Search results for: storage modulus
2060 Performance of Copper Coil Heat Exchangers for Heating Greenhouses: An Experimental and Theoretical Investigation
Authors: Ilham ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
This study examines the manner in which a solar copper coil heating system performs in a North-South-oriented greenhouse environment. In order to retain heat during the day and release it back into the greenhouse environment at night, this system relies on the circulation of water in a closed loop under the roof of the greenhouse. Experimental research was conducted to compare the results in two identical greenhouses. The first one has a heating system, whilst the second one has not and is regarded as a control. We determined the mass of the heat transfer fluid, which makes up the storage system, needed to heat the greenhouse during the night to be equivalent to 689 Kg using the heat balance of the greenhouse equipped with a heating system. The findings demonstrated that when compared to a controlled greenhouse without a heating system, the climatic conditions within the experimental greenhouse were greatly enhanced by the solar heating system. Keywords: renewable energy, storage, enviromental impact, heating, agricultural greenhouse
Procedia PDF Downloads 822059 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials
Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu
Abstract:
The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.Keywords: analytic solution, braided composites, elasticity properties, technology factor
Procedia PDF Downloads 2392058 Rheological Evaluation of Wall Materials and β-Carotene Loaded Microencapsules
Authors: Gargi Ghoshal, Ashay Jain, Deepika Thakur, U. S. Shivhare, O. P. Katare
Abstract:
The main objectives of this work were the rheological characterization of dispersions, emulsions at different pH used in the microcapsules preparation and the microcapsules obtain from gum arabic (A), guar gum (G), casein (C) and whey protein isolate (W) to keep β-carotene protected from degradation using the complex coacervation microencapsulation technique (CCM). The evaluation of rheological properties of dispersions, emulsions of different pH and so obtained microencapsules manifest the changes occur in the molecular structure of wall materials during the encapsulation process of β-carotene. These dispersions, emulsions of different pH and formulated microencapsules were subjected to go through various conducted experiments (flow curve test, amplitude sweep, and frequency sweep test) using controlled stress dynamic rheometer. Flow properties were evaluated as a function of apparent viscosity under steady shear rate ranging from 0.1 to 100 s-1. The frequency sweep test was conducted to determine the extent of viscosity and elasticity present in the samples at constant strain under changing angular frequency range from 0.1 to 100 rad/s at 25ºC. The dispersions and emulsion exhibited a shear thinning non-Newtonian behavior whereas microencapsules are considered as shear-thickening respectively. The apparent viscosity for dispersion, emulsions were decreased at low shear rates 20 s-1 and for microencapsules, it decreases up to ~50 s-1 besides these value, it has shown constant pattern. Oscillatory shear experiments showed a predominant viscous liquid behavior up to crossover frequencies of dispersions of C, W, A at 49.47 rad/s, 57.60 rad/s and 21.45 rad/s emulsion sample of AW at pH 5.0 it was 17.85 rad/s and GW microencapsules 61.40 rad/s respectively whereas no such crossover was found in G dispersion, emulsion with C and microencapsules still it showed more viscous behavior. Storage and loss modulus decreases with time also a shift of the crossover towards lower frequencies for A, W and C was observed respectively. However, their microencapsules showed more viscous behavior as compared to samples prior to blending.Keywords: viscosity, gums, proteins, frequency sweep test, apparent viscosity
Procedia PDF Downloads 2472057 Study of a Photovoltaic System Using MPPT Buck-Boost Converter
Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni
Abstract:
The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump
Procedia PDF Downloads 3802056 Antioxidant Efficacy of Lovi (Flacourtia inermis) Peel Extract in Edible Oils during Storage
Authors: Sasini U. G. Nanayakkara, Nishala E. Wedamulla, W. A. J. P. Wijesinghe
Abstract:
Lovi (Flacourtia inermis) is an underutilized fruit crop grown in Sri Lanka with promising antioxidant properties; thus, exhibits the great potential to use as a natural antioxidant. With the concern of synthetic antioxidants, there is a growing trend towards the addition of a natural antioxidant to retard the rancidity of edible oils. Hence, in this backdrop, extract obtained from the peel of F. inermis fruit was used to retard the rancidity of selected edible oils. Free fatty acid (FFA) content and peroxide value (PV) of sunflower oil (SO) and virgin coconut oil (VCO) were measured at 3-day intervals for 21 days at 65 ± 5°C after addition of extract at 500, 1000, 2000 ppm levels and α-tocopherol at 500 ppm level was used as positive control. SO and VCO without added extract was used as the control. The extract was prepared with 70% ethanol using ultrasound-assisted extraction, and antioxidant efficacy and total phenolic content (TPC) of the extract were measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and Folin-Ciocalteu method respectively. Antioxidant activity (IC50) and TPC of the extract were 227.14 ± 4.12 µgmL⁻¹ and 4.87 ± 0.01 mg GAE per gram, respectively. During the storage period, FFA content and PV of both oils were increased with time. However, SO showed comparatively high PV than that of VCO and thereby indicate the progression of lipid oxidation as PV is a good indicator of the extent of primary oxidative products formed in oils. The most effective extract concentration was 2000 ppm. After 21 days of storage, VCO (control) sample exhibited significantly (p < 0.05) high FFA (0.36%) and PV (1.93 meq kg⁻¹) than that of VCO with 1000 ppm (FFA: 0.35%; PV: 1.72 meq kg⁻¹) and 2000 ppm (FFA: 0.28%; PV: 1.19 meq kg-1) levels of extract. Thus, demonstrates the efficacy of lovi peel extract in retardation of lipid oxidation of edible oils during storage at higher concentrations of the extract addition. Moreover, FFA and PV of SO (FFA: 0.10%; PV: 12.38 meq kg⁻¹) and VCO (FFA: 0.28%; PV: 1.19 meq kg⁻¹) at 2000 ppm level of extract were significantly (p < 0.05) lower than that of positive control: SO with α-tocopherol (FFA: 0.22%, PV: 17.94 meq kg⁻¹) and VCO with α-tocopherol (FFA: 0.29%, PV: 1.39 meq kg⁻¹) after 21 days. Accordingly, lovi peel extract at 2000 ppm level was more effective than α-tocopherol in retardation of lipid oxidation of edible oils. In conclusion, lovi peel extract has strong antioxidant properties and can be used as a natural antioxidant to inhibit deteriorative oxidation of edible oils.Keywords: antioxidant, Flacourtia inermis, peroxide value, virgin coconut oil
Procedia PDF Downloads 1282055 Study on Shelf Life and Textural Properties of Minimal Processed Mixed Fruits
Authors: Kaavya Rathnakumar
Abstract:
Minimally processed fruits have the attributes of convenience and fresh like quality. In minimally processed products, the cells of the tissue are alive, and the essential nutrients and flavours are retained. Some of the procedures include washing, trimming, sorting, cutting, slicing and shredding. Fruits such as pineapple and guava were taken for the study of textural properties for a period of five days. After the performance of various unit operations 50g cubes of pineapple and guava has been weighed. For determining the textural properties, samples were taken in which set of 12 samples were treated by using 1% citric acid solution and dried for 5 minutes the remaining set of 12 samples were untreated. In set of treated samples 6 were vacuum packed and stored in the refrigerator, and the other sample was normally stored. For untreated samples was done in a similar way. In texture profile analysis the force required for 1cm penetration of 2mm cylindrical needle inside the fruits were recorded for all packages. It was observed that guava the fresh sample had a force of penetration of 3250mm and as the days increased the force decreased to 357.4 mm for vacuum packed refrigerated storage. In the case of pineapple, the force of penetration of the fresh sample was 2325mm which was decreased to 26.3mm on the fourth day and very low at the fifth day for vacuum packed refrigerated storage. But in case of untreated samples, the fruits were spoiled may be because of no pre-treatment and packaging. Comparatively, it was found that vacuum packed refrigerated samples had higher shelf life than normal packed samples in ambient conditions.Keywords: 1% citric acid solution, normal packed, refrigerated storage, vacuum packed
Procedia PDF Downloads 1942054 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings
Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay
Abstract:
The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy
Procedia PDF Downloads 1232053 Eco-Friendly Approach in the Management of Stored Sorghum Insect Pests in Small-Scale Farmers’ Storage Structures of Northern Nigeria
Authors: Mohammed Suleiman, Ibrahim Sani, Samaila Abubakar, Kabir Abdullahi Bindawa
Abstract:
Farmers’ storage structures in Pauwa village of Katsina State, Northern Nigeria, were simulated and incorporated with the application of leaf powders of Euphorbia balsamifera Aiton, Lawsonia inermis L., Mitracarpus hirtus (L.) DC. and Senna obtusifolia L. to search for more eco-friendly methods of managing insect pests of stored sorghum. The four most commonly grown sorghum varieties in the study area, namely “Farar Kaura” (FK), “Jar Kaura” (JK), “Yar Gidan Daudu” (YGD), and ICSV400 in threshed forms were used for the study. The four varieties (2.50 kg each) were packed in small polypropylene bags, mixed with the leaf powders at the concentration of 5% (w/w) of the plants, and kept in small stores of the aforementioned village for 12 weeks. Insect pests recovered after 12 weeks were Sitophilus zeamais, Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, and Oryzaephilus surinamensis. There were significantly fewer insect pests in treated sorghum than in untreated types (p < 0.05). More weight losses were recorded in untreated grains than in those treated with the botanical powders. In terms of varieties, grain weight losses were in the order FK > JK > YGD > ICSV400. The botanicals also showed significant (p < 0.05) protectant ability against the weevils with their performance as E. balsamifera > L. inermis > M. hirtus > S. obtusifolia.Keywords: botanical powders, infestations, insect pests, management, sorghum varieties, storage structures, weight losses
Procedia PDF Downloads 1022052 A Preliminary Study of Economic Dimension of Underground Rock Caverns for Water Storage at Singapore
Authors: Junlong Shang, Zhengxian Chua, Hoongping Peh, Zhiye Zhao
Abstract:
Due to scarce land resources in Singapore, it is imperative to increase water storage capacities to meet the increasing demand of water to secure a sustainable development, which can be achieved in the underground by rock caverns. In this paper, a preliminary study on the effects of cavern span, height and radius on the cavern stability is presented to provide a guidance on the cavern construction in the context of Singapore. It is found that the radius of caverns should be around half of the span width (i.e., B/R=2) to reduce vertical displacement at the crown of cavern. The smaller the rock cover, the smaller displacement. The minimum rock thickness should be at least the same as the cavern span to eliminate excessive yielded element. Finally, rock support system is introduced to maintain the profile of caverns.Keywords: cavern dimension, numerical modelling, sustainable development, underground rock cavern
Procedia PDF Downloads 3222051 Studying the Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy-Nanocomposite for the Oil Field Applications
Authors: Mohammed Al-Bahrani, Alistair Cree, Zoltan J. Gombos
Abstract:
Carbon nanotubes are currently considered to be one of the strongest and stiffest engineering materials available, possessing a calculated tensile strength of σTS ≈ 200GPa and Young’s moduli up to E = 1.4 TPa. In the context of manufactured engineering composites, epoxy resin is the most commonly used matrix material for many aerospace and oil field, and other, industrial applications. This paper reports the initial findings of a study which considered the effects that small additions of nickel coated multi-wall carbon nanotubes (Ni-MWCNTs) would have on the mechanical properties of an epoxy resin matrix material. To successfully incorporate these particles into the matrix materials, with good dispersive properties, standard mixing techniques using an ultrasonic bath were used during the manufacture of appropriate specimens for testing. The tensile and flexural strength properties of these specimens, as well as the microstructure, were then evaluated and studied. Scanning Electronics Microscope (SEM) was used to visualise the degree of dispersion of the Ni-MWCNT’s in matrix. The results obtained indicated that the mechanical properties of epoxy resin can be improved significantly by the addition of the Ni-MWCNT’s. Further, the addition of Ni-MWCNT’s increased the tensile strength by approximately 19% and the tensile modulus by 28%. The flexural strength increased by 20.7% and flexural modulus by 22.6% compared to unmodified epoxy resin. It is suggested that these improvements, seen with the Ni-MWCNT’s particles, were due to an increase in the degree of interfacial bonding between Ni-MWCNT and epoxy, so leading to the improved mechanical properties of the nanocomposite observed. Theoretical modelling, using ANSYS finite element analysis, also showed good correlation with the experimental results obtained.Keywords: carbon nanotubes, nanocomposite, epoxy resin, ansys
Procedia PDF Downloads 1742050 Molecular-Dynamics Study of H₂-C₃H₈-Hydrate Dissociation: Non-Equilibrium Analysis
Authors: Mohammad Reza Ghaani, Niall English
Abstract:
Hydrogen is looked upon as the next-generation clean-energy carrier; the search for an efficient material and method for storing hydrogen has been, and is, pursued relentlessly. Clathrate hydrates are inclusion compounds wherein guest gas molecules like hydrogen are trapped in a host water-lattice framework. These types of materials can be categorised as potentially attractive hosting environments for physical hydrogen storage (i.e., no chemical reaction upon storage). Non-equilibrium molecular dynamics (NEMD) simulations have been performed to investigate thermal-driven break-up of propane-hydrate interfaces with liquid water at 270-300 K, with the propane hydrate containing either one or no hydrogen molecule in each of its small cavities. In addition, two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water: a 001-direct surface cleavage and one with completed cages. The geometric hydrate-ice-liquid distinction criteria of Báez and Clancy were employed to distinguish between the hydrate, ice lattices, and liquid-phase. Consequently, the melting temperatures of interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. The different hydrate-edge terminations for the hydrate-water interface led to statistically-significant differences in the observed melting point and dissociation profile: it was found that the clathrate with the planar interface melts at around 280 K, whilst the melting temperature of the cage-completed interface was determined to be circa 270 K.Keywords: hydrogen storage, clathrate hydrate, molecular dynamics, thermal dissociation
Procedia PDF Downloads 2772049 Effect of Low Calorie Sweeteners on Chemical, Sensory Evaluation and Antidiabetic of Pumpkin Jam Fortified with Soybean
Authors: Amnah M. A. Alsuhaibani, Amal N. Al-Kuraieef
Abstract:
Introduction: In the recent decades, production of low-calorie jams is needed for diabetics that comprise low calorie fruits and low calorie sweeteners. Object: the research aimed to prepare low calorie formulated pumpkin jams (fructose, stevia and aspartame) incorporated with soy bean and evaluate the jams through chemical analysis and sensory evaluation after storage for six month. Moreover, the possible effect of consumption of low calorie jams on diabetic rats was investigated. Methods: Five formulas of pumpkin jam with different sucrose, fructose, stevia and aspartame sweeteners and soy bean were prepared and stored at 10 oC for six month compared to ordinary pumpkin jam. Chemical composition and sensory evaluation of formulated jams were evaluated at zero time, 3 month and 6 month of storage. The best three acceptable pumpkin jams were taken for biological study on diabetic rats. Rats divided into group (1) served as negative control and streptozotocin induce diabetes four rat groups that were positive diabetic control (group2), rats fed on standard diet with 10% sucrose soybean jam, fructose soybean jam and stevia soybean jam (group 3, 4&5), respectively. Results: The content of protein, fat, ash and fiber were increased but carbohydrate was decreased in low calorie formulated pumpkin jams compared to ordinary jam. Production of aspartame soybean pumpkin jam had lower score of all sensory attributes compared to other jam then followed by stevia soybean Pumpkin jam. Using non nutritive sweeteners (stevia & aspartame) with soybean in processing jam could lower the score of the sensory attributes after storage for 3 and 6 months. The highest score was recorded for sucrose and fructose soybean jams followed by stevia soybean jam while aspartame soybean jam recorded the lowest score significantly. The biological evaluation showed a significant improvement in body weight and FER of rats after six weeks of consumption of standard diet with jams (Group 3,4&5) compared to Group1. Rats consumed 10% low calorie jam with nutrient sweetener (fructose) and non nutrient sweetener (stevia) soybean jam (group 4& 5) showed significant decrease in glucose level, liver function enzymes activity, and liver cholesterol & total lipids in addition of significant increase of insulin and glycogen compared to the levels of group 2. Conclusion: low calorie pumpkin jams can be prepared by low calorie sweeteners and soybean and also storage for 3 months at 10oC without change sensory attributes. Consumption of stevia pumpkin jam fortified with soybean had positive health effects on streptozoticin induced diabetes in rats.Keywords: pumpkin jam, HFCS, aspartame, stevia, storage
Procedia PDF Downloads 1842048 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.Keywords: building energy management, machine learning, operation planning, simulation-based optimization
Procedia PDF Downloads 3232047 The Potential of Extending the Shelf Life of Meat by Encapsulation with Red Clay
Authors: Onuoha Ogbonnaya Gideon, Ishaq Hafsah Yusuf
Abstract:
Introduction: Meat is a perishable food of good nutrition. Meat ranks among the most significant, nutritious, and favored food items available to most locals. It is a good source of protein (17-19%), depending on sources, and contains appreciable amounts of fat and moisture. However, it has a very short shelf life due mainly to its high moisture, fat, and other nutrient contents. Meat spoilage can result from microbial proliferation as well as inherent enzymes in the meat tissues. Bacteria contamination and permeability to both oxygen and water vapor are major concerns associated with spoilage of meat and its storage. Packaging is fundamental in the preservation and presentation of food. Red clay is a very common substance; hydrous aluminum phyllosilicate, sometimes with varying amounts of iron, magnesium, alkali metals, alkaline earth, and cation formed from sedimentary rocks. Furthermore, red clay is an extremely absorbent material and develops plasticity when wet due to the molecular film of water surrounding the clay particles but can become hard, impervious, brittle, and non-brittle and non-plastic when dry. In developing countries, the high cost of refrigeration technologies and most other methods of preserving meat are exorbitant and thus can be substituted with the less expensive and readily available red clay for the preservation of meat. Methodology: 1000g of lean meat was diced into cubes of 10g each. The sample was then divided into four groups labelled raw meat (RMC); raw in 10% brine solution (RMB), boiled meat (BMC), and fried meat (FMC). It was then encapsulated with 2mm thick red clay and then heated in a muffle furnace at a temperature of 600OC for 30min. The samples were kept on a bench top for 30 days, and a storage study was carried out. Results: Our findings showed a decrease in value during storage for the physiochemical properties of all the sample; pH values decreased [RMC (7.05-7.6), RMB (8.46-7.0), BMC (6.0-5.0), FMC (4.08-3.9)]; free fatty acid content decreased with storage time [RMC (32.6%-31%), RMB (30.2%-28.6%), BMC (30.5%-27.4%), FMC (25.6%-23.8%)]; total soluble solid value decreased [RMC16.20-15.07, RMB (17.22-16.04), BMC (17.05-15.54), FMC (15.3-14.9)]. Conclusion: This result shows that encapsulation with red clay reduced all the values analyzed and thus has the potential to extend the shelf life of stored meat.Keywords: red clay, encapsulating, shelf life, physicochemical properties, lean meat
Procedia PDF Downloads 1102046 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates
Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump
Procedia PDF Downloads 552045 CO2 Sequestration for Enhanced Coal Bed Methane Recovery: A New Approach
Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg
Abstract:
The global warming due to the increased atmospheric carbon dioxide (CO2) concentration is the most prominent issue of environment that the world is facing today. To solve this problem at global level, sequestration of CO2 in deep and unmineable coal seams has come out as one of the attractive alternatives to reduce concentration in atmosphere. This sequestration technology is not only going to help in storage of CO2 beneath the sub-surface but is also playing a major role in enhancing the coal bed methane recovery (ECBM) by displacing the adsorbed methane. This paper provides the answers for the need of CO2 injection in coal seams and how recovery is enhanced. We have discussed the recent development in enhancing the coal bed methane recovery and the economic scenario of the same. The effect of injection on the coal reservoir has also been discussed. Coal is a good absorber of CO2. That is why the sequestration of CO2 is emerged out to be a great approach, not only for storage purpose but also for enhancing coal bed methane recovery.Keywords: global warming, carbon dioxide (CO2), CO2 sequestration, enhance coal bed methane (ECBM)
Procedia PDF Downloads 5062044 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management
Authors: Kenneth Harper
Abstract:
The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups
Procedia PDF Downloads 292043 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System
Authors: Krishnan Manickavasagam, Manikandan Shanmugam
Abstract:
Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system
Procedia PDF Downloads 1002042 Effect of Environmental Stress Factors on the Degradation of Display Glass
Authors: Jinyoung Choi, Hyun-A Kim, Sunmook Lee
Abstract:
The effects of environmental stress factors such as storage conditions on the deterioration phenomenon and the characteristic of the display glass were studied. In order to investigate the effect of chemical stress on the glass during the period of storage, the respective components of commercial glass were first identified by XRF (X-ray fluorescence). The glass was exposed in the acid, alkali, neutral environment for about one month. Thin film formed on the glass surface was analyzed by XRD (X-ray diffraction) and FT-IR (Fourier transform infrared). The degree of corrosion and the rate of deterioration of each sample were confirmed by measuring the concentrations of silicon, calcium and chromium with ICP-OES (Inductively coupled plasma-optical emission spectrometry). The optical properties of the glass surface were confirmed by SEM (Scanning electron microscope) before and after the treatment. Acknowledgement—The authors gratefully acknowledge the financial support from the Ministry of Trade, Industry and Energy (Grant Number: 10076817)Keywords: corrosion, degradation test, display glass, environmental stress factor
Procedia PDF Downloads 4612041 Effect of Clinical Parameters on Strength of Reattached Tooth Fragment in Anterior Teeth: Systematic Review and Meta-Analysis
Authors: Neeraj Malhotra, Ramya Shenoy
Abstract:
Objective: To assess the effect of clinical parameters (bonding agent, preparation design & storage media) on the strength of reattached anterior tooth fragment. Methodology: This is a systematic review and meta-analysis for articles referred from MEDLINE, PUBMED, and GOOGLE SCHOLAR. The articles on tooth reattachment and clinical factors affecting fracture strength/bond strength/fracture resistance of the reattached tooth fragment in anterior teeth and published in English from 1999 to 2016 were included for final review. Results: Out of 120 shortlisted articles, 28 articles were included for the systematic review and meta-analysis based on 3 clinical parameters i.e. bonding agent, tooth preparation design & storage media. Forest plot & funnel plots were generated based on individual clinical parameter and their effect on strength of reattached anterior tooth fragment. Results based on analysis suggest combination of both conclusive evidence favoring the experimental group as well as in-conclusive evidence for individual parameter. Conclusion: There is limited evidence as there are fewer articles supporting each parameter in human teeth. Bonding agent had showed better outcome in selected studies.Keywords: bonding agent, bond strength, fracture strength, preparation design, reattachment, storage media
Procedia PDF Downloads 1792040 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals
Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou
Abstract:
There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)
Procedia PDF Downloads 2252039 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple
Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob
Abstract:
The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, pineapple, microbial decay
Procedia PDF Downloads 572038 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple
Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob
Abstract:
The effect of sodium alginate (1%) based edible coating incorporated natural essential oils, thymol, carvone, and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5, and 1.0%) on the quality changes of fresh-cut pineapple was investigated. Pineapple dipped in distilled water was served as control. After coating, the fruit was sealed in a modified atmosphere package (MAP) using high permeable film and stored at 5°C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased, and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple
Procedia PDF Downloads 572037 A Study of Soft Soil Improvement by Using Lime Grit
Authors: Ashim Kanti Dey, Briti Sundar Bhowmik
Abstract:
This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil.Keywords: lime grit column, area ratio, shear modulus, damping ratio, strength ratio, improvement factor, degradation factor
Procedia PDF Downloads 5032036 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications
Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu
Abstract:
Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation
Procedia PDF Downloads 2592035 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening
Authors: Jaroslaw Gawryluk, Andrzej Teter
Abstract:
Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: angle column, compression, experiment, FEM
Procedia PDF Downloads 2072034 Utilization of Jackfruit Seed Flour (Artocarpus heterophyllus L.) as a Food Additive
Authors: C. S. D. S. Maduwage, P. W. Jeewanthi, W. A. J. P. Wijesinghe
Abstract:
This study investigated the use of Jackfruit Seed Flour (JSF) as a thickening agent in tomato sauce production. Lye peeled mature jackfruit seeds were used to obtain JSF. Flour was packed in laminated bags and stored for further studies. Three batches of tomato sauce samples were prepared according to the Sri Lankan Standards for tomato sauce by adding JSF, corn flour and without any thickening agent. Samples were stored at room temperature for 8 weeks in glass bottles. The physicochemical properties such as pH, total soluble solids, titratable acidity, and water activity were measured during the storage period. Microbial analysis and sensory evaluation were done to determine the quality of tomato sauce. JSF showed the role of a thickening agent in tomato sauce with lowest serum separation and highest viscosity during the storage period. This study concludes that JSF can be successfully used as a thickening agent in food industry.Keywords: Jackfruit seed flour, food additive, thickening agent, tomato sauce
Procedia PDF Downloads 3162033 Comparison of Risk Analysis Methodologies Through the Consequences Identification in Chemical Accidents Associated with Dangerous Flammable Goods Storage
Authors: Daniel Alfonso Reséndiz-García, Luis Antonio García-Villanueva
Abstract:
As a result of the high industrial activity, which arises from the search to satisfy the needs of products and services for society, several chemical accidents have occurred, causing serious damage to different sectors: human, economic, infrastructure and environmental losses. Historically, with the study of this chemical accidents, it has been determined that the causes are mainly due to human errors (inexperienced personnel, negligence, lack of maintenance and deficient risk analysis). The industries have the aim to increase production and reduce costs. However, it should be kept in mind that the costs involved in risk studies, implementation of barriers and safety systems is much cheaper than paying for the possible damages that could occur in the event of an accident, without forgetting that there are things that cannot be replaced, such as human lives.Therefore, it is of utmost importance to implement risk studies in all industries, which provide information for prevention and planning. The aim of this study is to compare risk methodologies by identifying the consequences of accidents related to the storage of flammable, dangerous goods for decision making and emergency response.The methodologies considered in this study are qualitative and quantitative risk analysis and consequence analysis. The latter, by means of modeling software, which provides radius of affectation and the possible scope and magnitude of damages.By using risk analysis, possible scenarios of occurrence of chemical accidents in the storage of flammable substances are identified. Once the possible risk scenarios have been identified, the characteristics of the substances, their storage and atmospheric conditions are entered into the software.The results provide information that allows the implementation of prevention, detection, control, and combat elements for emergency response, thus having the necessary tools to avoid the occurrence of accidents and, if they do occur, to significantly reduce the magnitude of the damage.This study highlights the importance of risk studies applying tools that best suited to each case study. It also proves the importance of knowing the risk exposure of industrial activities for a better prevention, planning and emergency response.Keywords: chemical accidents, emergency response, flammable substances, risk analysis, modeling
Procedia PDF Downloads 932032 Characterization of Biocomposites Based on Mussel Shell Wastes
Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk
Abstract:
Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties
Procedia PDF Downloads 3142031 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors
Authors: Ye Ling, Ruan Haihui
Abstract:
Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8
Procedia PDF Downloads 52