Search results for: Power Devices
1045 The Underground Ecosystem of Credit Card Frauds
Authors: Abhinav Singh
Abstract:
Point Of Sale (POS) malwares have been stealing the limelight this year. They have been the elemental factor in some of the biggest breaches uncovered in past couple of years. Some of them include • Target: A Retail Giant reported close to 40 million credit card data being stolen • Home Depot : A home product Retailer reported breach of close to 50 million credit records • Kmart: A US retailer recently announced breach of 800 thousand credit card details. Alone in 2014, there have been reports of over 15 major breaches of payment systems around the globe. Memory scrapping malwares infecting the point of sale devices have been the lethal weapon used in these attacks. These malwares are capable of reading the payment information from the payment device memory before they are being encrypted. Later on these malwares send the stolen details to its parent server. These malwares are capable of recording all the critical payment information like the card number, security number, owner etc. All these information are delivered in raw format. This Talk will cover the aspects of what happens after these details have been sent to the malware authors. The entire ecosystem of credit card frauds can be broadly classified into these three steps: • Purchase of raw details and dumps • Converting them to plastic cash/cards • Shop! Shop! Shop! The focus of this talk will be on the above mentioned points and how they form an organized network of cyber-crime. The first step involves buying and selling of the stolen details. The key point to emphasize are : • How is this raw information been sold in the underground market • The buyer and seller anatomy • Building your shopping cart and preferences • The importance of reputation and vouches • Customer support and replace/refunds These are some of the key points that will be discussed. But the story doesn’t end here. As of now the buyer only has the raw card information. How will this raw information be converted to plastic cash? Now comes in picture the second part of this underground economy where-in these raw details are converted into actual cards. There are well organized services running underground that can help you in converting these details into plastic cards. We will discuss about this technique in detail. At last, the final step involves shopping with the stolen cards. The cards generated with the stolen details can be easily used to swipe-and-pay for purchased goods at different retail shops. Usually these purchases are of expensive items that have good resale value. Apart from using the cards at stores, there are underground services that lets you deliver online orders to their dummy addresses. Once the package is received it will be delivered to the original buyer. These services charge based on the value of item that is being delivered. The overall underground ecosystem of credit card fraud works in a bulletproof way and it involves people working in close groups and making heavy profits. This is a brief summary of what I plan to present at the talk. I have done an extensive research and have collected good deal of material to present as samples. Some of them include: • List of underground forums • Credit card dumps • IRC chats among these groups • Personal chat with big card sellers • Inside view of these forum owners. The talk will be concluded by throwing light on how these breaches are being tracked during investigation. How are credit card breaches tracked down and what steps can financial institutions can build an incidence response over it.Keywords: POS mawalre, credit card frauds, enterprise security, underground ecosystem
Procedia PDF Downloads 4391044 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance
Authors: Mina Naeini, Thomas A. Adams II
Abstract:
Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs
Procedia PDF Downloads 1321043 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL
Authors: Ding Liangxiao
Abstract:
The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability
Procedia PDF Downloads 451042 Feasibility Study on Hybrid Multi-Stage Direct-Drive Generator for Large-Scale Wind Turbine
Authors: Jin Uk Han, Hye Won Han, Hyo Lim Kang, Tae An Kim, Seung Ho Han
Abstract:
Direct-drive generators for large-scale wind turbine, which are divided into AFPM(Axial Flux Permanent Magnet) and RFPM(Radial Flux Permanent Magnet) type machine, have attracted interest because of a higher energy density in comparison with gear train type generators. Each type of the machines provides distinguishable geometrical features such as narrow width with a large diameter for the AFPM-type machine and wide width with a certain diameter for the RFPM-type machine. When the AFPM-type machine is applied, an increase of electric power production through a multi-stage arrangement in axial direction is easily achieved. On the other hand, the RFPM-type machine can be applied by using its geometric feature of wide width. In this study, a hybrid two-stage direct-drive generator for 6.2MW class wind turbine was proposed, in which the two-stage AFPM-type machine for 5 MW was composed of two models arranged in axial direction with a hollow shape topology of the rotor with annular disc, the stator and the main shaft mounted on coupled slew bearings. In addition, the RFPM-type machine for 1.2MW was installed at the empty space of the rotor. Analytic results obtained from an electro-magnetic and structural interaction analysis showed that the structural weight of the proposed hybrid two-stage direct-drive generator can be achieved as 155tonf in a condition satisfying the requirements of structural behaviors such as allowable air-gap clearance and strength. Therefore, it was sure that the 6.2MW hybrid two-stage direct-drive generator is competitive than conventional generators. (NRF grant funded by the Korea government MEST, No. 2017R1A2B4005405).Keywords: AFPM-type machine, direct-drive generator, electro-magnetic analysis, large-scale wind turbine, RFPM-type machine
Procedia PDF Downloads 1671041 Sustainable Technologies for Decommissioning of Nuclear Facilities
Authors: Ahmed Stifi, Sascha Gentes
Abstract:
The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.Keywords: sustainable technologies, decontamination, pipeline, nuclear industry
Procedia PDF Downloads 3031040 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 3671039 Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems
Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy
Abstract:
Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched
Procedia PDF Downloads 1291038 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data
Authors: M. Mueller, M. Kuehn, M. Voelker
Abstract:
In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing
Procedia PDF Downloads 1311037 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom
Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan
Abstract:
Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.Keywords: circle work, relational pedagogies, decolonization, distance education
Procedia PDF Downloads 761036 Optimization-Based Design Improvement of Synchronizer in Transmission System for Efficient Vehicle Performance
Authors: Sanyka Banerjee, Saikat Nandi, P. K. Dan
Abstract:
Synchronizers as an integral part of gearbox is a key element in the transmission system in automotive. The performance of synchronizer affects transmission efficiency and driving comfort. Synchronizing mechanism as a major component of transmission system must be capable of preventing vibration and noise in the gears. Gear shifting efficiency improvement with an aim to achieve smooth, quick and energy efficient power transmission remains a challenge for the automotive industry. Performance of the synchronizer is dependent on the features and characteristics of its sub-components and therefore analysis of the contribution of such characteristics is necessary. An important exercise involved is to identify all such characteristics or factors which are associated with the modeling and analysis and for this purpose the literature was reviewed, rather extensively, to study the mathematical models, formulated considering such. It has been observed that certain factors are rather common across models; however, there are few factors which have specifically been selected for individual models, as reported. In order to obtain a more realistic model, an attempt here has been made to identify and assimilate practically all possible factors which may be considered in formulating the model more comprehensively. A simulation study, formulated as a block model, for such analysis has been carried out in a reliable environment like MATLAB. Lower synchronization time is desirable and hence, it has been considered here as the output factors in the simulation modeling for evaluating transmission efficiency. An improved synchronizer model requires optimized values of sub-component design parameters. A parametric optimization utilizing Taguchi’s design of experiment based response data and their analysis has been carried out for this purpose. The effectiveness of the optimized parameters for the improved synchronizer performance has been validated by the simulation study of the synchronizer block model with improved parameter values as input parameters for better transmission efficiency and driver comfort.Keywords: design of experiments, modeling, parametric optimization, simulation, synchronizer
Procedia PDF Downloads 3111035 A Low Cost Gain-Coupled Distributed Feedback Laser Based on Periodic Surface p-Contacts
Authors: Yongyi Chen, Li Qin, Peng Jia, Yongqiang Ning, Yun Liu, Lijun Wang
Abstract:
The distributed feedback (DFB) lasers are indispensable in optical phase array (OPA) used for light detection and ranging (LIDAR) techniques, laser communication systems and integrated optics, thanks to their stable single longitudinal mode and narrow linewidth properties. Traditional index-coupled (IC) DFB lasers with uniform gratings have an inherent problem of lasing two degenerated modes. Phase shifts are usually required to eliminate the mode degeneration, making the grating structure complex and expensive. High-quality antireflection (AR) coatings on both lasing facets are also essential owing to the random facet phases introduced by the chip cleavage process, which means half of the lasing energy is wasted. Gain-coupled DFB (GC-DFB) lasers based on the periodic gain (or loss) are announced to have single longitudinal mode as well as capable of the unsymmetrical coating to increase lasing power and efficiency thanks to facet immunity. However, expensive and time-consuming technologies such as epitaxial regrowth and nanoscale grating processing are still required just as IC-DFB lasers, preventing them from practical applications and commercial markets. In this research, we propose a low-cost, single-mode regrowth-free GC-DFB laser based on periodic surface p-contacts. The gain coupling effect is achieved simply by periodic current distribution in the quantum well caused by periodic surface p-contacts, introducing very little index-coupling effect that can be omitted. It is prepared by i-line lithography, without nanoscale grating fabrication or secondary epitaxy. Due to easy fabrication techniques, it provides a method to fabricate practical low cost GC-DFB lasers for widespread practical applications.Keywords: DFB laser, gain-coupled, low cost, periodic p-contacts
Procedia PDF Downloads 1281034 Comparison of Effects over the Autonomic Nervous System When Using Force Training and Interval Training in Indoor Cycling with University Students
Authors: Daniel Botero, Oscar Rubiano, Pedro P. Barragan, Jaime Baron, Leonardo Rodriguez Perdomo, Jaime Rodriguez
Abstract:
In the last decade interval training (IT) has gained importance when is compare with strength training (ST). However, there are few studies analyzing the impact of these training over the autonomic nervous system (ANS). This work has aimed to compare the activity of the autonomic nervous system, when is expose to an IT or ST indoor cycling mode. After approval by the ethics committee, a cross-over clinical trial with 22 healthy participants (age 21 ± 3 years) was implemented. The selection of participants for the groups with sequence force-interval (F-I) and interval-force (I-F) was made randomly with assignation of 11 participants for each group. The temporal series of heart rate was obtained before and after each training using the POLAR TEAM® heart monitor. The evaluation of the ANS was performed with spectral analysis of the heart rate variability (HRV) using the fast Fourier transform (Kubios software). A training of 8 weeks in each sequence (4 weeks with each training) with an intermediate period of two weeks of washout was implemented for each group. The power parameter of the HRV in the low frequency band (LF = 0.04-0.15Hz related to the sympathetic nervous system), high frequency (HF = 0.15-0.4Hz, related to the parasympathetic) and LF/HF (with reference to a modulation of parasympathetic over the sympathetic), were calculated. Afterward, the difference between the parameters before and after was realized. Then, to evaluate statistical differences between each training was implemented the method of Wellek (Wellek and Blettner, 2012, Medicine, 109 (15), 276-81). To determine the difference of effect over parasympathetic when FT and IT are used, the T test is implemented obtaining a T value of 0.73 with p-value ≤ 0.1. For the sympathetic was obtained a T of 0.33 with p ≤ 0.1 and for LF/HF the T was 1.44 with a p ≥ 0.1. Then, the carry over effect was evaluated and was not present. Significant changes over autonomic activity with strength or interval training were not observed. However, a modulation of the parasympathetic over the sympathetic can be observed. Probably, these findings should be explained because the sample is little and/or the time of training was insufficient to generate changes.Keywords: autonomic nervous, force training, indoor cycling, interval training
Procedia PDF Downloads 2251033 A Geophysical Study for Delineating the Subsurface Minerals at El Qusier Area, Central Eastern Desert, Egypt
Authors: Ahmed Khalil, Elhamy Tarabees, Svetlana Kovacikova
Abstract:
The Red Sea Mountains have been famous for their ore deposits since ancient times. Also, petrographic analysis and previous potential field surveys indicated large unexplored accumulations of ore minerals in the area. Therefore, the main goal of the presented study is to contribute to the discovery of hitherto unknown ore mineral deposits in the Red Sea region. To achieve this goal, we used two geophysical techniques: land magnetic survey and magnetotelluric data. A high-resolution land magnetic survey has been acquired using two proton magnetometers, one instrument used as a base station for the diurnal correction and the other used to measure the magnetic field along the study area. Two hundred eighty land magnetic stations were measured over a mesh-like area with a 500m spacing interval. The necessary reductions concerning daily variation, regional gradient and time observation were applied. Then, the total intensity anomaly map was constructed and transformed into the reduced magnetic pole (RTP). The magnetic interpretation was carried out using the analytical signal as well as regional–residual separation is carried out using the power spectrum. Also, the tilt derivative method (TDR) technique is applied to delineate the structure and hidden anomalies. Data analysis has been performed using trend analysis and Euler deconvolution. The results indicate that magnetic contacts are not the dominant geological feature of the study area. The magnetotleruric survey consisted of two profiles with a total of 8 broadband measurement points with a duration of about 24 hours crossing a wadi um Gheig approximately 50 km south of El Quseir. Collected data have been inverted to the electrical resistivity model using the 3D modular 3D inversion technique ModEM. The model revealed a non-conductive body in its central part, probably corresponding to a dolerite dyke, with which possible ore mineralization could be related.Keywords: magnetic survey, magnetotelluric, mineralization, 3d modeling
Procedia PDF Downloads 271032 Biological Activities of Protease Inhibitors from Cajanus cajan and Phaseolus limensis
Authors: Tooba N. Shamsi, Romana Perveen, Sadaf Fatima
Abstract:
Protease Inhibitors (PIs) are widespread in nature, produced by animals, plants and microorganisms. They play vital role in various biological activities by keeping a check on activity of proteases. Present study aims to investigate antioxidant and anti-inflammatory properties of PPI from Cajanus cajan (CCTI) and Phaseolus limensis (LBTI). PPI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. The anti-oxidant activity was analyzed by two most common radical scavenging assays of FRAP (ferric reducing antioxidant power) and DPPH (1,1- diphenyl-2-picrylhydrazyl). Also, in-vitro anti-inflammatory activity was evaluated using albumin denaturation assay and membrane stabilization assay at different concentrations. Ascorbic acid and aspirin were used as a standards for antioxidant and anti-inflammatory assays respectively. The PPIs were also checked for antimicrobial activity against a number of bacterial strains. The CCTI and LBTI showed DPPH radical scavenging activity in a concentration–dependent manner with IC50 values 544 µg/ml and 506 µg/ml respectively comparative to ascorbic acid which was 258 µg/ml. Following FRAP assay, it was evaluated that LBTI had 87.5% and CCTI showed 84.4% antioxidant activity, taking value of standard ascorbic acid to be 100%. The PPIs also showed in-vitro anti‐inflammatory activity by inhibiting the heat induced albumin denaturation with IC50 values of 686 µg/ml and 615 µg/ml for CCTI and LBTI respectively compared to the standard (aspirin) which was 70.8 µg/ml. Red blood cells membrane stabilization with IC50 values of 641 µg/ml and 587 µg/ml for CCTI and LBTI respectively against aspirin which showed IC50 value of 70.4 µg/ml. PPIs showed antibacterial activity against 7 known strains while there was apparently no action against fungi.Keywords: Cajanus cajan, Phaseolus limensis, Lima beans, protein protease inhibitor, antioxidant, anti-inflammatory, antimicrobial activity
Procedia PDF Downloads 2961031 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry
Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh
Abstract:
The demand for energy is cumulatively increasing with time. Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields. In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector. The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India. A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system. The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C). Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.Keywords: organic Rankine cycle, regenerative organic Rankine cycle, waste heat recovery, Indian industry
Procedia PDF Downloads 3741030 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry
Authors: Ph. Fauquet-Alekhine
Abstract:
Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.Keywords: bias, expert, high risk industry, stress.
Procedia PDF Downloads 1121029 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 171028 A Study on Effect of Almahdi Aluminium Factory of Bandar Abbas on Environment Status of the Region with an Emphasis on Measuring of Some Scarce Metals Existing in the Air (Atmosphere)
Authors: Maryam Ehsanpour, Maryam Malekpour, Rastin Afkhami
Abstract:
Today, industry is one of the indices of growth and development of countries and is a suitable applicable criterion to compare the countries. Bandar Abbas has a high industrial centralization in term of geographical redundancy of industries in comparison with other rural and urban places of Hormozgan province. Most important and major industries of the province are located in Bandar abbas eighth refinery, power plant, zinc melting company, Almahdi Aluminium, Hormozgan steel, south steel, which are the most important of these industries. So, it is necessary to study pollution from these industries and their destructive effects on environment of region. In respect of these things, general purpose of this research is codling and presenting managing solution of Almahdi Aluminium factory in them of measuring of air (atmosphere) parameters. For gaining this purpose it is necessary to determine measure of heavy metals suspension in the air (atmosphere) in the neighborhood of industries and also in residential regions close to them as partial purposes. So, for achieving the purposes above, operation of sampling from the air in two hot and cold seasons of the year (2010-2011) was performed, after field reviews to recognize the sources of effluence and to choose place of sampling stations. Sampling and preparation way to read was based on EPA and NIOSH. Also, decreasing process was included Fe>Al>Cd>Pb>Ni respectively, in term of results gaining from sampling of ingredients existing in the air (atmosphere). Also Ni and Fe elements in samples of air were higher than permissive measure in both of cold and hot season. Average of these two metals was 34% and 33% in cold season and 44% and 34% micrograms/m3 in hot season. Finally, suitable managing solutions to improve existing situation is presented in term for all results.Keywords: Almahdi aluminium factory, Bandar Abbas, scarce metals, atmosphere
Procedia PDF Downloads 5861027 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence
Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang
Abstract:
China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort
Procedia PDF Downloads 2551026 The Reason of Principles of Construction Engineering and Management Being Necessary for Contracting Firms and Their Projects Managers
Authors: Mamoon Mousa Atout
Abstract:
The industries of construction are in continuous growth not only in Middle East rejoin but almost all over the world. For the last fifteen years, big expansion and increase of different types of projects has been observed. Many infrastructural projects have been developed, high rise buildings, big shopping malls, power sub-stations, roads, bridges, schools, universities and developing many of new cities with full and complete facilities. The growth and enlargement of the mentioned developed projects has been accomplished through many international and local contracting organizations. Senior management of these organizations depend on their qualified and experienced team whom are aware of the implications of project management, construction management, engineering management and resource management during tendering till final completion of the project. This research aims to find out why reasons of principles of construction engineering and management are necessary for contracting firms and their managers. Principles of construction management help contracting organizations to accomplish and deliver projects without delay. This can be maintained by establishing guidelines’ details for updating the adopted system of construction management that they have through qualified and experienced project managers. The research focuses on benefits of other essential skills of projects planning, monitoring and control. Defining roles and responsibilities of contractor project managers during tendering and execution is a part of the investigated factors that will be analyzed. Other skills like optimizing and utilizing the obtainable project resources to deliver the project within time, cost and quality will be also investigated to find out how these factors are affecting the performance of contracting firms, projects managers and projects. The conclusion of the research will help senior management team and the contractors project managers about the benefits of implications and benefits construction management system and its effect upon the performance and knowledge of contract values that they have, and the optimal profit margin of the firm it.Keywords: construction management, contracting firms, project managers, planning processes, roles and responsibilities
Procedia PDF Downloads 2991025 Consistent Testing for an Implication of Supermodular Dominance with an Application to Verifying the Effect of Geographic Knowledge Spillover
Authors: Chung Danbi, Linton Oliver, Whang Yoon-Jae
Abstract:
Supermodularity, or complementarity, is a popular concept in economics which can characterize many objective functions such as utility, social welfare, and production functions. Further, supermodular dominance captures a preference for greater interdependence among inputs of those functions, and it can be applied to examine which input set would produce higher expected utility, social welfare, or production. Therefore, we propose and justify a consistent testing for a useful implication of supermodular dominance. We also conduct Monte Carlo simulations to explore the finite sample performance of our test, with critical values obtained from the recentered bootstrap method, with and without the selective recentering, and the subsampling method. Under various parameter settings, we confirmed that our test has reasonably good size and power performance. Finally, we apply our test to compare the geographic and distant knowledge spillover in terms of their effects on social welfare using the National Bureau of Economic Research (NBER) patent data. We expect localized citing to supermodularly dominate distant citing if the geographic knowledge spillover engenders greater social welfare than distant knowledge spillover. Taking subgroups based on firm and patent characteristics, we found that there is industry-wise and patent subclass-wise difference in the pattern of supermodular dominance between localized and distant citing. We also compare the results from analyzing different time periods to see if the development of Internet and communication technology has changed the pattern of the dominance. In addition, to appropriately deal with the sparse nature of the data, we apply high-dimensional methods to efficiently select relevant data.Keywords: supermodularity, supermodular dominance, stochastic dominance, Monte Carlo simulation, bootstrap, subsampling
Procedia PDF Downloads 1281024 Gender-Based Differences in the Social Judgment of Hungarian Politicians' Sex Scandals
Authors: Sara Dalma Galgoczi, Judith Gabriella Kengyel
Abstract:
Sex scandals are quite an engaging topic to work with, especially with their judgment in society. Most people are interested in other people's lives, specifically in public figures' such as celebrities or politicians, because ordinary people feel like they have the right to know more things about the famous and notorious ones than they would probably willing to share. Intimacy and sexual acts aren't exceptions; moreover, sexuality is one of the central interests of humans ever since. Besides, knowing and having an opinion about any kind of scandal can change even whole social groups or classes estimation of anyone. This study aims to research the social judgment of some Hungarian politicians' sex scandals and asks important questions like diverse public opinions in the light of gender or delegates’ abuse of power. Considering that this study is about collecting and evaluating opinions from the public, and no one before researched and published this exact topic and cases, an online survey was created. In the survey were different sections. We collected data about party-preference, conservativism-liberalism scale; then we used the following questionnaires: from Zero-sum perspective with regard to gender equality (Ruthig, Kehn, Gamblin, Vanderzanden & Jones, 2017), Ambivalent Sexism Inventory (ASI; Glick & Fiske, 1996), Ambivalence Toward Men Inventory (AMI; Glick & Fiske, 1999). Finally, 5 short summaries were presented about five Hungarian politicians' sex scandal cases (3 males, 2 females) from the recent past. These stories were followed by questions about their opinion of the party and attitudes towards the parties' reactions to the cases. We came to the conclusion that people are more permissive with the scandals of men, and benevolent sexism and ambivalence towards men mediate this relation. Men tend to see these cases as part of politicians' private lives more than women. Party preference had a significant effect - people tend to pass a sentence the delegates of the opposing parties, and they rather release the delegates of their preferred party.Keywords: sex scandal, sexism, social judgement, politician
Procedia PDF Downloads 1221023 Failure Analysis of Recoiler Mandrel Shaft Used for Coiling of Rolled Steel Sheet
Authors: Sachin Pawar, Suman Patra, Goutam Mukhopadhyay
Abstract:
The primary function of a shaft is to transfer power. The shaft can be cast or forged and then machined to the final shape. Manufacturing of ~5 m length and 0.6 m diameter shaft is very critical. More difficult is to maintain its straightness during heat treatment and machining operations, which involve thermal and mechanical loads, respectively. During the machining operation of a such forged mandrel shaft, a deflection of 3-4mm was observed. To remove this deflection shaft was pressed at both ends which led to the development of cracks in it. To investigate the root cause of the deflection and cracking, the sample was cut from the failed shaft. Possible causes were identified with the help of a cause and effect diagram. Chemical composition analysis, microstructural analysis, and hardness measurement were done to confirm whether the shaft meets the required specifications or not. Chemical composition analysis confirmed that the material grade was 42CrMo4. Microstructural analysis revealed the presence of untempered martensite, indicating improper heat treatment. Due to this, ductility and impact toughness values were considerably lower than the specification of the mentioned grade. Residual stress measurement of one more bent shaft manufactured by a similar route was done by portable X-ray diffraction(XRD) technique. For better understanding, measurements were done at twelve different locations along the length of the shaft. The occurrence of a high amount of undesirable tensile residual stresses close to the Ultimate Tensile Strength(UTS) of the material was observed. Untempered martensitic structure, lower ductility, lower impact strength, and presence of a high amount of residual stresses all confirmed the improper tempering heat treatment of the shaft. Tempering relieves the residual stresses. Based on the findings of this study, stress-relieving heat treatment was done to remove the residual stresses and deflection in the shaft successfully.Keywords: residual stress, mandrel shaft, untempered martensite, portable XRD
Procedia PDF Downloads 1121022 Development of Scenarios for Sustainable Next Generation Nuclear System
Authors: Muhammad Minhaj Khan, Jaemin Lee, Suhong Lee, Jinyoung Chung, Johoo Whang
Abstract:
The Republic of Korea has been facing strong storage crisis from nuclear waste generation as At Reactor (AR) temporary storage sites are about to reach saturation. Since the country is densely populated with a rate of 491.78 persons per square kilometer, Construction of High-level waste repository will not be a feasible option. In order to tackle the storage waste generation problem which is increasing at a rate of 350 tHM/Yr. and 380 tHM/Yr. in case of 20 PWRs and 4 PHWRs respectively, the study strongly focuses on the advancement of current nuclear power plants to GEN-IV sustainable and ecological nuclear systems by burning TRUs (Pu, MAs). First, Calculations has made to estimate the generation of SNF including Pu and MA from PWR and PHWR NPPS by using the IAEA code Nuclear Fuel Cycle Simulation System (NFCSS) for the period of 2016, 2030 (including the saturation period of each site from 2024~2028), 2089 and 2109 as the number of NPPS will increase due to high import cost of non-nuclear energy sources. 2ndly, in order to produce environmentally sustainable nuclear energy systems, 4 scenarios to burnout the Plutonium and MAs are analyzed with the concentration on burning of MA only, MA and Pu together by utilizing SFR, LFR and KALIMER-600 burner reactor after recycling the spent oxide fuel from PWR through pyro processing technology developed by Korea Atomic Energy Research Institute (KAERI) which shows promising and sustainable future benefits by minimizing the HLW generation with regard to waste amount, decay heat, and activity. Finally, With the concentration on front and back end fuel cycles for open and closed fuel cycles of PWR and Pyro-SFR respectively, an overall assessment has been made which evaluates the quantitative as well as economical combativeness of SFR metallic fuel against PWR once through nuclear fuel cycle.Keywords: GEN IV nuclear fuel cycle, nuclear waste, waste sustainability, transmutation
Procedia PDF Downloads 3521021 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark
Procedia PDF Downloads 791020 Quality in Healthcare: An Autism-Friendly Hospital Emergency Waiting Room
Authors: Elena Bellini, Daniele Mugnaini, Michele Boschetto
Abstract:
People with an Autistic Spectrum Disorder and an Intellectual Disability who need to attend a Hospital Emergency Waiting Room frequently present high levels of discomfort and challenging behaviors due to stress-related hyperarousal, sensory sensitivity, novelty-anxiety, communication and self-regulation difficulties. Increased agitation and acting out also disturb the diagnostic and therapeutic processes, and the emergency room climate. Architectural design disciplines aimed at reducing distress in hospitals or creating autism-friendly environments are called for to find effective answers to this particular need. A growing number of researchers are considering the physical environment as an important point of intervention for people with autism. It has been shown that providing the right setting can help enhance confidence and self-esteem and can have a profound impact on their health and wellbeing. Environmental psychology has evaluated the perceived quality of care, looking at the design of hospital rooms, paths and circulation, waiting rooms, services and devices. Furthermore, many studies have investigated the influence of the hospital environment on patients, in terms of stress-reduction and therapeutic intervention’ speed, but also on health professionals and their work. Several services around the world are organizing autism-friendly hospital environments which involve the architecture and the specific staff training. In Italy, the association Spes contra spem has promoted and published, in 2013, the ‘Chart of disabled people in the hospital’. It stipulates that disabled people should have equal rights to accessible and high-quality care. There are a few Italian examples of therapeutic programmes for autistic people as the Dama project in Milan and the recent experience of Children and Autism Foundation in Pordenone. Careggi’s Emergency Waiting Room in Florence has been built to satisfy this challenge. This project of research comes from a collaboration between the technical staff of Careggi Hospital, the Center for autism PAMAPI and some architects expert in the sensory environment. The methodology of focus group involved architects, psychologists and professionals through a transdisciplinary research, centered on the links between the spatial characteristics and clinical state of people with ASD. The relationship between architectural space and quality of life is studied to pay maximum attention to users’ needs and to support the medical staff in their work by a specific program of training. The result of this research is a sum of criteria used to design the emergency waiting room, that will be illustrated. A protected room, with a clear space design, maximizes comprehension and predictability. The multisensory environment is thought to help sensory integration and relaxation. Visual communication through Ipad allows an anticipated understanding of medical procedures, and a specific technological system supports requests, choices and self-determination in order to fit sensory stimulation to personal preferences, especially for hypo and hypersensitive people. All these characteristics should ensure a better regulation of the arousal, less behavior problems, improving treatment accessibility, safety, and effectiveness. First results about patient-satisfaction levels will be presented.Keywords: accessibility of care, autism-friendly architecture, personalized therapeutic process, sensory environment
Procedia PDF Downloads 2651019 Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft
Authors: Dineshsingh Thakur, S. Nagesh, J. Basha
Abstract:
A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability.Keywords: flexible rotor, critical speed, experimental modal analysis, high speed flexible coupling (HSFC), misalignment
Procedia PDF Downloads 2151018 Communities And Local Food Systems In The Post Pandemic World: Lessons For Kerala
Authors: Salimah Hasnah, Namratha Radhakrishnan
Abstract:
Communities play a vital role in mobilizing people and resources for the benefit of all. Since time immemorial, communities have been spear heading different activities ranging from disaster management, palliative care, local economic development and many more with laudable success. Urban agriculture is one such activity where communities can prove to make a real difference. Farming activities in cities across different developed countries have proved to have favorable outcomes in the form of increased food security, neighborhood revitalization, health benefits and local economic growth. However, urban agriculture in the developing nations have never been prioritized as an important planning tool to cater to the basic needs of the public. Urban agricultural practices are being carried out in a fragmented fashion without a formal backing. The urban dwellers rely heavily on their far-off rural counterparts for daily food requirements. With the onset of the pandemic and the recurring lockdowns, the significance of geographic proximity and its impact on the availability of food to the public are gradually being realized around the globe. This warrants a need for localized food systems by shortening the distance between production and consumption of food. The significance of communities in realizing these urban farming benefits is explored in this paper. A case-study approach is adopted to understand how different communities have overcome barriers to urban farming in cities. The applicability of these practices is validated against the state of Kerala in India wherein different community centered approaches have been successful in the past. The existing barriers are assessed and way forward to achieve a self-sufficient localized food systems is formulated with the key lessons from the case studies. These recommendations will be helpful to successfully establish and sustain farming activities in urban areas by leveraging the power of communities.Keywords: community-centric, COVID-19, drivers and barriers, local food system, urban agriculture
Procedia PDF Downloads 1361017 Negotiating Space, Reconstructing Identity, and Community Literacy Practices: Case Study of Indonesian Domestic Workers in Hong Kong
Authors: Pratiwi Retnaningdyah, Sofie Dewayani
Abstract:
Foreign domestic workers are arguably one of the most exploited and subordinated groups of women in the labor division under global capitalism. However, foreign domestic workers (FDWs) actively engage in activities to negotiate the prevailing structures of power in the transnational labor market. This paper seeks to understand the significance of Indonesian Domestic Workers (IDWs) cultural representations in relation to the themes of literacy and space. In particular, this paper addresses the issue of how IDWs in Hong Kong make use of the practice of suitcase libraries to make meaning of space within material limits. The term ‘suitcase libraries’ is used to refer to a literacy practice of book borrowing at outdoor public spaces in Hong Kong during IDWs’ days off. The books are displayed in open suitcases and mats, with IDWs both as administrators and consumers engaged in the practice. This paper argues that suitcase libraries can be considered representing Thirdspace in the form of a vernacular, grassroots literacy practice that creates a productive space of resistance and community empowerment. Employing participant observation and a textual analysis of IDWs’ literacy narratives, the study traced IDWs’ literacy trajectories to the period of IDWs’ permanent return to Indonesia. Through extended engagement in community literacy practices in their hometowns, former IDWs develop their literacy capital and break the stereotypes of uneducated and passive maids and change them into literate figures. In the context of literacy movement that has gained momentum in Indonesia recently, the practice of IDWs’ suitcase libraries is also useful as a reference point to further investigate how community literacy sponsors in Indonesia also create Thirdspace and develop literacy capital through community libraries (TBM, Taman Baca Masyarakat).Keywords: identity, Indonesian domestic workers, literacy narratives, Thirdspace
Procedia PDF Downloads 1771016 Effect of Plasma Radiation on Keratinocyte Cells Involved in the Wound Healing Process
Authors: B. Fazekas, I. Korolov, K. Kutasi
Abstract:
Plasma medicine, which involves the use of gas discharge plasmas for medical applications is a rapidly growing research field. The use of non-thermal atmospheric pressure plasmas in dermatology to assist tissue regeneration by improving the healing of infected and/or chronic wounds is a promising application. It is believed that plasma can activate cells, which are involved in the wound closure. Non-thermal atmospheric plasmas are rich in chemically active species (such as O and N-atoms, O2(a) molecules) and radiative species such as the NO, N2+ and N2 excited molecules, which dominantly radiate in the 200-500 nm spectral range. In order to understand the effect of plasma species, both of chemically active and radiative species on wound healing process, the interaction of physical plasma with the human skin cells is necessary. In order to clarify the effect of plasma radiation on the wound healing process we treated keratinocyte cells – that are one of the main cell types in human skin epidermis – covered with a layer of phosphate-buffered saline (PBS) with a low power atmospheric pressure plasma. For the generation of such plasma we have applied a plasma needle. Here, the plasma is ignited at the tip of the needle in flowing helium gas in contact with the ambient air. To study the effect of plasma radiation we used a plasma needle configuration, where the plasma species – chemically active radicals and charged species – could not reach the treated cells, but only the radiation. For the comparison purposes, we also irradiated the cells using a UV-B light source (FS20 lamp) with a 20 and 40 mJ cm-2 dose of 312 nm. After treatment the viability and the proliferation of the cells have been examined. The proliferation of cells has been studied with a real time monitoring system called Xcelligence. The results have indicated, that the 20 mJ cm-2 dose did not affect cell viability, whereas the 40 mJ cm-2 dose resulted a decrease in cell viability. The results have shown that the plasma radiation have no quantifiable effect on the cell proliferation as compared to the non-treated cells.Keywords: UV radiation, non-equilibrium gas discharges (non-thermal plasmas), plasma emission, keratinocyte cells
Procedia PDF Downloads 602