Search results for: structured gravity model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19585

Search results for: structured gravity model

12355 Woodcast Is Ecologically Sound and Tolerated by Majority of Patients

Authors: R. Hassan, J. Duncombe, E. Darke, A. Dias, K. Anderson, R. G. Middleton

Abstract:

Background: NHS England has set itself the task of delivering a “Net Zero” National Health service by 2040. It is incumbent upon all health care practioners to work towards this goal. Orthopaedic surgeons are no exception. Distal radial fractures are the most common fractures sustained by the adult population. However, studiesare shortcoming on individual patient experience. The aim of this study was to assess the patient’ssatisfaction and outcomes with woodcast used in the conservative management of distal radius fractures. Methods: For all patients managed with woodcast in our unit, we undertook a structured questionnairethat included the Patient Rated Wrist Evaluation (PRWE) score, The EQ-5D-5L score, and the pain numerical score at the time of injury and six weeks after. Results: 30 patients were initially managed with woodcast.80% of patients tolerated woodcast for the full duration of their treatment. Of these, 20% didn’t tolerate woodcast and had their casts removed within 48 hours. Of the remaining, 79.1% were satisfied about woodcast comfort, 66% were very satisfied about woodcast weight, 70% were satisfied with temperature and sweatiness, 62.5% were very satisfied about the smell/odour, and 75% were satisfied about the level of support woodcast provided. During their treatment, 83.3% of patients rated their pain as five or less. Conclusion: For those who completed their treatment in woodcast, none required any further intervention or utilised the open appointment because of ongoing wrist problems. In conclusion, when woodcast is tolerated, patients’ satisfaction and outcome levels were good. However, we acknowledged 20% of patients in our series were not able to tolerate woodacst, Therefore, we suggest a comparison between the widely used synthetic plaster of Pariscasting and woodcast to come in order.

Keywords: distal radius fractures, ecological cast, sustainability, woodcast

Procedia PDF Downloads 86
12354 Utilizing Google Earth for Internet GIS

Authors: Alireza Derambakhsh

Abstract:

The objective of this examination is to explore the capability of utilizing Google Earth for Internet GIS applications. The study particularly analyzes the utilization of vector and characteristic information and the capability of showing and preparing this information in new ways utilizing the Google Earth stage. It has progressively been perceived that future improvements in GIS will fixate on Internet GIS, and in three noteworthy territories: GIS information access, spatial data scattering and GIS displaying/preparing. Google Earth is one of the group of geobrowsers that offer a free and simple to utilize administration that empower information with a spatial part to be overlain on top of a 3-D model of the Earth. This examination makes a methodological structure to accomplish its objective that comprises of three noteworthy parts: A database level, an application level and a customer level. As verification of idea a web model has been produced, which incorporates a differing scope of datasets and lets clients direst inquiries and make perceptions of this custom information. The outcomes uncovered that both vector and property information can be successfully spoken to and imagined utilizing Google Earth. In addition, the usefulness to question custom information and envision results has been added to the Google Earth stage.

Keywords: Google earth, internet GIS, vector, characteristic information

Procedia PDF Downloads 312
12353 Validity and Reliability of the Iranian Version of the Self-Expansion Questionnaire

Authors: Mehravar Javid, James Sexton, Farzaneh Amani, Kainaz Patravala

Abstract:

Self-expansion is a procedure through which people expand the dimensions of their self-concept by incorporating novel content into their sense and experience of identity. Greater self-expansion predicts positive consequences for individuals and romantic relationships. The self-expansion questionnaire (SEQ) originally developed by Lewandowski & Aron (2002) assumes that self-expansion is constituted of key components from the self-expansion model. This study aimed to confirm the factor structure of SEQ and adapt the questions of the scale to the Iranian culture. The sample included 190 participants who responded to 14 items and were selected by simple random sampling. Using Amos-21 and SPSS-21, descriptive statistics, Pearson correlation and Confirmatory Factor Analysis (CFA) were calculated. Cronbach’s alpha coefficient for total SEQ items was 0.92. Results of CFA supported the factor structure SEQ [RMSEA=0.08, GFI=0.88 and CFI=0.92] that showed the model has a good fit and also all the items of SEQ, have a high correlation and have a direct and significant relationship. So, the SEQ demonstrated acceptable psychometric properties in Tehran University students. Looking forward, it would be interesting and exciting to see the implications of the scale as applied to romantic relationships.

Keywords: validity, reliability, confirmatory factor analysis, self-expansion questionnaire

Procedia PDF Downloads 86
12352 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques

Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada

Abstract:

Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.

Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer

Procedia PDF Downloads 153
12351 The Effectiveness of Treating Anxiety with Reiki

Authors: Erika Humphreys

Abstract:

The effectiveness of treating anxiety with Reiki is explored within ten quantitative studies. The methodology utilized for a critical appraisal and systematic review of the literature is explained with inclusion and exclusion criteria. The theoretical framework for the project is grounded in the work of Hildegard Peplau, whose nursing theory based on the therapeutic use of self is foundational for Reiki implementation. A thorough critique of the literature is conducted for key components of robustness and believability. This critique is conducted using a structured guide addressing synthesized strengths and weaknesses of the body of literature. A synthesis of the literature explores the findings of the studies. This synthesis reports on Reiki’s effectiveness in treating anxiety within a variety of patient settings and populations, its effect on subscales of anxiety, physiological manifestations of anxiety, and pain associated with anxiety. Cultural considerations affecting Reiki’s potential effectiveness are discussed. Gaps in the literature are examined, including the studies’ narrow sample population, lack of participant exclusionary factors for controlled outcome data, and the lack of studies across time. Implications for future research are discussed with recommendations for expanded research that includes a broader variety of settings, age groups, and patient diagnoses, including anxiety disorders, for research data that is transferable. Implications for further practice for the advanced practice registered nurse (APRN) are explored, with the potential benefits for both providers and patients, including improved patient satisfaction and expansion of provider treatment modalities.

Keywords: Reiki, anxiety, complementary alternative medicine, pandemic

Procedia PDF Downloads 170
12350 Biodistribution Studies of 177Lu-DOTATOC in Mouse Tumor Model: Possible Utilization in Adenocarcinoma Breast Cancer Treatment

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri, S. Kakaei

Abstract:

Despite the appropriate characteristics of 177Lu and DOTATOC, to our best knowledge, the therapeutic benefit of 177Lu-DOTATOC complex in breast cancer has not been reported until now. In this study, biodistribution of 177Lu-DOTA-TOC in mouse tumor model for evaluation of possible utilization of this complex in breast cancer treatment was investigated.177Lu was prepared with the specific activity of 2.6-3 GBq.mg-1 and radionuclidic purity higher than 99%. The radiolabeled complex was prepared in the optimized conditions with the radiochemical purity higher than 99%. The final solution was injected to the BALB/c mice with adenocarcinoma breast cancer. The biodistribution results showed major accumulation in the kidneys as the major excretion route and the somatostatin receptor-positive tissues such as pancreas compared with the other tissues. Also, significant uptake was observed in tumor even in longer time after injection. According to the results obtained in this research study, somatostatin receptors expressed in breast cancers can be targeted with DOTATOC analogues especially with 177Lu-DOTATOC as an ideal therapeutic agent.

Keywords: ¹⁷⁷Lu, adenocarcinoma breast cancer, DOTATOC, BALB/c mice

Procedia PDF Downloads 232
12349 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 195
12348 Knowledge Sharing within a Team: Exploring the Antecedents and Role of Trust

Authors: Li Yan Hei, Au Wing Tung

Abstract:

Knowledge sharing is a process in which individuals mutually exchange existing knowledge and co-create new knowledge. Previous research has confirmed that trust is positively associated with knowledge sharing. However, only few studies systematically examined the antecedents of trust and these antecedents’ impacts on knowledge sharing. In order to explore and understand the relationships between trust and knowledge sharing in depth, this study proposed a relationship maintenance-based model to examine the antecedents of trust in knowledge sharing in project teams. Three critical elements within a project team were measured, including the environment, project team partner and interaction. It was hypothesized that the trust would lead to knowledge sharing and in turn result in perceived good team performance. With a sample of 200 Hong Kong employees, the proposed model was evaluated with structural equation modeling. Expected findings are trust will contribute to knowledge sharing, resulting in better team performance. The results will also offer insights into antecedents of trust that play a heavy role in the focal relationship. The present study contributes to a more holistic understanding of relationship between trust and knowledge sharing by linking the antecedents and outcomes. The findings will raise the awareness of project managers on ways to promote knowledge sharing.

Keywords: knowledge sharing, project management, team, trust

Procedia PDF Downloads 620
12347 Development of a Model for Predicting Radiological Risks in Interventional Cardiology

Authors: Stefaan Carpentier, Aya Al Masri, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis, and ulceration to appear. In order to prevent these deterministic effects, a prediction of the peak skin-dose for the patient is important in order to improve the post-operative care to be given to the patient. The objective of this study is to estimate, before the intervention, the patient dose for ‘Chronic Total Occlusion (CTO)’ procedures by selecting relevant clinical indicators. Materials and methods: 103 procedures were performed in the ‘Interventional Cardiology (IC)’ department using a Siemens Artis Zee image intensifier that provides the Air Kerma of each IC exam. Peak Skin Dose (PSD) was measured for each procedure using radiochromic films. Patient parameters such as sex, age, weight, and height were recorded. The complexity index J-CTO score, specific to each intervention, was determined by the cardiologist. A correlation method applied to these indicators allowed to specify their influence on the dose. A predictive model of the dose was created using multiple linear regressions. Results: Out of 103 patients involved in the study, 5 were excluded for clinical reasons and 2 for placement of radiochromic films outside the exposure field. 96 2D-dose maps were finally used. The influencing factors having the highest correlation with the PSD are the patient's diameter and the J-CTO score. The predictive model is based on these parameters. The comparison between estimated and measured skin doses shows an average difference of 0.85 ± 0.55 Gy for doses of less than 6 Gy. The mean difference between air-Kerma and PSD is 1.66 Gy ± 1.16 Gy. Conclusion: Using our developed method, a first estimate of the dose to the skin of the patient is available before the start of the procedure, which helps the cardiologist in carrying out its intervention. This estimation is more accurate than that provided by the Air-Kerma.

Keywords: chronic total occlusion procedures, clinical experimentation, interventional radiology, patient's peak skin dose

Procedia PDF Downloads 142
12346 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 237
12345 Reversible and Irreversible Wrinkling in Tube Hydroforming Process

Authors: Ali Abd El-Aty, Ahmed Tauseef, Ahmad Farooq

Abstract:

This research aims at analyzing and optimizing the hydroforming process parameters to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed.

Keywords: finite element, hydroforming, process window, wrinkling

Procedia PDF Downloads 282
12344 Hansen Solubility Parameter from Surface Measurements

Authors: Neveen AlQasas, Daniel Johnson

Abstract:

Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied films

Keywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements

Procedia PDF Downloads 97
12343 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 130
12342 An Exploratory Study on Experiences of Menarche and Menstruation among Adolescent Girls

Authors: Bhawna Devi, Girishwar Misra, Rajni Sahni

Abstract:

Menarche and menstruation is a nearly universal experience in adolescent girls’ lives, yet based on several observations it has been found that it is rarely explicitly talked about, and remains poorly understood. By menarche, girls are likely to have been influenced not only by cultural stereotypes about menstruation, but also by information acquired through significant others. Their own expectations about menstruation are likely to influence their reports of menarcheal experience. The aim of this study is to examine how girls construct meaning around menarche and menstruation in social interactions and specific contexts along with conceptualized experiences which is ‘owned’ by individual girls. Twenty adolescent girls from New Delhi (India), between the ages of 12 to 19 years (mean age = 15.1) participated in the study. Semi-structured interviews were conducted to capture the nuances of menarche and menstrual experiences of these twenty adolescent girls. Thematic analysis was used to analyze the data. From the detailed analysis of transcribed data main themes that emerged were- Menarche: A Trammeled Sky to Fly, Menarche as Flashbulb Memory, Hidden Secret: Shame and Fear, Hallmark of Womanhood, Menarche as Illness. Therefore, the finding unfolds that menarche and menstruation were largely constructed as embarrassing, shameful and something to be hidden, specifically within the school context and in general when they are outside of their home. Menstruation was also constructed as illness that programmed ‘feeling of weaknesses’ into them. The production and perpetuation of gender-related difference narratives was also evident. Implications for individuals, as well as for the subjugation of girls and women, are discussed, and it is argued that current negative representations of, and practices in relation to, menarche and menstruation need to be challenged.

Keywords: embarrassment, gender-related difference, hidden secret, illness, menarche and menstruation

Procedia PDF Downloads 148
12341 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 285
12340 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions

Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier

Abstract:

Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.

Keywords: ice slurry, propylene-glycol, ethylene-glycol, rheology

Procedia PDF Downloads 265
12339 Public Service Ethics in Public Administration: An Empirical Investigation

Authors: Kalsoom Sumra

Abstract:

The increasing concern of public sector reforms brings new challenges to public service ethics in developing countries not only at central level but also at local level. This paper aims to identify perceptions on public service ethics of public officials and examines more generally the understanding of public servants in Pakistan towards public service ethics in local public organizations. The study uses an independently administered structured questionnaire to collect data to know the extent of the recognition of public service ethics in local organizations. A total of 150 completed questionnaires are analyzed received from public servants working at the local level in Pakistan. The analysis explores how traditional, social patterns and cultural ethics can provide us with a rounded picture of the main antecedents, moderators of public service ethics in Pakistan. Moreover, the findings of this study contribute in association of public service ethics which are crucial in ongoing political and administrative culture of Pakistan, the most crucial core for public organizational ethical climate. This study also has numerous implications for local public administration and it highlights the importance of expanding research agenda on public service ethics in developing settings with challenging institutional contexts with imperfect training and operating environments. This study may well be particularly important for practice of public service ethics in developing countries in public administration. To the best of author’s knowledge, this study is the first of its kind to provide an initial step in practical implications to emphasize relevant public service ethics in public administration in developing transparent and accountable organization.

Keywords: public service ethics, accountability and transparency, public service reforms, public administration, organizational ethical climate

Procedia PDF Downloads 356
12338 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: residual stress, X750 superalloy, finite element, welding, thermal analysis

Procedia PDF Downloads 124
12337 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment

Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto

Abstract:

Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.

Keywords: carbon stock, forest inventory, LiDAR, tree count

Procedia PDF Downloads 395
12336 The Impact of Music on Social Identity Formation and Intergroup Relations in American-Born Korean Skaters in 2018 Winter Olympics

Authors: Sehwan Kim, Jepkorir Rose Chepyator Thomson

Abstract:

Music provides opportunities to affirm social identities and facilitate the internalization of one’s identity. The purpose of this study was to examine the role of music in breaking down boundaries between the in-group and out-of-group sport participants. Social identity theory was used to guide an understanding of two American-born South Korean skaters—Yura Min and Alexander Gamelin—who used a Korean representative traditional folk song, Arirang, at the 2018 Winter Olympics. This was an interpretive case study that focused on 2018 Winter Olympic participants whose performance and use of music was understood through the lenses of Koreans. Semi-structured interviews were conducted with 15 Korean audiences who watched two American-born South Korean skaters’ performances. Data analysis involved the determination of themes in the data collected. The findings of this study are as follows: First Koreans viewed the skaters as the out-group based on ethnic appearances and stereotypes. Second, Koreans’ inter-group bias against the skaters was meditated after Koreans watched the skaters as they used Arirang song in performance. Implications for this study include the importance of music as an instrument of unity across diverse populations, including intergroup relations. Music can also offer ways to understand people’s cultures and bridge gaps between age and gender across categories of naturalization.

Keywords: impact of music, intergroup relations, naturalized athletes, social identity theory

Procedia PDF Downloads 210
12335 Simulation Research of Diesel Aircraft Engine

Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker

Abstract:

This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft, diesel, engine, simulation

Procedia PDF Downloads 210
12334 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia

Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes

Abstract:

Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.

Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling

Procedia PDF Downloads 57
12333 Evolution of Performance Measurement Methods in Conditions of Uncertainty: The Implementation of Fuzzy Sets in Performance Measurement

Authors: E. A. Tkachenko, E. M. Rogova, V. V. Klimov

Abstract:

One of the basic issues of development management is connected with performance measurement as a prerequisite for identifying the achievement of development objectives. The aim of our research is to develop an improved model of assessing a company’s development results. The model should take into account the cyclical nature of development and the high degree of uncertainty in dealing with numerous management tasks. Our hypotheses may be formulated as follows: Hypothesis 1. The cycle of a company’s development may be studied from the standpoint of a project cycle. To do that, methods and tools of project analysis are to be used. Hypothesis 2. The problem of the uncertainty when justifying managerial decisions within the framework of a company’s development cycle can be solved through the use of the mathematical apparatus of fuzzy logic. The reasoned justification of the validity of the hypotheses made is given in the suggested article. The fuzzy logic toolkit applies to the case of technology shift within an enterprise. It is proven that some restrictions in performance measurement that are incurred to conventional methods could be eliminated by implementation of the fuzzy logic apparatus in performance measurement models.

Keywords: logic, fuzzy sets, performance measurement, project analysis

Procedia PDF Downloads 385
12332 Modelling of Aerosols in Absorption Column

Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas cleaning processes. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this, aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. The model predicts the droplet size, the droplet internal variable profiles, and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and describes how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.

Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation

Procedia PDF Downloads 246
12331 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor

Authors: K.Narasimhulu, Y. Pydi Setty

Abstract:

The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.

Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water

Procedia PDF Downloads 454
12330 Alcoxysilanes Production from Silica and Dimethylcarbonate Promoted by Alkali Bases: A DFT Investigation of the Reaction Mechanism

Authors: Valeria Butera, Norihisa Fukaya, Jun-Chu Choi, Kazuhiko Sato, Yoong-Kee Choe

Abstract:

Several silicon dioxide sources can react with dimethyl carbonate (DMC) in presence of alkali bases catalysts to ultimately produce tetramethoxysilane (TMOS). Experimental findings suggested that the reaction proceeds through several steps in which the first molecule of DMC is converted to dimethylsilyloxide (DMOS) and CO₂. Following the same mechanistic steps, a second molecule of DMC reacts with the DMOS to afford the final product TMOS. Using a cluster model approach, a quantum-mechanical investigation of the first part of the reaction leading to DMOS formation is reported with a twofold purpose: (1) verify the viability of the reaction mechanism proposed on the basis of experimental evidences .(2) compare the behaviors of three different alkali hydroxides MOH, where M=Li, K and Cs, to determine whether diverse ionic radius and charge density can be considered responsible for the observed differences in reactivity. Our findings confirm the observed experimental trend and furnish important information about the effective role of the alkali hydroxides giving an explanation of the different catalytic activity of the three metal cations.

Keywords: Alcoxysilanes production, cluster model approach, DFT, DMC conversion

Procedia PDF Downloads 276
12329 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation

Authors: Minho Kwak, Suhwan Yun, Choonsoo Park

Abstract:

Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.

Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape

Procedia PDF Downloads 353
12328 Prediction of Critical Flow Rate in Tubular Heat Exchangers for the Onset of Damaging Flow-Induced Vibrations

Authors: Y. Khulief, S. Bashmal, S. Said, D. Al-Otaibi, K. Mansour

Abstract:

The prediction of flow rates at which the vibration-induced instability takes place in tubular heat exchangers due to cross-flow is of major importance to the performance and service life of such equipment. In this paper, the semi-analytical model for square tube arrays was extended and utilized to study the triangular tube patterns. A laboratory test rig with instrumented test section is used to measure the fluidelastic coefficients to be used for tuning the mathematical model. The test section can be made of any bundle pattern. In this study, two test sections were constructed for both the normal triangular and the rotated triangular tube arrays. The developed scheme is utilized in predicting the onset of flow-induced instability in the two triangular tube arrays. The results are compared to those obtained for two other bundle configurations. The results of the four different tube patterns are viewed in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in all configurations considered

Keywords: fluid-structure interaction, cross-flow, heat exchangers,

Procedia PDF Downloads 282
12327 Prioritizing Forest Conservation Strategies Using a Multi-Attribute Decision Model to Address Concerns with the Survival of the Endangered Dragon Tree (Dracaena ombet Kotschy and Peyr.)

Authors: Tesfay Gidey, Emiru Birhane, Ashenafi Manaye, Hailemariam Kassa, Tesfay Atsbha, Negasi Solomon, Hadgu Hishe, Aklilu Negussie, Petr Madera, Jose G. Borges

Abstract:

The globally endangered Dracaena ombet is one of the ten dragon multipurpose tree species in arid ecosystems. Anthropogenic and natural factors are now impacting the sustainability of the species. This study was conducted to prioritize criteria and alternative strategies for the conservation of the species using the analytical hierarchy process (AHP) model by involving all relevant stakeholders in the Desa'a dry Afromontane forest in northern Ethiopia. Information about the potential alternative strategies and the criteria for their evaluation was first collected from experts, personal experiences, and literature reviews. Afterward, they were validated using stakeholders' focus group discussions. Five candidate strategies with three evaluation criteria were considered for prioritization using the AHP techniques. The overall priority ranking value of the stakeholders showed that the ecological criterion was deemed as the most essential factor for the choice of alternative strategies, followed by the economic and social criteria. The minimum cut-off strategy, combining exclosures with the collection of only 5% of plant parts from the species, soil and water conservation, and silviculture interventions, was selected as the best alternative strategy for sustainable D. ombet conservation. The livelihood losses due to the selected strategy should be compensated by the collection of non-timber forest products, poultry farming, home gardens, rearing small ruminants, beekeeping, and agroforestry. This approach may be extended to study other dragon tree species and explore strategies for the conservation of other arid ecosystems.

Keywords: conservation strategies, analytical hierarchy process model, Desa'a forest, endangered species, Ethiopia, overexploitation

Procedia PDF Downloads 97
12326 Sensory Gap Analysis on Port Wine Promotion and Perceptions

Authors: José Manue Carvalho Vieira, Mariana Magalhães, Elizabeth Serra

Abstract:

The Port Wine industry is essential to Portugal because it carries a tangible cultural heritage and for social and economic reasons. Positioned as a luxury product, brands need to pay more attention to the new generation's habits, preferences, languages, and sensory perceptions. Healthy lifestyles, anti-alcohol campaigns, and digitalisation of their buying decision process need to be better understood to understand the wine market in the future. The purpose of this study is to clarify the sensory perception gap between Port Wine descriptors promotion and the new generation's perceptions to help wineries to align their strategies. Based on the interpretivist approach - multiple methods and techniques (mixed-methods), different world views and different assumptions, and different data collection methods and analysis, this research integrated qualitative semi-structured interviews, Port Wine promotion contents, and social media perceptions mined by Sentiment Analysis Enginius algorithm. Findings confirm that Port Wine CEOs' strategies, brands' promotional content, and social perceptions are not sufficiently aligned. The central insight for Port Wine brands' managers is that there is a long and continuous work of understanding and associating their descriptors with the most relevant perceptual values and criteria of their targets to reposition (when necessary) and sustainably revitalise their brands. Finally, this study hypothesised a sensory gap that leads to a decrease in consumption, trying to find recommendations on how to transform it into an advantage for a better attraction towards the young age group (18-25).

Keywords: port wine, consumer habits, sensory gap analysis, wine marketing

Procedia PDF Downloads 252