Search results for: lateral flow immunoassay on-site detection
1565 Cytolethal Distending Toxins in Intestinal and Extraintestinal E. coli
Authors: Katarína Čurová, Leonard Siegfried, Radka Vargová, Marta Kmeťová, Vladimír Hrabovský
Abstract:
Introduction: Cytolethal distending toxins (CDTs) represent intracellular acting proteins which interfere with cell cycle of eukaryotic cells. They are produced by Gram-negative bacteria with afinity to mucocutaneous surfaces and could play a role in the pathogenesis of various diseases. CDTs induce DNA damage probably through DNAse activity, which causes cell cycle arrest and leads to further changes (cell distension and death, apoptosis) depending on the cell type. Five subtypes of CDT (I to V) were reported in E. coli. Methods: We examined 252 E. coli strains belonging to four different groups. Of these strains, 57 were isolated from patients with diarrhea, 65 from patients with urinary tract infections (UTI), 65 from patients with sepsis and 65 from patients with other extraintestinal infections (mostly surgical wounds, decubitus ulcers and respiratory tract infections). Identification of these strains was performed by MALDI-TOF analysis and detection of genes encoding CDTs and determination of the phylogenetic group was performed by PCR. Results: In this study, we detected presence of cdt genes in 11 of 252 E. coli strains tested (4,4 %). Four cdt positive E. coli strains were confirmed in group of UTI (6,15 %), three cdt positive E. coli strains in groups of diarrhea (5,3 %) and other extraintestinal infections (4,6 %). The lowest incidence, one cdt positive E. coli strain, was observed in group of sepsis (1,5 %). All cdt positive E. coli strains belonged to phylogenetic group B2. Conclusion: CDT-producing E. coli are isolated in a low percentage from patients with intestinal and extraintestinal infections, including sepsis and our results correspond with these studies. A weak prevalence of cdt genes suggests that CDTs are not major virulence factors but in combination with other virulence factors may increase virulence potential of E. coli. We suppose that all 11 cdt positive E. coli strains represent real pathogens because they belong to the phylogenetic group B2 which is pathogenic lineage for bacteria E. coli.Keywords: cytolethal distending toxin, E. coli, phylogenetic group, extraintestinal infection, diarrhea
Procedia PDF Downloads 3501564 Prevalence of Clostridium perfringens β2-Toxin in Type a Isolates of Sheep and Goats
Authors: Mudassar Mohiuddin, Zahid Iqbal
Abstract:
Introduction: Clostridium perfringens is an important pathogen responsible for causing enteric diseases in both human and animals. The bacteria produce several toxins. These toxins play vital role in the pathogenesis of various fatal enteric diseases and are classified into five types, on the basis of the differential production of Alpha, Beta, Epsilon and Iota toxins. In addition to the so-called major toxins, there are other toxins like beta2 toxin, produced by some strains of C. perfringens which may play a role in the pathogenesis of disease. Aim of the study: In this study a multiplex PCR assay was developed and used for detection of cpb2 gene to identify the Beta2 harboring isolates among different types of C. perfringens. Objectives: The primary objective of this study was to identify the prevalence of β2-toxin gene in local isolates of Clostridium perfringens. Methodology: This was an experimental study. Random sampling technique was used. A total of 97 sheep and goats were included in this study. All were Pakistani local breeds. The samples were collected during the period from Sep, 2014 to Mar, 2015 from selected districts of Punjab province (Pakistan). Faecal samples were cultured in cooked meat media. The identification of Clostridium perfringens was made on the basis of biochemical tests. Multiplex PCR was performed to identify the toxin genes. Results: A total of 43 C. perfringens isolates were genotyped using multiplex PCR assay. The gene encoding C. perfringens β2-toxin (cpb2) was present in more than 50% of the isolates genotyped. However, the prevalence of this gene varied between sheep and goat isolates. Conclusion: The present study suggests the high occurrence of C. perfringens b2-toxin (cpb2) in the local isolates of Pakistan. As β2-toxin is present in both healthy and diseased animals, so further studies are suggested to establish the role of β2-toxin in pathogenesis of the clostridial enteric diseases.Keywords: beta 2 toxin gene, clostridium perfringens, enteric diseases, goats, multiplex PCR, sheep
Procedia PDF Downloads 4621563 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods
Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar
Abstract:
Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.Keywords: bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman
Procedia PDF Downloads 1961562 Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics
Authors: Dhruv Mehta, Alexander van Zuijlen, Hester Bijl
Abstract:
Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands.Keywords: energy-conserving schemes, modelling turbulence, Large Eddy Simulation, atmospheric boundary layer
Procedia PDF Downloads 4651561 Aerobic Exercise Increases Circulating Hematopoietic Stem Cells and Endothelial Progenitor Cells
Authors: Khaled A. shady, Fagr B. Bazeed, Nashwa K. Abousamra, Ihab H. Elberawe, Ashraf E. shaalan, Mohamed A. Sobh
Abstract:
Physical activity activates a variety of adult stem cells which might be released into the circulation or might be activated in their organ-resident state. A variety of stimuli such as metabolic, mechanical, and hormonal stimuli might by responsible for the mobilization. This study was done to know the changes in hematopoietic stem cells and endothelial progenitor in athletes in the 24 hours following 30 min of aerobic exercise. Methods: Ten healthy male's athlete's (age 20.7± 0.61 y) performed moderate running with 30 min at 80% of velocity of The IAT. Blood samples taken pre-, and immediately, 30 min, 2h, 6h and 24h post-exercise were analyzed for hematopoietic stem cells (HSCs ), endothelial progenitor cells (EPCs(, vascular endothelial growth factor (VEGF), nitric oxide (NO), lactic acid (LA), and white blood cells . HSCs and EPCs were quantified by flow cytometry. Results: After 30min of aerobic exercise significant increases in HSCs, EPC, VEGF, NO, LA and WBCs (p ˂ 0.05). This increase will be at different rates according to the timing of taking blood sample and was in the maximum rate of increase after 30 min of aerobic exercise. HSCs, EPC, NO and WBCs were in the maximum rate of increase 2h post exercise. In addition, VEGF was in the maximum rate of increase immediately post exercise and LA concentration not affected after exercise. Conclusion: These data suggest that HSCs and EPCs increased after aerobic exercise due to increase of VEGF which play an important role in mobilization of stem cells and promotes NO increase which contributes to increase EPCs.Keywords: physical activity, hematopoietic stem cells, mobilization, athletes
Procedia PDF Downloads 1171560 HPSEC Application as a New Indicator of Nitrification Occurrence in Water Distribution Systems
Authors: Sina Moradi, Sanly Liu, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Soha Habibi, Rose Amal
Abstract:
In recent years, chloramine has been widely used for both primary and secondary disinfection. However, a major concern with the use of chloramine as a secondary disinfectant is the decay of chloramine and nitrification occurrence. The management of chloramine decay and the prevention of nitrification are critical for water utilities managing chloraminated drinking water distribution systems. The detection and monitoring of nitrification episodes is usually carried out through measuring certain water quality parameters, which are commonly referred to as indicators of nitrification. The approach taken in this study was to collect water samples from different sites throughout a drinking water distribution systems, Tailem Bend – Keith (TBK) in South Australia, and analyse the samples by high performance size exclusion chromatography (HPSEC). We investigated potential association between the water qualities from HPSEC analysis with chloramine decay and/or nitrification occurrence. MATLAB 8.4 was used for data processing of HPSEC data and chloramine decay. An increase in the absorbance signal of HPSEC profiles at λ=230 nm between apparent molecular weights of 200 to 1000 Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal of HPSEC profiles at λ=254 nm decreased. An increase in absorbance at λ=230 nm and AMW < 500 Da was detected for Raukkan CT (R.C.T), a location that experienced nitrification and had significantly lower chloramine residual (<0.1 mg/L). This increase in absorbance was not detected in other sites that did not experience nitrification. Moreover, the UV absorbance at 254 nm of the HPSEC spectra was lower at R.C.T. than other sites. In this study, a chloramine residual index (C.R.I) was introduced as a new indicator of chloramine decay and nitrification occurrence, and is defined based on the ratio of area underneath the HPSEC spectra at two different wavelengths of 230 and 254 nm. The C.R.I index is able to indicate DS sites that experienced nitrification and rapid chloramine loss. This index could be useful for water treatment and distribution system managers to know if nitrification is occurring at a specific location in water distribution systems.Keywords: nitrification, HPSEC, chloramine decay, chloramine residual index
Procedia PDF Downloads 2981559 Control and Automation of Fluid at Micro/Nano Scale for Bio-Analysis Applications
Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj
Abstract:
Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications
Procedia PDF Downloads 791558 E-Learning Platform for School Kids
Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.
Abstract:
E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.Keywords: math, education games, e-learning platform, artificial intelligence
Procedia PDF Downloads 1561557 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 1271556 Implicit Responses for Assessment of Autism Based on Natural Behaviors Obtained Inside Immersive Virtual Environment
Authors: E. Olmos-Raya, A. Cascales Martínez, N. Minto de Sousa, M. Alcañiz Raya
Abstract:
The late detection and subjectivity of the assessment of Autism Spectrum Disorder (ASD) imposed a difficulty for the children’s clinical and familiar environment. The results showed in this paper, are part of a research project about the assessment and training of social skills in children with ASD, whose overall goal is the use of virtual environments together with physiological measures in order to find a new model of objective ASD assessment based on implicit brain processes measures. In particular, this work tries to contribute by studying the differences and changes in the Skin Conductance Response (SCR) and Eye Tracking (ET) between a typical development group (TD group) and an ASD group (ASD group) after several combined stimuli using a low cost Immersive Virtual Environment (IVE). Subjects were exposed to a virtual environment that showed natural scenes that stimulated visual, auditory and olfactory perceptual system. By exposing them to the IVE, subjects showed natural behaviors while measuring SCR and ET. This study compared measures of subjects diagnosed with ASD (N = 18) with a control group of subjects with typical development (N=10) when exposed to three different conditions: only visual (V), visual and auditory (VA) and visual, auditory and olfactory (VAO) stimulation. Correlations between SCR and ET measures were also correlated with the Autism Diagnostic Observation Schedule (ADOS) test. SCR measures showed significant differences among the experimental condition between groups. The ASD group presented higher level of SCR while we did not find significant differences between groups regarding DF. We found high significant correlations among all the experimental conditions in SCR measures and the subscale of ADOS test of imagination and symbolic thinking. Regarding the correlation between ET measures and ADOS test, the results showed significant relationship between VA condition and communication scores.Keywords: autism, electrodermal activity, eye tracking, immersive virtual environment, virtual reality
Procedia PDF Downloads 1391555 A Low Cost Gain-Coupled Distributed Feedback Laser Based on Periodic Surface p-Contacts
Authors: Yongyi Chen, Li Qin, Peng Jia, Yongqiang Ning, Yun Liu, Lijun Wang
Abstract:
The distributed feedback (DFB) lasers are indispensable in optical phase array (OPA) used for light detection and ranging (LIDAR) techniques, laser communication systems and integrated optics, thanks to their stable single longitudinal mode and narrow linewidth properties. Traditional index-coupled (IC) DFB lasers with uniform gratings have an inherent problem of lasing two degenerated modes. Phase shifts are usually required to eliminate the mode degeneration, making the grating structure complex and expensive. High-quality antireflection (AR) coatings on both lasing facets are also essential owing to the random facet phases introduced by the chip cleavage process, which means half of the lasing energy is wasted. Gain-coupled DFB (GC-DFB) lasers based on the periodic gain (or loss) are announced to have single longitudinal mode as well as capable of the unsymmetrical coating to increase lasing power and efficiency thanks to facet immunity. However, expensive and time-consuming technologies such as epitaxial regrowth and nanoscale grating processing are still required just as IC-DFB lasers, preventing them from practical applications and commercial markets. In this research, we propose a low-cost, single-mode regrowth-free GC-DFB laser based on periodic surface p-contacts. The gain coupling effect is achieved simply by periodic current distribution in the quantum well caused by periodic surface p-contacts, introducing very little index-coupling effect that can be omitted. It is prepared by i-line lithography, without nanoscale grating fabrication or secondary epitaxy. Due to easy fabrication techniques, it provides a method to fabricate practical low cost GC-DFB lasers for widespread practical applications.Keywords: DFB laser, gain-coupled, low cost, periodic p-contacts
Procedia PDF Downloads 1281554 Corrosion Risk Assessment/Risk Based Inspection (RBI)
Authors: Lutfi Abosrra, Alseddeq Alabaoub, Nuri Elhaloudi
Abstract:
Corrosion processes in the Oil & Gas industry can lead to failures that are usually costly to repair, costly in terms of loss of contaminated product, in terms of environmental damage and possibly costly in terms of human safety. This article describes the results of the corrosion review and criticality assessment done at Mellitah Gas (SRU unit) for pressure equipment and piping system. The information gathered through the review was intended for developing a qualitative RBI study. The corrosion criticality assessment has been carried out by applying company procedures and industrial recommended practices such as API 571, API 580/581, ASME PCC 3, which provides a guideline for establishing corrosion integrity assessment. The corrosion review is intimately related to the probability of failure (POF). During the corrosion study, the process units are reviewed by following the applicable process flow diagrams (PFDs) in the presence of Mellitah’s personnel from process engineering, inspection, and corrosion/materials and reliability engineers. The expected corrosion damage mechanism (internal and external) was identified, and the corrosion rate was estimated for every piece of equipment and corrosion loop in the process units. A combination of both Consequence and Likelihood of failure was used for determining the corrosion risk. A qualitative consequence of failure (COF) for each individual item was assigned based on the characteristics of the fluid as per its flammability, toxicity, and pollution into three levels (High, Medium, and Low). A qualitative probability of failure (POF)was applied to evaluate the internal and external degradation mechanism, a high-level point-based (0 to 10) for the purpose of risk prioritizing in the range of Low, Medium, and High.Keywords: corrosion, criticality assessment, RBI, POF, COF
Procedia PDF Downloads 811553 A Single Stage Rocket Using Solid Fuels in Conventional Propulsion Systems
Authors: John R Evans, Sook-Ying Ho, Rey Chin
Abstract:
This paper describes the research investigations orientated to the starting and propelling of a solid fuel rocket engine which operates as combined cycle propulsion system using three thrust pulses. The vehicle has been designed to minimise the cost of launching small number of Nano/Cube satellites into low earth orbits (LEO). A technology described in this paper is a ground-based launch propulsion system which starts the rocket vertical motion immediately causing air flow to enter the ramjet’s intake. Current technology has a ramjet operation predicted to be able to start high subsonic speed of 280 m/s using a liquid fuel ramjet (LFRJ). The combined cycle engine configuration is in many ways fundamentally different from the LFRJ. A much lower subsonic start speed is highly desirable since the use of a mortar to obtain the latter speed for rocket means a shorter launcher length can be utilized. This paper examines the means and has some performance calculations, including Computational Fluid Dynamics analysis of air-intake at suitable operational conditions, 3-DOF point mass trajectory analysis of multi-pulse propulsion system (where pulse ignition time and thrust magnitude can be controlled), etc. of getting a combined cycle rocket engine use in a single stage vehicle.Keywords: combine cycle propulsion system, low earth orbit launch vehicle, computational fluid dynamics analysis, 3dof trajectory analysis
Procedia PDF Downloads 1911552 Stem Cell Augmentation Therapy for Cardiovascular Risk in Ankylosing Spondylitis: STATIN-as Study
Authors: Ashit Syngle, Nidhi Garg, Pawan Krishan
Abstract:
Objective: Bone marrow derived stem cells, endothelial progenitor cells (EPCs), protect against atherosclerotic vascular damage. However, EPCs are depleted in AS and contribute to the enhanced cardiovascular risk. Statins have a protective effect in CAD and diabetes by enhancing the proliferation, migration and survival of EPCs. Therapeutic potential of augmenting EPCs to treat the heightened cardiovascular risk of AS has not yet been exploited. We aimed to investigate the effect of rosuvastatin on EPCs population and inflammation in AS. Methods: 30 AS patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=15) and placebo (n=15) as an adjunct to existing stable anti-rheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures (BASDAI, BASFI, CRP and ESR), pro-inflammatory cytokines (TNF-α, IL-6 and IL-1) and lipids were measured at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin. At 6 months, BASDAI, BASFI, ESR, CRP, TNF-α, and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and BASDAI, CRP and IL-6 after rosuvastatin treatment. Conclusion: First study to show that rosuvastatin augments EPCs population in AS. This defines a novel mechanism of rosuvastatin treatment in AS: the augmentation of EPCs with improvement in proinflammatory cytokines and inflammatory disease activity. The augmentation of EPCs by rosuvastatin may provide a novel strategy to prevent cardiovascular events in AS.Keywords: ankylosing spondylitis, Endothelial Progenitor Cells, inflammation, pro-inflammatory cytokines, rosuvastatin
Procedia PDF Downloads 3531551 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)
Authors: Mahmoud A. Abdulhamid
Abstract:
Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation
Procedia PDF Downloads 961550 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting
Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi
Abstract:
The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM
Procedia PDF Downloads 3661549 Performance Evaluation of a Small Microturbine Cogeneration Functional Model
Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag
Abstract:
The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.Keywords: cogeneration, microturbine, performance, thermodynamic analysis
Procedia PDF Downloads 1691548 The Role of the Linguistic Mediator in Relation to Culturally Oriented Crimes
Authors: Andreas Aceranti, Simonetta Vernocchi, Elisabetta Aldrovandi, Marco Colorato, Carolina Ascrizzi
Abstract:
Nowadays, especially due to an increasing flow of migration and uncontrolled globalisation, linguistic, cultural and religious differences can be a major obstacle for people belonging to different ethnic groups. Each group has its own traditional background, which, in addition to its positive aspects, also includes extremely unpleasant and dramatic situations: culture-related crimes. We analysed several cases belonging to this category of crime which is becoming more and more present in Europe, creating not only a strong social rift dictated by the misunderstanding between migrants and host populations but also by the isolation and ghettoisation of subjects classified as 'different'. Such social rejection, in fact, represents a great source of stress and frustration for those who seek to be part of the community and can generate phenomena of rebellion that result in violent acts. Similar situations must be addressed by the figure of the cultural-linguistic mediator who, thanks to his or her multidisciplinary knowledge, assumes the role of a 'bridge', thus helping the process of awareness and understanding within the social group through the use of various tools, including awareness-raising campaigns and interventions in both the school and social-health sectors. By analysing how the notions of culture and offense have evolved throughout history until they have merged into a single principle and, secondly, how the figure of the language mediator represents a fundamental role in the resolution of conflicts related to cultural diversity has helped us define the basis for new protocols in dealing with such crimes. Especially we have to define the directions of further investigations that we will carry out in the next months.Keywords: cultural crimes, hatred crimes, immigration, cultural mediation
Procedia PDF Downloads 791547 Simulation of Cure Kinetics and Process-Induced Stresses in Carbon Fibre Composite Laminate Manufactured by a Liquid Composite Molding Technique
Authors: Jayaraman Muniyappan, Bachchan Kr Mishra, Gautam Salkar, Swetha Manian Sridhar
Abstract:
Vacuum Assisted Resin Transfer Molding (VARTM), a cost effective method of Liquid Composite Molding (LCM), is a single step process where the resin, at atmospheric pressure, is infused through a preform that is maintained under vacuum. This hydrodynamic pressure gradient is responsible for the flow of resin through the dry fabric preform. The current study has a slight variation to traditional VARTM, wherein, the resin infuses through the fabric placed on a heated mold to reduce its viscosity. The saturated preform is subjected to a cure cycle where the resin hardens as it undergoes curing. During this cycle, an uneven temperature distribution through the thickness of the composite and excess exothermic heat released due to different cure rates result in non-uniform curing. Additionally, there is a difference in thermal expansion coefficient between fiber and resin in a given plane and between adjacent plies. All these effects coupled with orthotropic coefficient of thermal expansion of the composite give rise to process-induced stresses in the laminate. Such stresses lead to part deformation when the laminate tries to relieve them as the part is released off the mold. The current study looks at simulating resin infusion, cure kinetics and the structural response of composite laminate subject to process-induced stresses.Keywords: cure kinetics, process-induced stresses, thermal expansion coefficient, vacuum assisted resin transfer molding
Procedia PDF Downloads 2401546 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea
Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui
Abstract:
It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution
Procedia PDF Downloads 3041545 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support
Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha
Abstract:
Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron
Procedia PDF Downloads 1791544 Drought Detection and Water Stress Impact on Vegetation Cover Sustainability Using Radar Data
Authors: E. Farg, M. M. El-Sharkawy, M. S. Mostafa, S. M. Arafat
Abstract:
Mapping water stress provides important baseline data for sustainable agriculture. Recent developments in the new Sentinel-1 data which allow the acquisition of high resolution images and varied polarization capabilities. This study was conducted to detect and quantify vegetation water content from canopy backscatter for extracting spatial information to encourage drought mapping activities throughout new reclaimed sandy soils in western Nile delta, Egypt. The performance of radar imagery in agriculture strongly depends on the sensor polarization capability. The dual mode capabilities of Sentinel-1 improve the ability to detect water stress and the backscatter from the structure components improves the identification and separation of vegetation types with various canopy structures from other features. The fieldwork data allowed identifying of water stress zones based on land cover structure; those classes were used for producing harmonious water stress map. The used analysis techniques and results show high capability of active sensors data in water stress mapping and monitoring especially when integrated with multi-spectral medium resolution images. Also sub soil drip irrigation systems cropped areas have lower drought and water stress than center pivot sprinkler irrigation systems. That refers to high level of evaporation from soil surface in initial growth stages. Results show that high relationship between vegetation indices such as Normalized Difference Vegetation Index NDVI the observed radar backscattering. In addition to observational evidence showed that the radar backscatter is highly sensitive to vegetation water stress, and essentially potential to monitor and detect vegetative cover drought.Keywords: canopy backscatter, drought, polarization, NDVI
Procedia PDF Downloads 1451543 Photodegradation of Profoxydim Herbicide in Amended Paddy Soil-Water System
Authors: A. Cervantes-Diaz, B. Sevilla-Moran, Manuel Alcami, Al Mokhtar Lamsabhi, J. L. Alonso-Prados, P. Sandin-España
Abstract:
Profoxydim is a post-emergence herbicide belonging to the cyclohexanedione oxime family, used to control weeds in rice crops. The use of soil organic amendments has increased significantly in the last decades, and their effects on the behavior of many herbicides are still unknown. Additionally, it is known that photolysis is an important degradation process to be considered when evaluating the persistence of this family of herbicides in the environment. In this work, the photodegradation of profoxydim in an amended paddy soil-water system with alperujo compost was studied. Photodegradation experiments were carried out under laboratory conditions using simulated solar light (Suntest equipment) in order to evaluate the reaction kinetics of the active substance. The photochemical behavior of profoxydim was investigated in soil with and without alperujo amendment. Furthermore, due to the rice crop characteristics, profoxydim photodegradation in water in contact with these types of soils was also studied. Determination of profoxydim degradation kinetics was performed by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Furthermore, we followed the evolution of resulting transformation by-products, and their tentative identification was achieved by mass spectrometry. All the experiments allowed us to fit the data of profoxydim photodegradation to a first-order kinetic. Photodegradation of profoxydim was very rapid in all cases. The half-lives in aqueous matrices were in the range of 86±0.3 to 103±0.5 min. The addition of alperujo amendment to the soil produced an increase in the half-life from 62±0.2 min (soil) to 75±0.3 min (amended soil). In addition, a comparison to other organic amendments was also performed. Results showed that the presence of the organic amendment retarded the photodegradation in paddy soil and water. Regarding degradation products, the main process involved was the cleavage of the oxime moiety giving rise to the formation of the corresponding imine compound.Keywords: by-products, herbicide, organic amendment, photodegradation, profoxydim
Procedia PDF Downloads 791542 Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System
Authors: Atiq Zaman
Abstract:
The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system.Keywords: smart devices, mobile application, smart sensors, resource tracking, waste management, resource productivity
Procedia PDF Downloads 1441541 Impact of External Temperature on the Speleothem Growth in the Moravian Karst
Authors: Frantisek Odvarka
Abstract:
Based on the data from the Moravian Karst, the influence of the calcite speleothem growth by selected meteorological factors was evaluated. External temperature was determined as one of the main factors influencing speleothem growth in Moravian Karst. This factor significantly influences the CO₂ concentration in soil/epikarst, and cave atmosphere in the Moravian Karst and significantly contributes to the changes in the CO₂ partial pressure differences between soil/epikarst and cave atmosphere in Moravian Karst, which determines the drip water supersaturation with respect to the calcite and quantity of precipitated calcite in the Moravian Karst cave environment. External air temperatures and cave air temperatures were measured using a COMET S3120 data logger, which can measure temperatures in the range from -30 to +80 °C with an accuracy of ± 0.4 °C. CO₂ concentrations in the cave and soils were measured with a FT A600 CO₂H Ahlborn probe (value range 0 ppmv to 10,000 ppmv, accuracy 1 ppmv), which was connected to the data logger ALMEMO 2290-4, V5 Ahlborn. The soil temperature was measured with a FHA646E1 Ahlborn probe (temperature range -20 to 70 °C, accuracy ± 0.4 °C) connected to an ALMEMO 2290-4 V5 Ahlborn data logger. The airflow velocities into and out of the cave were monitored by a FVA395 TH4 Thermo anemometer (speed range from 0.05 to 2 m s⁻¹, accuracy ± 0.04 m s⁻¹), which was connected to the ALMEMO 2590-4 V5 Ahlborn data logger for recording. The flow was measured in the lower and upper entrance of the Imperial Cave. The data were analyzed in MS Office Excel 2019 and PHREEQC.Keywords: speleothem growth, carbon dioxide partial pressure, Moravian Karst, external temperature
Procedia PDF Downloads 1441540 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management
Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige
Abstract:
Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability
Procedia PDF Downloads 2791539 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube
Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego
Abstract:
The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation
Procedia PDF Downloads 3151538 Seroprevalence and Potential Risk Factors of Bovine Brucellosis under Diverse Production Systems in Central Punjab, Paksitan
Authors: A. Khan, I. Khan, M. Younus, S. E. Haque, U. Waheed, H. Neubauer, A. A. Anjum, S. A. Muhammad, A. Idrees T. Abbas, S. Raza, M. A. Ali, M. Farooq, M. Mahmood, A. Hussain, H. Danish, U. Tayyab, M. Zafar, M. Aslam.
Abstract:
Brucellosis is one of the major problems of milk producing animals in our country which deteriorate the health of livestock. It is a disease of zoonotic significance which is capable of producing disease in humans leading to infertility, orchitis, abortions, and synovitis. In this particular study, milk and serum samples of cattle and buffalo (n=402) were collected from different districts of Punjab including Narowal, Gujranwala and Gujrat. Milk samples were analyzed by Milk Ring Test (MRT), while serum samples were tested through Rose Bengal Plate agglutination Test (RBPT) and Indirect Enzyme Linked Immunosorbant Assay (i-ELISA). The sample tested with MRT were 9.5% positive, including cattle 9.6% and buffalo 9.3%. While using the RBPT test for the detection of serum samples and for screening purpose it was observed that 16.4% animals were seropositive, cattle were 18.8% and buffalo were 13.9% seropositive. The higher prevalence of brucellosis indicates the danger of the disease to human population. The serum samples positive by RBPT were further confirmed by the use of most specific and sensitive serological test known as i-ELISA. 11.4% animals were confirmed as seropositive by i-ELISA including cattle 13.5% seropositive and buffalo 9.3%. The results indicated high seroprevalence of brucellosis in cattle as compared to buffalos. Different risk factors were also studied to know the association between disease and their spread. Advanced age, larger herds, history of abortion and pregnancy of the animals is considered to be the important factors for the prevalence and spread of the hazardous zoonotic disease. It is a core issue of developing countries like Pakistan and has major public health impact.Keywords: humans, bovines, infertility, orchitis, abortions, seroprevalence, brucellosis
Procedia PDF Downloads 4841537 Risk Reassessment Using GIS Technologies for the Development of Emergency Response Management Plans for Water Treatment Systems
Authors: Han Gul Lee
Abstract:
When water treatments utilities are designed, an initial construction site risk assessment is conducted. This helps us to understand general safety risks that each utility needs to be complemented in the designing stage. Once it’s built, an additional risk reassessment process secures and supplements its disaster management and response plan. Because of its constantly changing surroundings with city renovation and developments, the degree of various risks that each facility has to face changes. Therefore, to improve the preparedness for spill incidents or disasters, emergency managers should run spill simulations with the available scientific technologies. This research used a two-dimensional flow routing model to simulate its spill disaster scenario based on its digital elevation model (DEM) collected with drone technologies. The results of the simulations can help emergency managers to supplement their response plan with concrete situational awareness in advance. Planning based on this simulation model minimizes its potential loss and damage when an incident like earthquakes man-made disaster happens, which could eventually be a threat in a public health context. This pilot research provides an additional paradigm to increase the preparedness to spill disasters. Acknowledgment: This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program funded by Korea Ministry of Environment (MOE) (No.202002860001).Keywords: risk assessment, disaster management, water treatment utilities, situational awareness, drone technologies
Procedia PDF Downloads 1441536 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 13