Search results for: phase center
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6372

Search results for: phase center

5682 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviours of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: buoyancy force, laminar mixed convection, mixture model, nano-fluid, two-phase

Procedia PDF Downloads 468
5681 Mapping the Relationship between Elements of Urban Morphology Density of Crime

Authors: Fabio Salvador Aparecido Santos, Spencer Chainey, Richard Wortley

Abstract:

Urban morphology can be understood as the study of the physical form of cities through its elements. Crime, at this turn, can be oversimplified as an action that breaks the rules established in a certain society. This study involves these two subjects through the relationship between elements of urban morphology and density of crime occurrences. We consider that there is a research gap about the influence of urban features on crime occurrences using statistic methods and mapping techniques on Geographic Information Systems. The investigation will comprehend three main phases. The first phase involves examining how theoretical principles associated with urban morphology can be viewed in terms of their influence on crime patterns. The second phase involves the development of tools to be used to model elements of urban morphology, and measure the relationship between these urban morphological elements and patterns of crime. The third phase involves determining the extent to which elements of the urban environment can contribute to crime reduction. Understanding the relationship between urban morphology and crime patterns in a Latin American context will help highlight the influence urban planning has on the crime problems that emerge in these settings, and how effectively urban planning can contribute to reducing crime.

Keywords: Agent-based Modelling, Environmental Criminology, Geographic Information System, Urban Morphology

Procedia PDF Downloads 132
5680 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop

Procedia PDF Downloads 166
5679 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 258
5678 Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior

Authors: E. H. N. Gashti, M. Zarrini, M. Irannezhad, J. R. Langroudi

Abstract:

Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads.

Keywords: reinforced-concrete buildings, construction mistakes, base-shear, displacements, failure

Procedia PDF Downloads 265
5677 Effect of Al Addition on Microstructure and Properties of NbTiZrCrAl Refractory High Entropy Alloys

Authors: Xiping Guo, Fanglin Ge, Ping Guan

Abstract:

Refractory high entropy alloys are alternative materials expected to be employed at high temperatures. The comprehensive changes of microstructure and properties of NbTiZrCrAl refractory high entropy alloys are systematically studied by adjusting Al content. Five kinds of button alloy ingots with different contents of Al in NbTiZrCrAlX (X=0, 0.2, 0.5, 0.75, 1.0) were prepared by vacuum non-consumable arc melting technology. The microstructure analysis results show that the five alloys are composed of BCC solid solution phase rich in Nb and Ti and Laves phase rich in Cr, Zr, and Al. The addition of Al changes the structure from hypoeutectic to hypereutectic, increases the proportion of Laves phase, and changes the structure from cubic C15 to hexagonal C14. The hardness and fracture toughness of the five alloys were tested at room temperature, and the compressive mechanical properties were tested at 1000℃. The results showed that the addition of Al increased the proportion of Laves phase and decreased the proportion of the BCC phase, thus increasing the hardness and decreasing the fracture toughness at room temperature. However, at 1000℃, the strength of 0.5Al and 0.75Al alloys whose composition is close to the eutectic point is the best, which indicates that the eutectic structure is of great significance for the improvement of high temperature strength of NbTiZrCrAl refractory high entropy alloys. The five alloys were oxidized for 1 h and 20 h in static air at 1000℃. The results show that only the oxide film of 0Al alloy falls off after oxidizing for 1 h at 1000℃. After 20h, the oxide film of all the alloys fell off, but the oxide film of alloys containing Al was more dense and complete. By producing protective oxide Al₂O₃, inhibiting the preferential oxidation of Zr, promoting the preferential oxidation of Ti, and combination of Cr₂O₃ and Nb₂O₅ to form CrNbO₄, Al significantly improves the high temperature oxidation resistance of NbTiZrCrAl refractory high entropy alloys.

Keywords: NbTiZrCrAl, refractory high entropy alloy, al content, microstructural evolution, room temperature mechanical properties, high temperature compressive strength, oxidation resistance

Procedia PDF Downloads 83
5676 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate

Authors: Renu Kumari, Jyotsna Dutta Majumdar

Abstract:

In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.

Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite

Procedia PDF Downloads 317
5675 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 377
5674 Role of Endotherapy vs Surgery in the Management of Traumatic Pancreatic Injury: A Tertiary Center Experience

Authors: Thinakar Mani Balusamy, Ratnakar S. Kini, Bharat Narasimhan, Venkateswaran A. R, Pugazhendi Thangavelu, Mohammed Ali, Prem Kumar K., Kani Sheikh M., Sibi Thooran Karmegam, Radhakrishnan N., Mohammed Noufal

Abstract:

Introduction: Pancreatic injury remains a complicated condition requiring an individualized case by case approach to management. In this study, we aim to analyze the varied presentations and treatment outcomes of traumatic pancreatic injury in a tertiary care center. Methods: All consecutive patients hospitalized at our center with traumatic pancreatic injury between 2013 and 2017 were included. The American Association for Surgery of Trauma (AAST) classification was used to stratify patients into five grades of severity. Outcome parameters were then analyzed based on the treatment modality employed. Results: Of the 35 patients analyzed, 26 had an underlying blunt trauma with the remaining nine presenting due to penetrating injury. Overall in-hospital mortality was 28%. 19 of these patients underwent exploratory laparotomy with the remaining 16 managed nonoperatively. Nine patients had a severe injury ( > grade 3) – of which four underwent endotherapy, three had stents placed and one underwent an endoscopic pseudocyst drainage. Among those managed nonoperatively, three underwent a radiological drainage procedure. Conclusion: Mortality rates were clearly higher in patients managed operatively. This is likely a result of significantly higher degrees of major associated non-pancreatic injuries and not just a reflection of surgical morbidity. Despite this, surgical management remains the mainstay of therapy, especially in higher grades of pancreatic injury. However we would like to emphasize that endoscopic intervention definitely remains the preferred treatment modality when the clinical setting permits. This is especially applicable in cases of main pancreatic duct injury with ascites as well as pseudocysts.

Keywords: endotherapy, non-operative management, surgery, traumatic pancreatic injury

Procedia PDF Downloads 203
5673 Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Authors: Salem El-Tohami Ashoor

Abstract:

Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: Chromium(III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO

Procedia PDF Downloads 502
5672 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador

Procedia PDF Downloads 264
5671 Structural and Luminescent Properties of EU Doped SrY₂O₄ Phosphors

Authors: Ruby Priya, O. P. Pandey

Abstract:

Herein, we report the structural and luminescent properties of undoped and Eu doped SrY₂O₄ phosphors. The phosphors are synthesized via the combustion synthesis route using glycine as a fuel. The structural, morphological, and optical characterizations are done via X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescent (PL) techniques. The pure phase SrY₂O₄ is obtained at 1100℃, below which impure phases such as Y₂O₃ and SrO were dominant. All the phosphors are excited under UV excitation and exhibited intense emission around 611 nm, which is the typical transition of Eu ions. The phase formation of the synthesized phosphors is studied via analyzing XRD patterns. The as-synthesized phosphors find tremendous applications in optoelectronic devices, light-emitting diodes, and sensors.

Keywords: combustion, europium, glycine, luminescence

Procedia PDF Downloads 153
5670 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber

Authors: A. Bouloufa, K. Djessas

Abstract:

In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.

Keywords: buffer layer, In2S3, optical properties, PVD, structural properties

Procedia PDF Downloads 315
5669 Modelling of Phase Transformation Kinetics in Post Heat-Treated Resistance Spot Weld of AISI 1010 Mild Steel

Authors: B. V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani

Abstract:

Automobile manufacturers are constantly seeking means to reduce the weight of car bodies. The usage of several steel grades in auto body assembling has been found to be a good technique to enlighten vehicles weight. This few years, the usage of dual phase (DP) steels, transformation induced plasticity (TRIP) steels and boron steels in some parts of the auto body have become a necessity because of their lightweight. However, these steels are martensitic, when they undergo a fast heat treatment, the resultant microstructure is essential, made of martensite. Resistance spot welding (RSW), one of the most used techniques in assembling auto bodies, becomes problematic in the case of these steels. RSW being indeed a process were steel is heated and cooled in a very short period of time, the resulting weld nugget is mostly fully martensitic, especially in the case of DP, TRIP and boron steels but that also holds for plain carbon steels as AISI 1010 grade which is extensively used in auto body inner parts. Martensite in its turn must be avoided as most as possible when welding steel because it is the principal source of brittleness and it weakens weld nugget. Thus, this work aims to find a mean to reduce martensite fraction in weld nugget when using RSW for assembling. The prediction of phase transformation kinetics during RSW has been done. That phase transformation kinetics prediction has been made possible through the modelling of the whole welding process, and a technique called post weld heat treatment (PWHT) have been applied in order to reduce martensite fraction in the weld nugget. Simulation has been performed for AISI 1010 grade, and results show that the application of PWHT leads to the formation of not only martensite but also ferrite, bainite and pearlite during the cooling of weld nugget. Welding experiments have been done in parallel and micrographic analyses show the presence of several phases in the weld nugget. Experimental weld geometry and phase proportions are in good agreement with simulation results, showing here the validity of the model.

Keywords: resistance spot welding, AISI 1010, modeling, post weld heat treatment, phase transformation, kinetics

Procedia PDF Downloads 113
5668 Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Authors: N. Senu, I. A. Kasim, F. Ismail, N. Bachok

Abstract:

In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size.

Keywords: dissipation, oscillatory solutions, phase-lag, Runge-Kutta methods

Procedia PDF Downloads 407
5667 Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter

Authors: S. Masoud Barakati, Mohsen Rahmani Haredasht

Abstract:

Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency.

Keywords: T-type nested neutral point clamped converter, reliability, continuous operation, open-circuit faults, fault-tolerant converters

Procedia PDF Downloads 113
5666 70% Ultra-Wide Tuning CMOS VCO Based on Magnetic Energy Adjustment

Authors: Tai-Hsing Lee, Zhe-Wei Lin

Abstract:

This paper demonstrates an ultra-wide tuning VCO implemented by CMOS 0.18μm process technology. By employing the proposed technique of magnetic energy adjustment in the oscillator tank, our proposed VCO achieves a wide frequency tuning range of 69.46% from 0.9 GHz to 1.86 GHz. The phase noise at an operating frequency of 1.86 GHz is -110 dBc/Hz (Offset frequency=1MHz). Furthermore, it achieves an excellent FOMT of 190.03 dBc/Hz.

Keywords: VCO, Ultra-wide tuning, Frequency tuning range, phase noise, Magnetic energy adjustment

Procedia PDF Downloads 34
5665 Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human

Authors: Arina V. Tankanag, Gennady V. Krasnikov, Nikolai K. Chemeris

Abstract:

The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone.

Keywords: deep controlled breathing, peripheral blood flow oscillations, phase synchronization, wavelet phase coherence

Procedia PDF Downloads 206
5664 Optical Vortex in Asymmetric Arcs of Rotating Intensity

Authors: Mona Mihailescu, Rebeca Tudor, Irina A. Paun, Cristian Kusko, Eugen I. Scarlat, Mihai Kusko

Abstract:

Specific intensity distributions in the laser beams are required in many fields: optical communications, material processing, microscopy, optical tweezers. In optical communications, the information embedded in specific beams and the superposition of multiple beams can be used to increase the capacity of the communication channels, employing spatial modulation as an additional degree of freedom, besides already available polarization and wavelength multiplexing. In this regard, optical vortices present interest due to their potential to carry independent data which can be multiplexed at the transmitter and demultiplexed at the receiver. Also, in the literature were studied their combinations: 1) axial or perpendicular superposition of multiple optical vortices or 2) with other laser beam types: Bessel, Airy. Optical vortices, characterized by stationary ring-shape intensity and rotating phase, are achieved using computer generated holograms (CGH) obtained by simulating the interference between a tilted plane wave and a wave passing through a helical phase object. Here, we propose a method to combine information through the reunion of two CGHs. One is obtained using the helical phase distribution, characterized by its topological charge, m. The other is obtained using conical phase distribution, characterized by its radial factor, r0. Each CGH is obtained using plane wave with different tilts: km and kr for CGH generated from helical phase object and from conical phase object, respectively. These reunions of two CGHs are calculated to be phase optical elements, addressed on the liquid crystal display of a spatial light modulator, to optically process the incident beam for investigations of the diffracted intensity pattern in far field. For parallel reunion of two CGHs and high values of the ratio between km and kr, the bright ring from the first diffraction order, specific for optical vortices, is changed in an asymmetric intensity pattern: a number of circle arcs. Both diffraction orders (+1 and -1) are asymmetrical relative to each other. In different planes along the optical axis, it is observed that this asymmetric intensity pattern rotates around its centre: in the +1 diffraction order the rotation is anticlockwise and in the -1 diffraction order, the rotation is clockwise. The relation between m and r0 controls the diameter of the circle arcs and the ratio between km and kr controls the number of arcs. For perpendicular reunion of the two CGHs and low values of the ratio between km and kr, the optical vortices are multiplied and focalized in different planes, depending on the radial parameter. The first diffraction order contains information about both phase objects. It is incident on the phase masks placed at the receiver, computed using the opposite values for topological charge or for the radial parameter and displayed successively. In all, the proposed method is exploited in terms of constructive parameters, for the possibility offered by the combination of different types of beams which can be used in robust optical communications.

Keywords: asymmetrical diffraction orders, computer generated holograms, conical phase distribution, optical vortices, spatial light modulator

Procedia PDF Downloads 308
5663 Case Study of the Roma Tomato Distribution Chain: A Dynamic Interface for an Agricultural Enterprise in Mexico

Authors: Ernesto A. Lagarda-Leyva, Manuel A. Valenzuela L., José G. Oshima C., Arnulfo A. Naranjo-Flores

Abstract:

From August to December of 2016, a diagnostic and strategic planning study was carried out on the supply chain of the company Agropecuaria GABO S.A. de C.V. The final product of the study was the development of the strategic plan and a project portfolio to meet the demands of the three links in the supply chain of the Roma tomato exported annually to the United States of America. In this project, the strategic objective of ensuring the proper handling of the product was selected and one of the goals associated with this was the employment of quantitative methods to support decision making. Considering the antecedents, the objective of this case study was to develop a model to analyze the behavioral dynamics in the distribution chain, from the logistics of storage and shipment of Roma tomato in 81-case pallets (11.5 kg per case), to the two pre-cooling rooms and eventual loading onto transports, seeking to reduce the bottleneck and the associated costs by means of a dynamic interface. The methodology used was that of system dynamics, considering four phases that were adapted to the purpose of the study: 1) the conceptualization phase; 2) the formulation phase; 3) the evaluation phase; and 4) the communication phase. The main practical conclusions lead to the possibility of reducing both the bottlenecks in the cooling rooms and the costs by simulating scenarios and modifying certain policies. Furthermore, the creation of the dynamic interface between the model and the stakeholders was achieved by generating interaction with buttons and simple instructions that allow making modifications and observing diverse behaviors.

Keywords: agrilogistics, distribution, scenarios, system dynamics

Procedia PDF Downloads 226
5662 Developing Methodology of Constructing the Unified Action Plan for External and Internal Risks in University

Authors: Keiko Tamura, Munenari Inoguchi, Michiyo Tsuji

Abstract:

When disasters occur, in order to raise the speed of each decision making and response, it is common that delegation of authority is carried out. This tendency is particularly evident when the department or branch of the organization are separated by the physical distance from the main body; however, there are some issues to think about. If the department or branch is too dependent on the head office in the usual condition, they might feel lost in the disaster response operation when they are face to the situation. Avoiding this problem, an organization should decide how to delegate the authority and also who accept the responsibility for what before the disaster. This paper will discuss about the method which presents an approach for executing the delegation of authority process, implementing authorities, management by objectives, and preparedness plans and agreement. The paper will introduce the examples of efforts for the three research centers of Niigata University, Japan to arrange organizations capable of taking necessary actions for disaster response. Each center has a quality all its own. One is the center for carrying out the research in order to conserve the crested ibis (or Toki birds in Japanese), the endangered species. The another is the marine biological laboratory. The third one is very unique because of the old growth forests maintained as the experimental field. Those research centers are in the Sado Island, located off the coast of Niigata Prefecture, is Japan's second largest island after Okinawa and is known for possessing a rich history and culture. It takes 65 minutes jetfoil (high-speed ferry) ride to get to Sado Island from the mainland. The three centers are expected to be easily isolated at the time of a disaster. A sense of urgency encourages 3 centers in the process of organizational restructuring for enhancing resilience. The research team from the risk management headquarters offer those procedures; Step 1: Offer the hazard scenario based on the scientific evidence, Step 2: Design a risk management organization for disaster response function, Step 3: Conduct the participatory approach to make consensus about the overarching objectives, Step 4: Construct the unified operational action plan for 3 centers, Step 5: Simulate how to respond in each phase based on the understanding the various phases of the timeline of a disaster. Step 6: Document results to measure performance and facilitate corrective action. This paper shows the result of verifying the output and effects.

Keywords: delegation of authority, disaster response, risk management, unified command

Procedia PDF Downloads 120
5661 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 155
5660 Study of Li-Rich Layered Cathode Materials for High-Energy Li-ion Batteries

Authors: Liu Li, Kim Seng Lee, Li Lu

Abstract:

The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. They have attracted a lot of attentions due mainly to their high reversible capacity of more than 250 mAh•g-1 at low charge-discharge current. However several drawbacks still hinder their applications, such as voltage decay caused by an undesired phase transformation during cycling and poor rate capability. To conquer these issues, the authors applied F modification methods on the pristine Li1.2Mn0.54Ni0.13Co0.13O2 to enhance its electrochemical performance.

Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capability

Procedia PDF Downloads 323
5659 Viscoelastic Cell Concentration in a High Aspect Ratio Microchannel Using a Non-Powered Air Compressor

Authors: Jeonghun Nam, Seonggil Kim, Hyunjoo Choi, Chae Seung Lim

Abstract:

Quantification and analysis of rare cells are challenging in clinical applications and cell biology due to its extremely small number in blood. In this work, we propose a viscoelastic microfluidic device for continuous cell concentration without sheath flows. Due to the viscoelastic effect on suspending cells, cells with the blockage ratio higher than 0.1 could be tightly focused at the center of the microchannel. The blockage ratio was defined as the particle diameter divided by the channel width. Finally, cells were concentrated through the center outlet and the additional suspending medium was removed to the side outlets. Since viscoelastic focusing is insensitive to the flow rate higher than 10 μl/min, the non-powered hand pump sprayer could be used with no accurate control of the flow rate, which is suitable for clinical settings in resource-limited developing countries. Using multiple concentration processes, high-throughput concentration of white blood cells in lysed blood sample was achieved by ~ 300-fold.

Keywords: cell concentration, high-throughput, non-powered, viscoelastic fluid

Procedia PDF Downloads 284
5658 Bifurcation and Chaos of the Memristor Circuit

Authors: Wang Zhulin, Min Fuhong, Peng Guangya, Wang Yaoda, Cao Yi

Abstract:

In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior.

Keywords: memristor, chaotic circuit, dynamical behavior, chaotic system

Procedia PDF Downloads 496
5657 The Effect of Ionic Strength on the Extraction of Copper(II) from Perchlorate Solutions by Capric Acid in Chloroform

Authors: A. Bara, D. Barkat

Abstract:

The liquid-liquid extraction of copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. The ionic strength effect of the aqueous phase shows that the extraction of copper(II) increases with the increase in ionic strength. with different ionic strengths 1, 0.5, 0.25, 0.125 and 0.1M in the aqueous phase. Cu (II) is extracted as the complex CuL2(ClO4).

Keywords: liquid-liquid extraction, ionic strength, copper (II), capric acid

Procedia PDF Downloads 529
5656 Study on Robot Trajectory Planning by Robot End-Effector Using Dual Curvature Theory of the Ruled Surface

Authors: Y. S. Oh, P. Abhishesh, B. S. Ryuh

Abstract:

This paper presents the method of trajectory planning by the robot end-effector which accounts for more accurate and smooth differential geometry of the ruled surface generated by tool line fixed with end-effector based on the methods of curvature theory of ruled surface and the dual curvature theory, and focuses on the underlying relation to unite them for enhancing the efficiency for trajectory planning. Robot motion can be represented as motion properties of the ruled surface generated by trajectory of the Tool Center Point (TCP). The linear and angular properties of the six degree-of-freedom motion of end-effector are computed using the explicit formulas and functions from curvature theory and dual curvature theory. This paper explains the complete dualization of ruled surface and shows that the linear and angular motion applied using the method of dual curvature theory is more accurate and less complex.

Keywords: dual curvature theory, robot end effector, ruled surface, TCP (Tool Center Point)

Procedia PDF Downloads 359
5655 Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks

Authors: Karlee J. Hall, Mark Laylor, Jessy Varghese, Paula Polastri, Karen Van Ooteghem, William McIlroy

Abstract:

Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically.

Keywords: autonomic nervous system, balance control, center of pressure, somatic nervous system

Procedia PDF Downloads 166
5654 The Current Status of Integrating Information and Communication Technology in Teaching at Sultan Qaboos University

Authors: Ahmed Abdelrahman, Ahmed Abdelraheem

Abstract:

There are many essential factors affecting the integration of information and communication technology (ICT) into teaching and learning, including technology infrastructure, institutional support, professional development, and faculty members’ beliefs regarding ICT integration. The present research project investigated the current status of integrating ICT into teaching and learning at Sultan Qaboos University (SQU). A sample of 220 faculty members from six different colleges and four administrators from the Center of Educational Technology (CET) and the Center for Information Systems (CIS) at SQU in Oman were chosen, and quantitative, qualitative design using a semi-structured questionnaire, interviews and checklists were employed. The findings show that SQU had a high availability of ICT infrastructure in terms of hardware, software, and support services, as well as adequate computer labs for educational purposes. However, the results also indicated that, although SQU provided a series of professional development workshops related to using ICT in teaching, few faculty members were interested. Furthermore, the finding indicated that the degree of ICT integration into teaching at SQU was at a medium level.

Keywords: information and communication technology, integration, professional development, teaching

Procedia PDF Downloads 159
5653 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 179