angéla Anda, Gábor Várbíró, Sándor Molnár, István Gábor Hatvani
Abstract:
The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream.Keywords: annual periodicity water quality, spatiotemporal variability of periodic behavior, Morlet wavelet spectrum analysis, River Tisza
Procedia PDF Downloads 34541537 Big Data Analysis Approach for Comparison New York Taxi Drivers' Operation Patterns between Workdays and Weekends Focusing on the Revenue Aspect
Authors: Yongqi Dong, Zuo Zhang, Rui Fu, Li Li
Abstract:
The records generated by taxicabs which are equipped with GPS devices is of vital importance for studying human mobility behavior, however, here we are focusing on taxi drivers' operation strategies between workdays and weekends temporally and spatially. We identify a group of valuable characteristics through large scale drivers' behavior in a complex metropolis environment. Based on the daily operations of 31,000 taxi drivers in New York City, we classify drivers into top, ordinary and low-income groups according to their monthly working load, daily income, daily ranking and the variance of the daily rank. Then, we apply big data analysis and visualization methods to compare the different characteristics among top, ordinary and low income drivers in selecting of working time, working area as well as strategies between workdays and weekends. The results verify that top drivers do have special operation tactics to help themselves serve more passengers, travel faster thus make more money per unit time. This research provides new possibilities for fully utilizing the information obtained from urban taxicab data for estimating human behavior, which is not only very useful for individual taxicab driver but also to those policy-makers in city authorities.Keywords: big data, operation strategies, comparison, revenue, temporal, spatial
Procedia PDF Downloads 22741536 Principal Component Analysis of Body Weight and Morphometric Traits of New Zealand Rabbits Raised under Semi-Arid Condition in Nigeria
Authors: Emmanuel Abayomi Rotimi
Abstract:
Context: Rabbits production plays important role in increasing animal protein supply in Nigeria. Rabbit production provides a cheap, affordable, and healthy source of meat. The growth of animals involves an increase in body weight, which can change the conformation of various parts of the body. Live weight and linear measurements are indicators of growth rate in rabbits and other farm animals. Aims: This study aimed to define the body dimensions of New Zealand rabbits and also to investigate the morphometric traits variables that contribute to body conformation by the use of principal component analysis (PCA). Methods: Data were obtained from 80 New Zealand rabbits (40 bucks and 40 does) raised in Livestock Teaching and Research Farm, Federal University Dutsinma. Data were taken on body weight (BWT), body length (BL), ear length (EL), tail length (TL), heart girth (HG) and abdominal circumference (AC). Data collected were subjected to multivariate analysis using SPSS 20.0 statistical package. Key results: The descriptive statistics showed that the mean BWT, BL, EL, TL, HG, and AC were 0.91kg, 27.34cm, 10.24cm, 8.35cm, 19.55cm and 21.30cm respectively. Sex showed significant (P<0.05) effect on all the variables examined, with higher values recorded for does. The phenotypic correlation coefficient values (r) between the morphometric traits were all positive and ranged from r = 0.406 (between EL and BL) to r = 0.909 (between AC and HG). HG is the most correlated with BWT (r = 0.786). The principal component analysis with variance maximizing orthogonal rotation was used to extract the components. Two principal components (PCs) from the factor analysis of morphometric traits explained about 80.42% of the total variance. PC1 accounted for 64.46% while PC2 accounted for 15.97% of the total variances. Three variables, representing body conformation, loaded highest in PC1. PC1 had the highest contribution (64.46%) to the total variance, and it is regarded as body conformation traits. Conclusions: This component could be used as selection criteria for improving body weight of rabbits.Keywords: conformation, multicollinearity, multivariate, rabbits and principal component analysis
Procedia PDF Downloads 13041535 A Review of Machine Learning for Big Data
Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.
Abstract:
Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.Keywords: active learning, big data, deep learning, machine learning
Procedia PDF Downloads 44641534 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights
Authors: Tomy Prihananto, Damar Apri Sudarmadi
Abstract:
Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.Keywords: Indonesia, protection, personal data, privacy, human rights, encryption
Procedia PDF Downloads 18341533 Use of Cloud Computing and Smart Devices in Healthcare
Authors: Nikunj Agarwal, M. P. Sebastian
Abstract:
Cloud computing can reduce the start-up expenses of implementing EHR (Electronic Health Records). However, many of the healthcare institutions are yet to implement cloud computing due to the associated privacy and security issues. In this paper, we analyze the challenges and opportunities of implementing cloud computing in healthcare. We also analyze data of over 5000 US hospitals that use Telemedicine applications. This analysis helps to understand the importance of smart phones over the desktop systems in different departments of the healthcare institutions. The wide usage of smartphones and cloud computing allows ubiquitous and affordable access to the health data by authorized persons, including patients and doctors. Cloud computing will prove to be beneficial to a majority of the departments in healthcare. Through this analysis, we attempt to understand the different healthcare departments that may benefit significantly from the implementation of cloud computing.Keywords: cloud computing, smart devices, healthcare, telemedicine
Procedia PDF Downloads 39741532 Malaysian Students' Identity in Seminars by Observing, Interviewing and Conducting Focus Group Discussion
Authors: Zurina Khairuddin
Abstract:
The objective of this study is to explore the identities constructed and negotiated by Malaysian students in the UK and Malaysia when they interact in seminars. The study utilised classroom observation, interview and focus group discussion to collect the data. The participants of this study are the first year Malaysian students studying in the UK and Malaysia. The data collected was analysed utilising a combination of Conversation Analysis and framework. This study postulates that Malaysian students in the UK construct and negotiate flexible and different identities depending on the contexts they were in. It also shows that most Malaysian students in the UK and Malaysia are similar in the identities they construct and negotiate. This study suggests implications and recommendations for Malaysian students in the UK and Malaysia, and other stakeholders such as UK and Malaysian academic community.Keywords: conversation analysis, interaction patterns, Malaysian students, students' identity
Procedia PDF Downloads 18441531 Urban Land Use Type Analysis Based on Land Subsidence Areas Using X-Band Satellite Image of Jakarta Metropolitan City, Indonesia
Authors: Ratih Fitria Putri, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze
Abstract:
Jakarta Metropolitan City is located on the northwest coast of West Java province with geographical location between 106º33’ 00”-107º00’00”E longitude and 5º48’30”-6º24’00”S latitude. Jakarta urban area has been suffered from land subsidence in several land use type as trading, industry and settlement area. Land subsidence hazard is one of the consequences of urban development in Jakarta. This hazard is caused by intensive human activities in groundwater extraction and land use mismanagement. Geologically, the Jakarta urban area is mostly dominated by alluvium fan sediment. The objectives of this research are to make an analysis of Jakarta urban land use type on land subsidence zone areas. The process of producing safer land use and settlements of the land subsidence areas are very important. Spatial distributions of land subsidence detection are necessary tool for land use management planning. For this purpose, Differential Synthetic Aperture Radar Interferometry (DInSAR) method is used. The DInSAR is complementary to ground-based methods such as leveling and global positioning system (GPS) measurements, yielding information in a wide coverage area even when the area is inaccessible. The data were fine tuned by using X-Band image satellite data from 2010 to 2013 and land use mapping data. Our analysis of land use type that land subsidence movement occurred on the northern part Jakarta Metropolitan City varying from 7.5 to 17.5 cm/year as industry and settlement land use type areas.Keywords: land use analysis, land subsidence mapping, urban area, X-band satellite image
Procedia PDF Downloads 27741530 Authentication and Legal Admissibility of 'Computer Evidence from Electronic Voting Machines' in Electoral Litigation: A Qualitative Legal Analysis of Judicial Opinions of Appellate Courts in the USA
Authors: Felix O. Omosele
Abstract:
Several studies have established that electronic voting machines are prone to multi-faceted challenges. One of which is their capacity to lose votes after the ballots might have been cast. Therefore, the international consensus appears to favour the use of electronic voting machines that are accompanied with verifiable audit paper audit trail (VVPAT). At present, there is no known study that has evaluated the impacts (or otherwise) of this verification and auditing on the authentication, admissibility and evidential weight of electronically-obtained electoral data. This legal inquiry is important as elections are sometimes won or lost in courts and on the basis of such data. This gap will be filled by the present research work. Using the United States of America as a case study, this paper employed a qualitative legal analysis of several of its appellate courts’ judicial opinions. This analysis equally unearths the necessary statutory rules and regulations that are important to the research problem. The objective of the research is to highlight the roles played by VVPAT on electoral evidence- as seen from the eyes of the court. The preliminary outcome of this qualitative analysis shows that the admissibility and weight attached to ‘Computer Evidence from e-voting machines (CEEM)’ are often treated with general standards applied to other computer-stored evidence. These standards sometimes fail to embrace the peculiar challenges faced by CEEM, particularly with respect to their tabulation and transmission. This paper, therefore, argues that CEEM should be accorded unique consideration by courts. It proposes the development of a legal standard which recognises verification and auditing as ‘weight enhancers’ for electronically-obtained electoral data.Keywords: admissibility of computer evidence, electronic voting, qualitative legal analysis, voting machines in the USA
Procedia PDF Downloads 19741529 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 46641528 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 6741527 Analysis of Radial Pulse Using Nadi-Parikshan Yantra
Authors: Ashok E. Kalange
Abstract:
Diagnosis according to Ayurveda is to find the root cause of a disease. Out of the eight different kinds of examinations, Nadi-Pariksha (pulse examination) is important. Nadi-Pariksha is done at the root of the thumb by examining the radial artery using three fingers. Ancient Ayurveda identifies the health status by observing the wrist pulses in terms of 'Vata', 'Pitta' and 'Kapha', collectively called as tridosha, as the basic elements of human body and in their combinations. Diagnosis by traditional pulse analysis – NadiPariksha - requires a long experience in pulse examination and a high level of skill. The interpretation tends to be subjective, depending on the expertise of the practitioner. Present work is part of the efforts carried out in making Nadi-Parikshan objective. Nadi Parikshan Yantra (three point pulse examination system) is developed in our laboratory by using three pressure sensors (one each for the Vata, Pitta and Kapha points on radial artery). The radial pulse data was collected of a large number of subjects. The radial pulse data collected is analyzed on the basis of relative amplitudes of the three point pulses as well as in frequency and time domains. The same subjects were examined by Ayurvedic physician (Nadi Vaidya) and the dominant Dosha - Vata, Pitta or Kapha - was identified. The results are discussed in details in the paper.Keywords: Nadi Parikshan Yantra, Tridosha, Nadi Pariksha, human pulse data analysis
Procedia PDF Downloads 190