Search results for: shock tunnel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 730

Search results for: shock tunnel

40 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
39 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification

Procedia PDF Downloads 130
38 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar

Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh

Abstract:

Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.

Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring

Procedia PDF Downloads 178
37 Gender Quotas in Italy: Effects on Corporate Performance

Authors: G. Bruno, A. Ciavarella, N. Linciano

Abstract:

The proportion of women in boardroom has traditionally been low around the world. Over the last decades, several jurisdictions opted for active intervention, which triggered a tangible progress in female representation. In Europe, many countries have implemented boardroom diversity policies in the form of legal quotas (Norway, Italy, France, Germany) or governance code amendments (United Kingdom, Finland). Policy actions rest, among other things, on the assumption that gender balanced boards result in improved corporate governance and performance. The investigation of the relationship between female boardroom representation and firm value is therefore key on policy grounds. The evidence gathered so far, however, has not produced conclusive results also because empirical studies on the impact of voluntary female board representation had to tackle with endogeneity, due to either differences in unobservable characteristics across firms that may affect their gender policies and governance choices, or potential reverse causality. In this paper, we study the relationship between the presence of female directors and corporate performance in Italy, where the Law 120/2011 envisaging mandatory quotas has introduced an exogenous shock in board composition which may enable to overcome reverse causality. Our sample comprises Italian firms listed on the Italian Stock Exchange and the members of their board of directors over the period 2008-2016. The study relies on two different databases, both drawn from CONSOB, referring respectively to directors and companies’ characteristics. On methodological grounds, information on directors is treated at the individual level, by matching each company with its directors every year. This allows identifying all time-invariant, possibly correlated, elements of latent heterogeneity that vary across firms and board members, such as the firm immaterial assets and the directors’ skills and commitment. Moreover, we estimate dynamic panel data specifications, so accommodating non-instantaneous adjustments of firm performance and gender diversity to institutional and economic changes. In all cases, robust inference is carried out taking into account the bidimensional clustering of observations over companies and over directors. The study shows the existence of a U-shaped impact of the percentage of women in the boardroom on profitability, as measured by Return On Equity (ROE) and Return On Assets. Female representation yields a positive impact when it exceeds a certain threshold, ranging between about 18% and 21% of the board members, depending on the specification. Given the average board size, i.e., around ten members over the time period considered, this would imply that a significant effect of gender diversity on corporate performance starts to emerge when at least two women hold a seat. This evidence supports the idea underpinning the critical mass theory, i.e., the hypothesis that women may influence.

Keywords: gender diversity, quotas, firms performance, corporate governance

Procedia PDF Downloads 170
36 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 121
35 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 245
34 Telogen Effluvium: A Modern Hair Loss Concern and the Interventional Strategies

Authors: Chettyparambil Lalchand Thejalakshmi, Sonal Sabu Edattukaran

Abstract:

Hair loss is one of the main issues that contemporary society is dealing with. It can be attributable to a wide range of factors, listing from one's genetic composition and the anxiety we experience on a daily basis. Telogen effluvium [TE] is a condition that causes temporary hair loss after a stressor that might shock the body and cause the hair follicles to temporarily rest, leading to hair loss. Most frequently, women are the ones who bring up these difficulties. Extreme illness or trauma, an emotional or important life event, rapid weight loss and crash dieting, a severe scalp skin problem, a new medication, or ceasing hormone therapy are examples of potential causes. Men frequently do not notice hair thinning with time, but women with long hair may be easily identified when shedding, which can occasionally result in bias because women tend to be more concerned with aesthetics and beauty standards of the society, and approach frequently with the concerns .The woman, who formerly possessed a full head of hair, is worried about the hair loss from her scalp . There are several cases of hair loss reported every day, and Telogen effluvium is said to be the most prevalent one of them all without any hereditary risk factors. While the patient has loss in hair volume, baldness is not the result of this problem . The exponentially growing Dermatology and Aesthetic medical division has discovered that this problem is the most common and also the easiest to cure since it is feasible for these people to regrow their hair, unlike those who have scarring alopecia, in which the follicle itself is damaged and non-viable. Telogen effluvium comes in two different forms: acute and chronic. Acute TE occurs in all the age groups with a hair loss of less than three months, while chronic TE is more common in those between the ages of 30 and 60 with a hair loss of more than six months . Both kinds are prevalent throughout all age groups, regardless of the predominance. It takes between three and six months for the lost hair to come back, although this condition is readily reversed by eliminating stresses. After shedding their hair, patients frequently describe having noticeable fringes on their forehead. The current medical treatments for this condition include topical corticosteroids, systemic corticosteroids, minoxidil and finasteride, CNDPA (caffeine, niacinamide, panthenol, dimethicone, and an acrylate polymer) .Individual terminal hair growth was increased by 10% as a result of the innovative intervention CNDPA. Botulinum Toxin A, Scalp Micro Needling, Platelet Rich Plasma Therapy [PRP], and sessions with Multivitamin Mesotherapy Injections are some recently enhanced techniques with partially or completely reversible hair loss. Also, it has been shown that supplements like Nutrafol and Biotin are producing effective outcomes. There is virtually little evidence to support the claim that applying sulfur-rich ingredients to the scalp, such as onion juice, can help TE patients' hair regenerate.

Keywords: dermatology, telogen effluvium, hair loss, modern hair loass treatments

Procedia PDF Downloads 89
33 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter

Authors: Jiri Cecrdle

Abstract:

This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.

Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator

Procedia PDF Downloads 95
32 Functionalization of Sanitary Pads with Probiotic Paste

Authors: O. Sauperl, L. Fras Zemljic

Abstract:

The textile industry is gaining increasing importance in the field of medical materials. Therefore, presented research is focused on textile materials for external (out-of-body) use. Such materials could be various hygienic textile products (diapers, tampons, sanitary napkins, incontinence products, etc.), protective textiles and various hospital linens (surgical covers, masks, gowns, cloths, bed linens, etc.) wound pillows, bandages, orthopedic socks, etc. Function of tampons and sanitary napkins is not only to provide protection during the menstrual cycle, but their function can be also to take care of physiological or pathological vaginal discharge. In general, women's intimate areas are against infection protected by a low pH value of the vaginal flora. High pH inhibits the development of harmful microorganisms, as it is difficult to be reproduced in an acidic environment. The normal vaginal flora in healthy women is highly colonized by lactobacilli. The lactic acid produced by these organisms maintains the constant acidity of the vagina. If the balance of natural protection breaks, infections can occur. In the market, there exist probiotic tampons as a medical product supplying the vagina with beneficial probiotic lactobacilli. But, many users have concerns about the use of tampons due to the possible dry-out of the vagina as well as the possible toxic shock syndrome, which is the reason that they use mainly sanitary napkins during the menstrual cycle. Functionalization of sanitary napkins with probiotics is, therefore, interesting in regard to maintain a healthy vaginal flora and to offer to users added value of the sanitary napkins in the sense of health- and environmentally-friendly products. For this reason, the presented research is oriented in functionalization of the sanitary napkins with the probiotic paste in order to activate the lactic acid bacteria presented in the core of the functionalized sanitary napkin at the time of the contact with the menstrual fluid. In this way, lactobacilli could penetrate into vagina and by maintaining healthy vaginal flora to reduce the risk of vaginal disorders. In regard to the targeted research problem, the influence of probiotic paste applied onto cotton hygienic napkins on selected properties was studied. The aim of the research was to determine whether the sanitary napkins with the applied probiotic paste may assure suitable vaginal pH to maintain a healthy vaginal flora during the use of this product. Together with this, sorption properties of probiotic functionalized sanitary napkins were evaluated and compared to the untreated one. The research itself was carried out on the basis of tracking and controlling the input parameters, currently defined by Slovenian producer (Tosama d.o.o.) as the most important. Successful functionalization of sanitary pads with the probiotic paste was confirmed by ATR-FTIR spectroscopy. Results of the methods used within the presented research show that the absorption of the pads treated with probiotic paste deteriorates compared to non-treated ones. The coating shows a 6-month stability. Functionalization of sanitary pads with probiotic paste is believed to have a commercial potential for lowering the probability of infection during the menstrual cycle.

Keywords: functionalization, probiotic paste, sanitary pads, textile materials

Procedia PDF Downloads 190
31 A Second Chance to Live and Move: Lumbosacral Spinal Cord Ischemia-Infarction after Cardiac Arrest and the Artery of Adamkiewicz

Authors: Anna Demian, Levi Howard, L. Ng, Leslie Simon, Mark Dragon, A. Desai, Timothy Devlantes, W. David Freeman

Abstract:

Introduction: Out-of-hospital cardiac arrest (OHCA) can carry a high mortality. For survivors, the most common complication is hypoxic-ischemic brain injury (HIBI). Rarely, lumbosacral spinal cord and/or other spinal cord artery ischemia can occur due to anatomic variation and variable mean arterial pressure after the return of spontaneous circulation. We present a case of an OHCA survivor who later woke up with bilateral leg weakness with preserved sensation (ASIA grade B, L2 level). Methods: We describe a clinical, radiographic, and laboratory presentation, as well as a National Library of Medicine (NLM) search engine methodology, characterizing incidence/prevalence of this entity is discussed. A 70-year-old male, a longtime smoker, and alcohol user, suddenly collapsed at a bar surrounded by friends. He had complained of chest pain before collapsing. 911 was called. EMS arrived, and the patient was in pulseless electrical activity (PEA), cardiopulmonary resuscitation (CPR) was initiated, and the patient was intubated, and a LUCAS device was applied for continuous, high-quality CPR in the field by EMS. In the ED, central lines were placed, and thrombolysis was administered for a suspected Pulmonary Embolism (PE). It was a prolonged code that lasted 90 minutes. The code continued with the eventual return of spontaneous circulation. The patient was placed on an epinephrine and norepinephrine drip to maintain blood pressure. ECHO was performed and showed a “D-shaped” ventricle worrisome for PE as well as an ejection fraction around 30%. A CT with PE protocol was performed and confirmed bilateral PE. Results: The patient woke up 24 hours later, following commands, and was extubated. He was found paraplegic below L2 with preserved sensation, with hypotonia and areflexia consistent with “spinal shock” or anterior spinal cord syndrome. MRI thoracic and lumbar spine showed a conus medullaris level spinal cord infarction. The patient was given IV steroids upon initial discovery of cord infarct. NLM search using “cardiac arrest” and “spinal cord infarction” revealed 57 results, with only 8 review articles. Risk factors include age, atherosclerotic disease, and intraaortic balloon pump placement. AoA (Artery of Adamkiewicz) anatomic variation along with existing atherosclerotic factors and low perfusion were also known risk factors. Conclusion: Acute paraplegia from anterior spinal cord infarction of the AoA territory after cardiac arrest is rare. Larger prospective, multicenter trials are needed to examine potential interventions of hypothermia, lumbar drains, which are sometimes used in aortic surgery to reduce ischemia and/or other neuroprotectants.

Keywords: cardiac arrest, spinal cord infarction, artery of Adamkiewicz, paraplegia

Procedia PDF Downloads 189
30 Shocks and Flows - Employing a Difference-In-Difference Setup to Assess How Conflicts and Other Grievances Affect the Gender and Age Composition of Refugee Flows towards Europe

Authors: Christian Bruss, Simona Gamba, Davide Azzolini, Federico Podestà

Abstract:

In this paper, the authors assess the impact of different political and environmental shocks on the size and on the age and gender composition of asylum-related migration flows to Europe. With this paper, the authors contribute to the literature by looking at the impact of different political and environmental shocks on the gender and age composition of migration flows in addition to the size of these flows. Conflicting theories predict different outcomes concerning the relationship between political and environmental shocks and the migration flows composition. Analyzing the relationship between the causes of migration and the composition of migration flows could yield more insights into the mechanisms behind migration decisions. In addition, this research may contribute to better informing national authorities in charge of receiving these migrant, as women and children/the elderly require different assistance than young men. To be prepared to offer the correct services, the relevant institutions have to be aware of changes in composition based on the shock in question. The authors analyze the effect of different types of shocks on the number, the gender and age composition of first time asylum seekers originating from 154 sending countries. Among the political shocks, the authors consider: violence between combatants, violence against civilians, infringement of political rights and civil liberties, and state terror. Concerning environmental shocks, natural disasters (such as droughts, floods, epidemics, etc.) have been included. The data on asylum seekers applying to any of the 32 Schengen Area countries between 2008 and 2015 is on a monthly basis. Data on asylum applications come from Eurostat, data on shocks are retrieved from various sources: georeferenced conflict data come from the Uppsala Conflict Data Program (UCDP), data on natural disasters from the Centre for Research on the Epidemiology of Disasters (CRED), data on civil liberties and political rights from Freedom House, data on state terror from the Political Terror Scale (PTS), GDP and population data from the World Bank, and georeferenced population data from the Socioeconomic Data and Applications Center (SEDAC). The authors adopt a Difference-in-Differences identification strategy, exploiting the different timing of several kinds of shocks across countries. The highly skewed distribution of the dependent variable is taken into account by using count data models. In particular, a Zero Inflated Negative Binomial model is adopted. Preliminary results show that different shocks - such as armed conflict and epidemics - exert weak immediate effects on asylum-related migration flows and almost non-existent effects on the gender and age composition. However, this result is certainly affected by the fact that no time lags have been introduced so far. Finding the correct time lags depends on a great many variables not limited to distance alone. Therefore, finding the appropriate time lags is still a work in progress. Considering the ongoing refugee crisis, this topic is more important than ever. The authors hope that this research contributes to a less emotionally led debate.

Keywords: age, asylum, Europe, forced migration, gender

Procedia PDF Downloads 260
29 Impact of Stress and Protein Malnutrition on the Potential Role of Epigallocatechin-3-Gallate in Providing Protection from Nephrotoxicity and Hepatotoxicity Induced by Aluminum in Rats

Authors: Azza A. Ali, Mona G. Khalil, Hemat A. Elariny, Shereen S. El Shaer

Abstract:

Background: Aluminium (Al) is very abundant metal in the earth’s crust. It is a constituent of cooking utensils, medicines, cosmetics, some foods and food additives. Salts of Al are widely used in the treatment of drinking water for purification purposes. Excessive and prolonged exposure to Al causes oxidative stress and impairment of many physiological functions. Its accumulation in liver and kidney causes hepatotoxicity and nephrotoxicity. Social isolation (SI) or Protein malnutrition (PM) also increases oxidative stress and may enhance the toxicity of Al as well as the degeneration in liver and kidney. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has strong antioxidant as well as anti-inflammatory activities and can protect against oxidative stress-induced degenerations. Objective: To study the influence of stress or PM on Al-induced nephrotoxicity and hepatotoxicity in rats, as well as on the potential role of EGCG in providing protection. Methods: Rats received daily AlCl3 (70 mg/kg, IP) for three weeks (Al-toxicity groups) except one normal control group received saline. Al-toxicity groups were divided into four treated and four untreated groups; treated rats received EGCG (10 mg/kg, IP) together with AlCl3. One group of both treated and untreated rats served as control for each of them, and the others were subjected to either stress (mild using isolation or high using electric shock) or to PM (10% casein diet). Specimens of liver and kidney were used for assessment of levels of inflammatory mediators as TNF-α, IL6β, nuclear factor kappa B (NF-κB), oxidative stress (MDA, SOD, TAC, NO), Caspase-3 and for DNA fragmentation as well as for histopathological examinations. Biochemical changes were also measured in the serum as total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea as well as the level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate deshydrogenase (LDH). Results: Nephrotoxicity and hepatotoxicity induced by Al were enhanced in rats exposed to stress and to PM. The influence of stress was more pronounced than PM. Al-toxicity was indicated by the increase in liver and kidney MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3, DNA fragmentation and in ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea levels, together with the decrease in total proteins, SOD, TAC. EGCG provided protection against hazards of Al as indicated by the decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation as well as in levels of ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea in liver and kidney, together with the increase in total proteins, SOD, TAC and confirmed by histopathological examinations. It provided more pronounced protection in high stressful conditions than in mild one than in PM. Conclusion: Stress have a bad impact on Al-induced nephrotoxicity and hepatotoxicity more than PM. Thus it can clarify and maximize the role of EGCG in providing protection. Consequently, administration of EGCG is advised with excessive Al-exposure to avoid nephrotoxicity and hepatotoxicity especially in populations more subjected to stress or PM.

Keywords: aluminum, stress, protein malnutrition, nephrotoxicity, hepatotoxicity, epigallocatechin-3-gallate, rats

Procedia PDF Downloads 306
28 Exposing The Invisible

Authors: Kimberley Adamek

Abstract:

According to the Council on Tall Buildings, there has been a rapid increase in the construction of tall or “megatall” buildings over the past two decades. Simultaneously, the New England Journal of Medicine has reported that there has been a steady increase in climate related natural disasters since the 1970s; the eastern expansion of the USA's infamous Tornado Alley being just one of many current issues. In the future, this could mean that tall buildings, which already guide high speed winds down to pedestrian levels would have to withstand stronger forces and protect pedestrians in more extreme ways. Although many projects are required to be verified within wind tunnels and a handful of cities such as San Francisco have included wind testing within building code standards, there are still many examples where wind is only considered for basic loading. This typically results in and an increase of structural expense and unwanted mitigation strategies that are proposed late within a project. When building cities, architects rarely consider how each building alters the invisible patterns of wind and how these alterations effect other areas in different ways later on. It is not until these forces move, overpower and even destroy cities that people take notice. For example, towers have caused winds to blow objects into people (Walkie-Talkie Tower, Leeds, England), cause building parts to vibrate and produce loud humming noises (Beetham Tower, Manchester), caused wind tunnels in streets as well as many other issues. Alternatively, there exist towers which have used their form to naturally draw in air and ventilate entire facilities in order to eliminate the needs for costly HVAC systems (The Met, Thailand) and used their form to increase wind speeds to generate electricity (Bahrain Tower, Dubai). Wind and weather exist and effect all parts of the world in ways such as: Science, health, war, infrastructure, catastrophes, tourism, shopping, media and materials. Working in partnership with a leading wind engineering company RWDI, a series of tests, images and animations documenting discovered interactions of different building forms with wind will be collected to emphasize the possibilities for wind use to architects. A site within San Francisco (due to its increasing tower development, consistently wind conditions and existing strict wind comfort criteria) will host a final design. Iterations of this design will be tested within the wind tunnel and computational fluid dynamic systems which will expose, utilize and manipulate wind flows to create new forms, technologies and experiences. Ultimately, this thesis aims to question the amount which the environment is allowed to permeate building enclosures, uncover new programmatic possibilities for wind in buildings, and push the boundaries of working with the wind to ensure the development and safety of future cities. This investigation will improve and expand upon the traditional understanding of wind in order to give architects, wind engineers as well as the general public the ability to broaden their scope in order to productively utilize this living phenomenon that everyone constantly feels but cannot see.

Keywords: wind engineering, climate, visualization, architectural aerodynamics

Procedia PDF Downloads 358
27 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 351
26 Raman Spectroscopy of Fossil-like Feature in Sooke #1 from Vancouver Island

Authors: J. A. Sawicki, C. Ebrahimi

Abstract:

The first geochemical, petrological, X-ray diffraction, Raman, Mössbauer, and oxygen isotopic analyses of very intriguing 13-kg Sooke #1 stone covered in 70% of its surface with black fusion crust, found in and recovered from Sooke Basin, near Juan de Fuca Strait, in British Columbia, were reported as poster #2775 at LPSC52 in March. Our further analyses reported in poster #6305 at 84AMMS in August and comparisons with the Mössbauer spectra of Martian meteorite MIL03346 and Martian rocks in Gusev Crater reported by Morris et al. suggest that Sooke #1 find could be a stony achondrite of Martian polymict breccia type ejected from early watery Mars. Here, the Raman spectra of a carbon-rich ~1-mm² fossil-like white area identified in this rock on a surface of polished cut have been examined in more detail. The low-intensity 532 nm and 633 nm beams of the InviaRenishaw microscope were used to avoid any destructive effects. The beam was focused through the microscope objective to a 2 m spot on a sample, and backscattered light collected through this objective was recorded with CCD detector. Raman spectra of dark areas outside fossil have shown bands of clinopyroxene at 320, 660, and 1020 cm-1 and small peaks of forsteritic olivine at 820-840 cm-1, in agreement with results of X-ray diffraction and Mössbauer analyses. Raman spectra of the white area showed the broad band D at ~1310 cm-1 consisting of main mode A1g at 1305 cm⁻¹, E2g mode at 1245 cm⁻¹, and E1g mode at 1355 cm⁻¹ due to stretching diamond-like sp3 bonds in diamond polytype lonsdaleite, as in Ovsyuk et al. study. The band near 1600 cm-1 mostly consists of D2 band at 1620 cm-1 and not of the narrower G band at 1583 cm⁻¹ due to E2g stretching in planar sp2 bonds that are fundamental building blocks of carbon allotropes graphite and graphene. In addition, the broad second-order Raman bands were observed with 532 nm beam at 2150, ~2340, ~2500, 2650, 2800, 2970, 3140, and ~3300 cm⁻¹ shifts. Second-order bands in diamond and other carbon structures are ascribed to the combinations of bands observed in the first-order region: here 2650 cm⁻¹ as 2D, 2970 cm⁻¹ as D+G, and 3140 cm⁻¹ as 2G ones. Nanodiamonds are abundant in the Universe, found in meteorites, interplanetary dust particles, comets, and carbon-rich stars. The diamonds in meteorites are presently intensely investigated using Raman spectroscopy. Such particles can be formed by CVD process and during major impact shocks at ~1000-2300 K and ~30-40 GPa. It cannot be excluded that the fossil discovered in Sooke #1 could be a remnant of an alien carbon organism that transformed under shock impact to nanodiamonds. We trust that for the benefit of research in astro-bio-geology of meteorites, asteroids, Martian rocks, and soil, this find deserves further, more thorough investigations. If possible, the Raman SHERLOCK spectrometer operating on the Perseverance Rover should also search for such objects in the Martian rocks.

Keywords: achondrite, nanodiamonds, lonsdaleite, raman spectra

Procedia PDF Downloads 150
25 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria

Authors: Tomola Obamuyi

Abstract:

The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,

Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression

Procedia PDF Downloads 118
24 The Role of Uterine Artery Embolization in the Management of Postpartum Hemorrhage

Authors: Chee Wai Ku, Pui See Chin

Abstract:

As an emerging alternative to hysterectomy, uterine artery embolization (UAE) has been widely used in the management of fibroids and in controlling postpartum hemorrhage (PPH) unresponsive to other therapies. Research has shown UAE to be a safe, minimally invasive procedure with few complications and minimal effects on future fertility. We present two cases highlighting the use of UAE in preventing PPH in a patient with a large fibroid at the time of cesarean section and in the treatment of secondary PPH refractory to other therapies in another patient. We present a 36-year primiparous woman who booked at 18+6 weeks gestation with a 13.7 cm subserosal fibroid at the lower anterior wall of the uterus near the cervix and a 10.8 cm subserosal fibroid in the left wall. Prophylactic internal iliac artery occlusion balloons were placed prior to the planned classical midline cesarean section. The balloons were inflated once the baby was delivered. Bilateral uterine arteries were embolized subsequently. The estimated blood loss (EBL) was 400 mls and hemoglobin (Hb) remained stable at 10 g/DL. Ultrasound scan 2 years postnatally showed stable uterine fibroids 10.4 and 7.1 cm, which was significantly smaller than before. We present the second case of a 40-year-old G2P1 with a previous cesarean section for failure to progress. There were no antenatal problems, and the placenta was not previa. She presented with term labour and underwent an emergency cesarean section for failed vaginal birth after cesarean. Intraoperatively extensive adhesions were noted with bladder drawn high, and EBL was 300 mls. Postpartum recovery was uneventful. She presented with secondary PPH 3 weeks later complicated by hypovolemic shock. She underwent an emergency examination under anesthesia and evacuation of the uterus, with EBL 2500mls. Histology showed decidua with chronic inflammation. She was discharged well with no further PPH. She subsequently returned one week later for secondary PPH. Bedside ultrasound showed that the endometrium was thin with no evidence of retained products of conception. Uterotonics were administered, and examination under anesthesia was performed, with uterine Bakri balloon and vaginal pack insertion after. EBL was 1000 mls. There was no definite cause of PPH with no uterine atony or products of conception. To evaluate a potential cause, pelvic angiogram and super selective left uterine arteriogram was performed which showed profuse contrast extravasation and acute bleeding from the left uterine artery. Superselective embolization of the left uterine artery was performed. No gross contrast extravasation from the right uterine artery was seen. These two cases demonstrated the superior efficacy of UAE. Firstly, the prophylactic use of intra-arterial balloon catheters in pregnant patients with large fibroids, and secondly, in the diagnosis and management of secondary PPH refractory to uterotonics and uterine tamponade. In both cases, the need for laparotomy hysterectomy was avoided, resulting in the preservation of future fertility. UAE should be a consideration for hemodynamically stable patients in centres with access to interventional radiology.

Keywords: fertility preservation, secondary postpartum hemorrhage, uterine embolization, uterine fibroids

Procedia PDF Downloads 186
23 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection

Authors: S. Delgado, C. Cerrada, R. S. Gómez

Abstract:

This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.

Keywords: voxelization, GPU acceleration, computer graphics, compute shaders

Procedia PDF Downloads 71
22 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time

Authors: Deepak Loura

Abstract:

The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.

Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture

Procedia PDF Downloads 75
21 The Preliminary Exposition of Soil Biological Activity, Microbial Diversity and Morpho-Physiological Indexes of Cucumber under Interactive Effect of Allelopathic Garlic Stalk: A Short-Term Dynamic Response in Replanted Alkaline Soil

Authors: Ahmad Ali, Muhammad Imran Ghani, Haiyan Ding, Zhihui Cheng, Muhammad Iqbal

Abstract:

Background and Aims: In recent years, protected cultivation trend, especially in the northern parts of China, spread dynamically where production area, structure, and crops diversity have expanded gradually under plastic greenhouse vegetable cropping (PGVC) system. Under this growing system, continuous monoculture with excessive synthetic fertilizers inputs are common cultivation practices frequently adopted by commercial producers. Such long-term cumulative wild exercise year after year sponsor the continuous cropping obstacles in PGVC soil, which have greatly threatened the regional soil eco-sustainability and further impose the continuous assault on soil ecological diversity leading to the exhaustion of agriculture productivity. The aim of this study was to develop new allelopathic insights by exploiting available biological resources in the favor of sustainable PGVC to illuminate the continuous obstacle factors in plastic greenhouse. Method: A greenhouse study was executed under plastic tunnel located at the Horticulture Experimental Station of the College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, one of the prominent regions for intensive commercial PGVC in China. Post-harvest garlic residues (stalk, leaves) mechanically smashed, homogenized into powder size and incorporated at the ratio of 1:100; 3:100; 5:100 as a soil amendment in a replanted soil that have been used for continuous cucumber monoculture for 7 years (annually double cropping system in a greenhouse). Results: Incorporated C-rich garlic stalk significantly influenced the soil condition through various ways; organic matter decomposition and mineralization, moderately adjusted the soil pH, enhanced the soil nutrient availability, increased enzymatic activities, and promoted 20% more cucumber yield in short-time. Using Illumina MiSeq sequencing analysis of bacterial 16S rRNA and fungal 18S rDNA genes, the current study revealed that addition of garlic stalk/residue could also improve the microbial abundance and community composition in extensively exploited soil, and contributed in soil functionality, caused prosper changes in soil characteristics, reinforced to good crop yield. Conclusion: Our study provided evidence that addition of garlic stalk as soil fertility amendment is a feasible, cost-effective and efficient resource utilization way for renovation of degraded soil health, ameliorate soil quality components and improve ecological environment in short duration. Our study may provide a better scientific understanding for efficient crop residue management typically from allelopathic source.

Keywords: garlic stalk, microbial community dynamics, plant growth, soil amendment, soil-plant system

Procedia PDF Downloads 134
20 Concepts of Modern Design: A Study of Art and Architecture Synergies in Early 20ᵗʰ Century Europe

Authors: Stanley Russell

Abstract:

Until the end of the 19th century, European painting dealt almost exclusively with the realistic representation of objects and landscapes, as can be seen in the work of realist artists like Gustav Courbet. Architects of the day typically made reference to and recreated historical precedents in their designs. The curriculum of the first architecture school in Europe, The Ecole des Beaux Artes, based on the study of classical buildings, had a profound effect on the profession. Painting exhibited an increasing level of abstraction from the late 19th century, with impressionism, and the trend continued into the early 20th century when Cubism had an explosive effect sending shock waves through the art world that also extended into the realm of architectural design. Architect /painter Le Corbusier with “Purism” was one of the first to integrate abstract painting and building design theory in works that were equally shocking to the architecture world. The interrelationship of the arts, including architecture, was institutionalized in the Bauhaus curriculum that sought to find commonality between diverse art disciplines. Renowned painter and Bauhaus instructor Vassily Kandinsky was one of the first artists to make a semi-scientific analysis of the elements in “non-objective” painting while also drawing parallels between painting and architecture in his book Point and Line to plane. Russian constructivists made abstract compositions with simple geometric forms, and like the De Stijl group of the Netherlands, they also experimented with full-scale constructions and spatial explorations. Based on the study of historical accounts and original artworks, of Impressionism, Cubism, the Bauhaus, De Stijl, and Russian Constructivism, this paper begins with a thorough explanation of the art theory and several key works from these important art movements of the late 19th and early 20th century. Similarly, based on written histories and first-hand experience of built and drawn works, the author continues with an analysis of the theories and architectural works generated by the same groups, all of which actively pursued continuity between their art and architectural concepts. With images of specific works, the author shows how the trend toward abstraction and geometric purity in painting coincided with a similar trend in architecture that favored simple unornamented geometries. Using examples like the Villa Savoye, The Schroeder House, the Dessau Bauhaus, and unbuilt designs by Russian architect Chernikov, the author gives detailed examples of how the intersection of trends in Art and Architecture led to a unique and fruitful period of creative synergy when the same concepts that were used by artists to generate paintings were also used by architects in the making of objects, space, and buildings. In Conclusion, this article examines the extremely pivotal period in art and architecture history from the late 19th to early 20th century when the confluence of art and architectural theory led to many painted, drawn, and built works that continue to inspire architects and artists to this day.

Keywords: modern art, architecture, design methodologies, modern architecture

Procedia PDF Downloads 126
19 Evaluation of Toxicity of Cerium Oxide on Zebrafish Developmental Stages

Authors: Roberta Pecoraro, Elena Maria Scalisi

Abstract:

Engineered Nanoparticles (ENPs) and Nanomaterials (ENMs) concern an active research area and a sector in full expansion. They have physical-chemical characteristics and small size that improve their performance compared to common materials. Due to the increase in their production and their subsequent release into the environment, new strategies are emerging to assess risk of nanomaterials. NPs can be released into the environment through aquatic systems by human activities and exert toxicity on living organisms. We evaluated the potential toxic effect of cerium oxide (CeO2) nanoparticles because it’s used in different fields due to its peculiar properties. In order to assess nanoparticles toxicity, Fish Embryo Toxicity (FET) test was performed. Powders of CeO2 NPs supplied by the CNR-IMM of Catania are indicated as CeO2 type 1 (as-prepared) and CeO2 type 2 (modified), while CeO2 type 3 (commercial) is supplied by Sigma-Aldrich. Starting from a stock solution (0.001g/10 ml dilution water) of each type of CeO2 NPs, the other concentration solutions were obtained adding 1 ml of the stock solution to 9 ml of dilution water, leading to three different solutions of concentration (10-4, 10-5, 10-6 g/ml). All the solutions have been sonicated to avoid natural tendency of NPs to aggregate and sediment. FET test was performed according to the OECD guidelines for testing chemicals using our internal protocol procedure. A number of eight selected fertilized eggs were placed in each becher filled with 5 ml of each concentration of the three types of CeO2 NPs; control samples were incubated only with dilution water. Replication was performed for each concentration. During the exposure period, we observed four endpoints (embryo coagulation, lack of formation of somites, failure to lift the yolk bag, no heartbeat) by a stereomicroscope every 24 hours. Immunohistochemical analysis on treated larvae was performed to evaluate the expression of metallothioneins (MTs), Heat Shock Proteins 70 (HSP70) and 7-ethoxyresorufin-O-diethylase (EROD). Our results have not shown evident alterations on embryonic development because all embryos completed the development and the hatching of the eggs, started around the 48th hour after exposure, took place within the last observation at 72 hours. A good reactivity, both in the embryos and in the newly hatched larvae, was found. The presence of heartbeat has also been observed in embryos with reduced mobility confirming their viability. A higher expression of EROD biomarker was observed in the larvae exposed to the three types of CeO2, showing a clear difference with the control. A weak positivity was found for MTs biomarker in treated larvae as well as in the control. HSP70 are expressed homogeneously in all the type of nanoparticles tested but not too much greater than control. Our results are in agreement with other studies in the literature, in which the exposure of Danio rerio larvae to other metal oxide nanoparticles does not show adverse effects on survival and hatching time. Further studies are necessary to clarify the role of these NPs and also to solve conflicting opinions.

Keywords: Danio rerio, endpoints, fish embryo toxicity test, metallic nanoparticles

Procedia PDF Downloads 132
18 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction

Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman

Abstract:

Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.

Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation

Procedia PDF Downloads 92
17 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
16 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 374
15 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete

Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo

Abstract:

Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.

Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways

Procedia PDF Downloads 240
14 Transcriptomic Analysis of Acanthamoeba castellanii Virulence Alteration by Epigenetic DNA Methylation

Authors: Yi-Hao Wong, Li-Li Chan, Chee-Onn Leong, Stephen Ambu, Joon-Wah Mak, Priyasashi Sahu

Abstract:

Background: Acanthamoeba is a genus of amoebae which lives as a free-living in nature or as a human pathogen that causes severe brain and eye infections. Virulence potential of Acanthamoeba is not constant and can change with growth conditions. DNA methylation, an epigenetic process which adds methyl groups to DNA, is used by eukaryotic cells, including several human parasites to control their gene expression. We used qPCR, siRNA gene silencing, and RNA sequencing (RNA-Seq) to study DNA-methyltransferase gene family (DNMT) in order to indicate the possibility of its involvement in programming Acanthamoeba virulence potential. Methods: A virulence-attenuated Acanthamoeba isolate (designation: ATCC; original isolate: ATCC 50492) was subjected to mouse passages to restore its pathogenicity; a virulence-reactivated isolate (designation: AC/5) was generated. Several established factors associated with Acanthamoeba virulence phenotype were examined to confirm the succession of reactivation process. Differential gene expression of DNMT between ATCC and AC/5 isolates was performed by qPCR. Silencing on DNMT gene expression in AC/5 isolate was achieved by siRNA duplex. Total RNAs extracted from ATCC, AC/5, and siRNA-treated (designation: si-146) were subjected to RNA-Seq for comparative transcriptomic analysis in order to identify the genome-wide effect of DNMT in regulating Acanthamoeba gene expression. qPCR was performed to validate the RNA-Seq results. Results: Physiological and cytophatic assays demonstrated an increased in virulence potential of AC/5 isolate after mouse passages. DNMT gene expression was significantly higher in AC/5 compared to ATCC isolate (p ≤ 0.01) by qPCR. si-146 duplex reduced DNMT gene expression in AC/5 isolate by 30%. Comparative transcriptome analysis identified the differentially expressed genes, with 3768 genes in AC/5 vs ATCC isolate; 2102 genes in si-146 vs AC/5 isolate and 3422 genes in si-146 vs ATCC isolate, respectively (fold-change of ≥ 2 or ≤ 0.5, p-value adjusted (padj) < 0.05). Of these, 840 and 1262 genes were upregulated and downregulated, respectively, in si-146 vs AC/5 isolate. Eukaryotic orthologous group (KOG) assignments revealed a higher percentage of downregulated gene expression in si-146 compared to AC/5 isolate, were related to posttranslational modification, signal transduction and energy production. Gene Ontology (GO) terms for those downregulated genes shown were associated with transport activity, oxidation-reduction process, and metabolic process. Among these downregulated genes were putative genes encoded for heat shock proteins, transporters, ubiquitin-related proteins, proteins for vesicular trafficking (small GTPases), and oxidoreductases. Functional analysis of similar predicted proteins had been described in other parasitic protozoa for their survival and pathogenicity. Decreased expression of these genes in si146-treated isolate may account in part for Acanthamoeba reduced pathogenicity. qPCR on 6 selected genes upregulated in AC/5 compared to ATCC isolate corroborated the RNA sequencing findings, indicating a good concordance between these two analyses. Conclusion: To the best of our knowledge, this study represents the first genome-wide analysis of DNA methylation and its effects on gene expression in Acanthamoeba spp. The present data indicate that DNA methylation has substantial effect on global gene expression, allowing further dissection of the genome-wide effects of DNA-methyltransferase gene in regulating Acanthamoeba pathogenicity.

Keywords: Acanthamoeba, DNA methylation, RNA sequencing, virulence

Procedia PDF Downloads 195
13 Enhancing Strategic Counter-Terrorism: Understanding How Familial Leadership Influences the Resilience of Terrorist and Insurgent Organizations in Asia

Authors: Andrew D. Henshaw

Abstract:

The research examines the influence of familial and kinship based leadership on the resilience of politically violent organizations. Organizations of this type frequently fight in the same conflicts though are called 'terrorist' or 'insurgent' depending on political foci of the time, and thus different approaches are used to combat them. The research considers them correlated phenomena with significant overlap and identifies strengths and vulnerabilities in resilience processes. The research employs paired case studies to examine resilience in organizations under significant external pressure, and achieves this by measuring three variables. 1: Organizational robustness in terms of leadership and governance. 2. Bounce-back response efficiency to external pressures and adaptation to endogenous and exogenous shock. 3. Perpetuity of operational and attack capability, and political legitimacy. The research makes three hypotheses. First, familial/kinship leadership groups have a significant effect on organizational resilience in terms of informal operations. Second, non-familial/kinship organizations suffer in terms of heightened security transaction costs and social economics surrounding recruitment, retention, and replacement. Third, resilience in non-familial organizations likely stems from critical external supports like state sponsorship or powerful patrons, rather than organic resilience dynamics. The case studies pair familial organizations with non-familial organizations. Set 1: The Haqqani Network (HQN) - Pair: Lashkar-e-Toiba (LeT). Set 2: Jemaah Islamiyah (JI) - Pair: The Abu Sayyaf Group (ASG). Case studies were selected based on three requirements, being: contrasting governance types, exposure to significant external pressures and, geographical similarity. The case study sets were examined over 24 months following periods of significantly heightened operational activities. This enabled empirical measurement of the variables as substantial external pressures came into force. The rationale for the research is obvious. Nearly all organizations have some nexus of familial interconnectedness. Examining familial leadership networks does not provide further understanding of how terrorism and insurgency originate, however, the central focus of the research does address how they persist. The sparse attention to this in existing literature presents an unexplored yet important area of security studies. Furthermore, social capital in familial systems is largely automatic and organic, given at birth or through kinship. It reduces security vetting cost for recruits, fighters and supporters which lowers liabilities and entry costs, while raising organizational efficiency and exit costs. Better understanding of these process is needed to exploit strengths into weaknesses. Outcomes and implications of the research have critical relevance to future operational policy development. Increased clarity of internal trust dynamics, social capital and power flows are essential to fracturing and manipulating kinship nexus. This is highly valuable to external pressure mechanisms such as counter-terrorism, counterinsurgency, and strategic intelligence methods to penetrate, manipulate, degrade or destroy the resilience of politically violent organizations.

Keywords: Counterinsurgency (COIN), counter-terrorism, familial influence, insurgency, intelligence, kinship, resilience, terrorism

Procedia PDF Downloads 312
12 Observation on the Performance of Heritage Structures in Kathmandu Valley, Nepal during the 2015 Gorkha Earthquake

Authors: K. C. Apil, Keshab Sharma, Bigul Pokharel

Abstract:

Kathmandu Valley, capital city of Nepal houses numerous historical monuments as well as religious structures which are as old as from the 4th century A.D. The city alone is home to seven UNESCO’s world heritage sites including various public squares and religious sanctums which are often regarded as living heritages by various historians and archeological explorers. Recently on April 25, 2015, the capital city including other nearby locations was struck with Gorkha earthquake of moment magnitude (Mw) 7.8, followed by the strongest aftershock of moment magnitude (Mw) 7.3 on May 12. This study reports structural failures and collapse of heritage structures in Kathmandu Valley during the earthquake and presents preliminary findings as to the causes of failures and collapses. Field reconnaissance was carried immediately after the main shock and the aftershock, in major heritage sites: UNESCO world heritage sites, a number of temples and historic buildings in Kathmandu Durbar Square, Patan Durbar Square, and Bhaktapur Durbar Square. Despite such catastrophe, a significant number of heritage structures stood high, performing very well during the earthquake. Preliminary reports from archeological department suggest that 721 of such structures were severely affected, whereas numbers within the valley only were 444 including 76 structures which were completely collapsed. This study presents recorded accelerograms and geology of Kathmandu Valley. Structural typology and architecture of the heritage structures in Kathmandu Valley are briefly described. Case histories of damaged heritage structures, the patterns, and the failure mechanisms are also discussed in this paper. It was observed that performance of heritage structures was influenced by the multiple factors such as structural and architecture typology, configuration, and structural deficiency, local ground site effects and ground motion characteristics, age and maintenance level, material quality etc. Most of such heritage structures are of masonry type using bricks and earth-mortar as a bonding agent. The walls' resistance is mainly compressive, thus capable of withstanding vertical static gravitational load but not horizontal dynamic seismic load. There was no definitive pattern of damage to heritage structures as most of them behaved as a composite structure. Some structures were extensively damaged in some locations, while structures with similar configuration at nearby location had little or no damage. Out of major heritage structures, Dome, Pagoda (2, 3 or 5 tiered temples) and Shikhara structures were studied with similar variables. Studying varying degrees of damages in such structures, it was found that Shikhara structures were most vulnerable one where Dome structures were found to be the most stable one, followed by Pagoda structures. The seismic performance of the masonry-timber and stone masonry structures were slightly better than that of the masonry structures. Regular maintenance and periodic seismic retrofitting seems to have played pivotal role in strengthening seismic performance of the structure. The study also recommends some key functions to strengthen the seismic performance of such structures through study based on structural analysis, building material behavior and retrofitting details. The result also recognises the importance of documentation of traditional knowledge and its revised transformation in modern technology.

Keywords: Gorkha earthquake, field observation, heritage structure, seismic performance, masonry building

Procedia PDF Downloads 151
11 Becoming a Good-Enough White Therapist: Experiences of International Students in Psychology Doctoral Programs

Authors: Mary T. McKinley

Abstract:

As socio-economic globalization impacts education and turns knowledge into a commodity, institutions of higher education are becoming more intentional about infusing a global and intercultural perspective into education via the recruitment of international students. Coming from dissimilar cultures, many of these students are evaluated and held accountable to Euro-American values of independence, self-reliance, and autonomy. Not surprisingly, these students often experience culture shock with deleterious effects on their mental health and academic functioning. Thus, it is critical to understand the experiences of international students with the hope that such knowledge will keep the field of psychology from promulgating Eurocentric ideals and values and prevent the training of these students as good-enough White therapists. Using a critical narrative inquiry framework, this study elicits stories about the challenges encountered by international students as they navigate their clinical training in the presence of acculturative stress and potentially different worldviews. With its emphasis on story-telling as meaning making, narrative research design is hinged on the assumption that people are interpretive beings who make meaning of themselves and their world through the language of stories. Also, dominant socially-constructed narratives play a central role in creating and maintaining hegemonic structures that privilege certain individuals and ideologies at the expense of others. On this premise, narrative inquiry begins with an exploration of the experiences of participants in their lived stories. Bounded narrative segments were read, interpreted, and analyzed using a critical events approach. Throughout the process, issues of reliability and researcher bias were addressed by keeping a reflective analytic memo, as well as triangulating the data using peer-reviewers and check-ins with participants. The findings situate culture at the epicenter of international students’ acculturation challenges as well as their resiliency in psychology doctoral programs. It was not uncommon for these international students to experience ethical dilemmas inherent in learning content that conflicted with their cultural beliefs and values. Issues of cultural incongruence appear to be further exacerbated by visible markers for differences like speech accent and clothing attire. These stories also link the acculturative stress reported by international students to the experiences of perceived racial discrimination and lack of support from the faculty, administration, peers, and the society at large. Beyond the impact on the international students themselves, there are implications for internationalization in psychology with the goal of equipping doctoral programs to be better prepared to meet the needs of their international students. More than ever before, programs need to liaise with international students’ services and work in tandem to meet the unique needs of this population of students. Also, there exists a need for multiculturally competent supervisors working with international students with varying degrees of acculturation. In addition to making social justice and advocacy salient in students’ multicultural training, it may be helpful for psychology doctoral programs to be more intentional about infusing cross-cultural theories, indigenous psychotherapies, and/or when practical, the possibility for geographically cross-cultural practicum experiences in the home countries of international students while taking into consideration the ethical issues for virtual supervision.

Keywords: decolonizing pedagogies, international students, multiculturalism, psychology doctoral programs

Procedia PDF Downloads 116