Search results for: operation costs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4866

Search results for: operation costs

4176 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things

Authors: Christos Konstantopoulos, Thomas Ussmueller

Abstract:

Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.

Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators

Procedia PDF Downloads 143
4175 Impact of Transportation on Access to Reproductive and Maternal Health Services in Northeast Cambodia: A Policy Brief

Authors: Zaman Jawahar, Anne Rouve-Khiev, Elizabeth Hoban, Joanne Williams

Abstract:

Ensuring access to timely obstetric care is essential to prevent maternal deaths. Geographical barriers pose significant challenges for women accessing quality reproductive and maternal health services in rural Cambodia. This policy brief affirms the need to address the issue of transportation and cost (direct and indirect) as critical barriers to accessing reproductive and maternal health (RMH) services in four provinces in Northeast Cambodia (Kratie, Ratanak Kiri, Mondul Kiri, Stung Treng). A systemic search of the literature identified 1,116 articles, and only ten articles from low-and-middle-income countries met the inclusion criteria. The ten articles reported on transportation and cost related to accessing RMH services. In addition, research findings from Partnering to Save Lives (PSL) studies in the four provinces were included in the analysis. Thematic data analysis using the information in the ten articles and PSL research findings was conducted, and the findings are presented in this paper. The key findings are the critical barriers to accessing RMH services in the four provinces because women experience: 1) difficulties finding affordable transportation; 2) lack of available and accessible transportation; 3) greater distance and traveling time to services; 4) poor geographical terrain and; 5) higher opportunity costs. Distance and poverty pose a double burden for the women accessing RMH services making a facility-based delivery less feasible compared to home delivery. Furthermore, indirect and hidden costs associated with institutional delivery may have an impact on women’s decision to seek RMH care. Existing health financing schemes in Cambodia such as the Health Equity Fund (HEF) and the Voucher Scheme contributed to the solution but have also shown some limitations. These schemes contribute to improving access to RMH services for the poorest group, but the barrier of transportation costs remains. In conclusion, initiatives that are proven to be effective in the Cambodian context should continue or be expanded in conjunction with the HEF, and special consideration should be given to communities living in geographically remote regions and difficult to access areas. The following strategies are recommended: 1) maintain and further strengthen transportation support in the HEF scheme; 2) expand community-based initiatives such as Community Managed Health Equity Funds and Village Saving Loans Associations; 3) establish maternity waiting homes; and 4) include antenatal and postnatal care in the provision of integrated outreach services. This policy brief can be used to inform key policymakers and provide evidence that can assist them to develop strategies to increase poor women’s access to RMH services in low-income settings, taking into consideration the geographic distance and other indirect costs associated with a facility-based delivery.

Keywords: access, barriers, northeast Cambodia, reproductive and maternal health service, transportation and cost

Procedia PDF Downloads 140
4174 Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace

Authors: Junhai Liao, Yansong Shen, Aibing Yu

Abstract:

A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF.

Keywords: blast furnace, numerical study, pulverized coal injection, Victorian brown coal

Procedia PDF Downloads 242
4173 Experimental Investigation of Compressed Natural Gas Injector for Direct Injection System

Authors: Rafal Sochaczewski, Grzegorz Baranski, Adam Majczak

Abstract:

This paper presents the bench research results on a CNG injector at steady state. The quantities measured included voltage and current in a solenoid, pressure of gas behind an injector and injector’s flow rate. Accordingly, injector’s operation parameters were determined according to needle’s lift and injection pressure. The discrepancies between the theoretical (electric) and actual time of injection were defined to specify injector’s opening and closing lag times and the uniqueness of these values in successive cycles of gas injection. It has been demonstrated that needle’s lift has got a stronger impact on injector’s operating parameters than injection pressure. With increasing injection pressure, the force increases and closes an injection valve, which adversely affects uniqueness of injector’s operation. The paper also describes the concept of an injector dedicated to direct CNG injection into a combustion chamber in a dual-fuel engine. The injector’s design enables us to replace 80% of diesel fuel in a dual-fuel engine with a maximum power of 85 kW. Minimum injection pressure is 1,4 MPa then. Simultaneously, injector’s characteristics for varied needle’s lifts and injector’s nonlinear operating points were developed. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS1/A6/4/2012.

Keywords: CNG injector, diesel engine, direct injection, dual fuel

Procedia PDF Downloads 274
4172 The Sea Striker: The Relevance of Small Assets Using an Integrated Conception with Operational Performance Computations

Authors: Gaëtan Calvar, Christophe Bouvier, Alexis Blasselle

Abstract:

This paper presents the Sea Striker, a compact hydrofoil designed with the goal to address some of the issues raised by the recent evolutions of naval missions, threats and operation theatres in modern warfare. Able to perform a wide range of operations, the Sea Striker is a 40-meter stealth surface combatant equipped with a gas turbine and aft and forward foils to reach high speeds. The Sea Striker's stealthiness is enabled by the combination of composite structure, exterior design, and the advanced integration of sensors. The ship is fitted with a powerful and adaptable combat system, ensuring a versatile and efficient response to modern threats. Lightly Manned with a core crew of 10, this hydrofoil is highly automated and can be remoted pilote for special force operation or transit. Such a kind of ship is not new: it has been used in the past by different navies, for example, by the US Navy with the USS Pegasus. Nevertheless, the recent evolutions in science and technologies on the one hand, and the emergence of new missions, threats and operation theatres, on the other hand, put forward its concept as an answer to nowadays operational challenges. Indeed, even if multiples opinions and analyses can be given regarding the modern warfare and naval surface operations, general observations and tendencies can be drawn such as the major increase in the sensors and weapons types and ranges and, more generally, capacities; the emergence of new versatile and evolving threats and enemies, such as asymmetric groups, swarm drones or hypersonic missile; or the growing number of operation theatres located in more coastal and shallow waters. These researches were performed with a complete study of the ship after several operational performance computations in order to justify the relevance of using ships like the Sea Striker in naval surface operations. For the selected scenarios, the conception process enabled to measure the performance, namely a “Measure of Efficiency” in the NATO framework for 2 different kinds of models: A centralized, classic model, using large and powerful ships; and A distributed model relying on several Sea Strikers. After this stage, a was performed. Lethal, agile, stealth, compact and fitted with a complete set of sensors, the Sea Striker is a new major player in modern warfare and constitutes a very attractive response between the naval unit and the combat helicopter, enabling to reach high operational performances at a reduced cost.

Keywords: surface combatant, compact, hydrofoil, stealth, velocity, lethal

Procedia PDF Downloads 116
4171 Alignment between Governance Structures and Food Safety Standards on the Shrimp Supply Chain in Indonesia

Authors: Maharani Yulisti, Amin Mugera, James Fogarty

Abstract:

Food safety standards have received significant attention in the fisheries global market due to health issues, free trade agreements, and increasing aquaculture production. Vertical coordination throughout the supply chain of fish producing and exporting countries is needed to meet food safety demands imposed by importing countries. However, the complexities of the supply chain governance structures and difficulties in standard implementation can generate safety uncertainty and high transaction costs. Using a Transaction Cost Economics framework, this paper examines the alignment between food safety standards and the governance structures in the shrimp supply chain in Indonesia. We find the supply chain is organized closer to the hierarchy-like governance structure where private standard (organic standard) are implemented and more towards a market-like governance structure where public standard (IndoGAP certification) are more prevalent. To verify the statements, two cases are examined from Sidoarjo district as a centre of shrimp production in Indonesia. The results show that public baseline FSS (Food Safety Standards) need additional mechanism to achieve a coordinated chain-wide response because uncertainty, asset specificity, and performance measurement problems are high in this chain. Organic standard as private chain-wide FSS is more efficient because it has been achieved by hierarchical-like type of governance structure.

Keywords: governance structure, shrimp value chain, food safety standards, transaction costs economics

Procedia PDF Downloads 379
4170 Gariep Dam Basin Management for Satisfying Ecological Flow Requirements

Authors: Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia

Abstract:

Multi-reservoir optimization operation has been a critical issue for river basin management. Water, as a scarce resource, is in high demand and the problems associated with the reservoir as its storage facility are enormous. The complexity in balancing the supply and demand of this prime resource has created the need to examine the best way to solve the problem using optimization techniques. The objective of this study is to evaluate the performance of the multi-objective meta-heuristic algorithm for the operation of Gariep Dam for satisfying ecological flow requirements. This study uses an evolutionary algorithm called backtrack search algorithm (BSA) to determine the best way to optimise the dam operations of hydropower production, flood control, and water supply without affecting the environmental flow requirement for the survival of aquatic bodies and sustain life downstream of the dam. To achieve this objective, the operations of the dam that corresponds to different tradeoffs between the objectives are optimized. The results indicate the best model from the algorithm that satisfies all the objectives without any constraint violation. It is expected that hydropower generation will be improved and more water will be available for ecological flow requirements with the use of the algorithm. This algorithm also provides farmers with more irrigation water as well to improve their business.

Keywords: BSA evolutionary algorithm, metaheuristics, optimization, river basin management

Procedia PDF Downloads 244
4169 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 201
4168 Implant Operation Guiding Device for Dental Surgeons

Authors: Daniel Hyun

Abstract:

Dental implants are one of the top 3 reasons to sue a dentist for malpractice. It involves dental implant complications, usually because of the angle of the implant from the surgery. At present, surgeons usually use a 3D-printed navigator that is customized for the patient’s teeth. However, those can’t be reused for other patients as they require time. Therefore, I made a guiding device to assist the surgeon in implant operations. The surgeon can input the objective of the operation, and the device constantly checks if the surgery is heading towards the objective within the set range, telling the surgeon by manipulating the LED. We tested the prototypes’ consistency and accuracy by checking the graph, average standard deviation, and the average change of the calculated angles. The accuracy of performance was also acquired by running the device and checking the outputs. My first prototype used accelerometer and gyroscope sensors from the Arduino MPU6050 sensor, getting a changeable graph, achieving 0.0295 of standard deviations, 0.25 of average change, and 66.6% accuracy of performance. The second prototype used only the gyroscope, and it got a constant graph, achieved 0.0062 of standard deviation, 0.075 of average change, and 100% accuracy of performance, indicating that the accelerometer sensor aggravated the functionality of the device. Using the gyroscope sensor allowed it to measure the orientations of separate axes without affecting each other and also increased the stability and accuracy of the measurements.

Keywords: implant, guide, accelerometer, gyroscope, handpiece

Procedia PDF Downloads 41
4167 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering

Procedia PDF Downloads 298
4166 Comparison of Performance of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies Prepared from 10 and 15-Micron Proton Exchange Membranes

Authors: Yingjeng James Li, Chiao-Chih Hu

Abstract:

Membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC) applications were prepared by using 10 and 15 um PEMs. Except for different membrane thicknesses, these MEAs were prepared by the same conditions. They were prepared by using catalyst coated membrane (CCM) process. The catalyst employed is 40% Pt/C, and the Pt loading is 0.5mg/cm² for the sum of anode and cathode. Active area of the MEAs employed in this study is 5cm*5cm=25cm². In polarization measurements, the flow rates were always set at 1.2 stoic for anode and 3.0 stoic for cathode. The outlets were in open-end mode. The flow filed is tri-serpentine design. The cell temperatures and the humidification conditions were varied for the purpose of MEA performance observations. It was found that the performance of these two types of MEAs is about the same at fully or partially humidified operation conditions; however, 10um MEA exhibits higher current density in dry or low humidified conditions. For example, at 70C cell, 100% RH, and 0.6V condition, both MEAs have similar current density which is 1320 and 1342mA/cm² for 15um and 10um product, respectively. However, when in operation without external humidification, 10um MEA can produce 1085mA/cm²; whereas 15um MEA produces only 720mA/cm².

Keywords: fuel cell, membrane electrode assembly, PEFC, PEMFC, proton exchange membrane

Procedia PDF Downloads 237
4165 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: toolpath, part program, optimization, pocket

Procedia PDF Downloads 286
4164 Fuel Quality of Biodiesel from Chlorella protothecoides Microalgae Species

Authors: Mukesh Kumar, Mahendra Pal Sharma

Abstract:

Depleting fossil fuel resources coupled with serious environmental degradation has led to the search for alternative resources for biodiesel production as a substitute of Petro-diesel. Currently, edible, non-edible oils and microalgal plant species are cultivated for biodiesel production. Looking at the demerits of edible and non-edible oil resources, the focus is being given to grow microalgal species having high oil productivities, less maturity time and less land requirement. Out of various microalgal species, Chlorella protothecoides is considered as the most promising species for biodiesel production owing to high oil content (58 %), faster growth rate (24–48 h) and high biomass productivity (1214 mg/l/day). The present paper reports the results of optimization of reaction parameters of transesterification process as well as the kinetics of transesterification with 97% yield of biodiesel. The measurement of fuel quality of microalgal biodiesel shows that the biodiesel exhibit very good oxidation stability (O.S) of 7 hrs, more than ASTM D6751 (3 hrs) and EN 14112 (6 hrs) specifications. The CP and PP of 0 and -3 °C are finding as per ASTM D 2500-11 and ASTM D 97-12 standards. These results show that the microalgal biodiesel does not need any enhancement in O.S & CFP and hence can be recommended to be directly used as MB100 or its blends into diesel engine operation. Further, scope is available for the production of binary blends using poor quality biodiesel for engine operation.

Keywords: fuel quality, methyl ester yield, microalgae, transesterification

Procedia PDF Downloads 214
4163 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 102
4162 Modeling of Micro-Grid System Components Using MATLAB/Simulink

Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim

Abstract:

Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.

Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling

Procedia PDF Downloads 432
4161 Opportunities for Precision Feed in Apiculture

Authors: John Michael Russo

Abstract:

Honeybees are important to our food system and continue to suffer from high rates of colony loss. Precision feed has brought many benefits to livestock cultivation and these should transfer to apiculture. However, apiculture has unique challenges. The objective of this research is to understand how principles of precision agriculture, applied to apiculture and feed specifically, might effectively improve state-of-the-art cultivation. The methodology surveys apicultural practice to build a model for assessment. First, a review of apicultural motivators is made. Feed method is then evaluated. Finally, precision feed methods are examined as accelerants with potential to advance the effectiveness of feed practice. Six important motivators emerge: colony loss, disease, climate change, site variance, operational costs, and competition. Feed practice itself is used to compensate for environmental variables. The research finds that the current state-of-the-art in apiculture feed focuses on critical challenges in the management of feed schedules which satisfy requirements of the bees, preserve potency, optimize environmental variables, and manage costs. Many of the challenges are most acute when feed is used to dispense medication. Technology such as RNA treatments have even more rigorous demands. Precision feed solutions focus on strategies which accommodate specific needs of individual livestock. A major component is data; they integrate precise data with methods that respond to individual needs. There is enormous opportunity for precision feed to improve apiculture through the integration of precision data with policies to translate data into optimized action in the apiary, particularly through automation.

Keywords: precision agriculture, precision feed, apiculture, honeybees

Procedia PDF Downloads 76
4160 A Study on How to Develop the Usage Metering Functions of BIM (Building Information Modeling) Software under Cloud Computing Environment

Authors: Kim Byung-Kon, Kim Young-Jin

Abstract:

As project opportunities for the Architecture, Engineering and Construction (AEC) industry have grown more complex and larger, the utilization of BIM (Building Information Modeling) technologies for 3D design and simulation practices has been increasing significantly; the typical applications of the BIM technologies include clash detection and design alternative based on 3D planning, which have been expanded over to the technology of construction management in the AEC industry for virtual design and construction. As for now, commercial BIM software has been operated under a single-user environment, which is why initial costs for its introduction are very high. Cloud computing, one of the most promising next-generation Internet technologies, enables simple Internet devices to use services and resources provided with BIM software. Recently in Korea, studies to link between BIM and cloud computing technologies have been directed toward saving costs to build BIM-related infrastructure, and providing various BIM services for small- and medium-sized enterprises (SMEs). This study addressed how to develop the usage metering functions of BIM software under cloud computing architecture in order to archive and use BIM data and create an optimal revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources. To this end, the author surveyed relevant cases, and then analyzed needs and requirements from AEC industry. Based on the results & findings of the foregoing survey & analysis, the author proposed herein how to optimally develop the usage metering functions of cloud BIM software.

Keywords: construction IT, BIM (Building Information Modeling), cloud computing, BIM-based cloud computing, 3D design, cloud BIM

Procedia PDF Downloads 506
4159 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 318
4158 Designing for Sustainable Public Housing from Property Management and Financial Feasibility Perspectives

Authors: Kung-Jen Tu

Abstract:

Many public housing properties developed by local governments in Taiwan in the 1980s have deteriorated severely as these rental apartment buildings aged. The lack of building maintainability considerations during project design phase as well as insufficient maintenance funds have made it difficult and costly for local governments to maintain and keep public housing properties in good shape. In order to assist the local governments in achieving and delivering sustainable public housing, this paper intends to present a developed design evaluation method to be used to evaluate the presented design schemes from property management and financial feasibility perspectives during project design phase of public housing projects. The design evaluation results, i.e. the property management and financial implications of presented design schemes that could occur later during the building operation and maintenance phase, will be reported to the client (the government) and design schemes revised consequently. It is proposed that the design evaluation be performed from two main perspectives: (1) Operation and property management perspective: Three criteria such as spatial appropriateness, people and vehicle circulation and control, property management working spaces are used to evaluate the ‘operation and PM effectiveness’ of a design scheme. (2) Financial feasibility perspective: Four types of financial analyses are performed to assess the long term financial feasibility of a presented design scheme, such as operational and rental income analysis, management fund analysis, regular operational and property management service expense analysis, capital expense analysis. The ongoing Chung-Li Public Housing Project developed by the Taoyuan City Government will be used as a case to demonstrate how the presented design evaluation method is implemented. The results of property management assessment as well as the annual operational and capital expenses of a proposed design scheme are presented.

Keywords: design evaluation method, management fund, operational and capital expenses, rental apartment buildings

Procedia PDF Downloads 303
4157 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 159
4156 Optimization of Reliability Test Plans: Increase Wafer Fabrication Equipments Uptime

Authors: Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta, Ahmed Zeouita

Abstract:

Semiconductor processing chambers tend to operate in controlled but aggressive operating conditions (chemistry, plasma, high temperature etc.) Owing to this, the design of this equipment requires developing robust and reliable hardware and software. Any equipment downtime due to reliability issues can have cost implications both for customers in terms of tool downtime (reduced throughput) and for equipment manufacturers in terms of high warranty costs and customer trust deficit. A thorough reliability assessment of critical parts and a plan for preventive maintenance/replacement schedules need to be done before tool shipment. This helps to save significant warranty costs and tool downtimes in the field. However, designing a proper reliability test plan to accurately demonstrate reliability targets with proper sample size and test duration is quite challenging. This is mainly because components can fail in different failure modes that fit into different Weibull beta value distributions. Without apriori Weibull beta of a failure mode under consideration, it always leads to over/under utilization of resources, which eventually end up in false positives or false negatives estimates. This paper proposes a methodology to design a reliability test plan with optimal model size/duration/both (independent of apriori Weibull beta). This methodology can be used in demonstration tests and can be extended to accelerated life tests to further decrease sample size/test duration.

Keywords: reliability, stochastics, preventive maintenance

Procedia PDF Downloads 12
4155 A Case Study on Barriers in Total Productive Maintenance Implementation in the Abu Dhabi Power Industry

Authors: A. Alseiari, P. Farrell

Abstract:

Maintenance has evolved into an imperative function, and contributes significantly to efficient and effective equipment performance. Total Productive Maintenance (TPM) is an ideal approach to support the development and implementation of operation performance improvement. It systematically aims to understand the function of equipment, the service quality relationship with equipment and the probable critical equipment failure conditions. Implementation of TPM programmes need strategic planning and there has been little research applied in this area within Middle-East power plants. In the power sector of Abu Dhabi, technologically and strategically, the power industry is extremely important, and it thus needs effective and efficient equipment management support. The aim of this paper is to investigate barriers to successful TPM implementation in the Abu Dhabi power industry. The study has been conducted in the context of a leading power company in the UAE. Semi-structured interviews were conducted with 16 employees, including maintenance and operation staff, and senior managers. The findings of this research identified seven key barriers, thus: managerial; organisational; cultural; financial; educational; communications; and auditing. With respect to the understanding of these barriers and obstacles in TPM implementation, the findings can contribute towards improved equipment operations and maintenance in power organisations.

Keywords: Abu Dhabi Power Industry, TPM implementation, key barriers, organisational culture, critical success factors

Procedia PDF Downloads 244
4154 Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices

Authors: Faik Derya Ince, Ugur Topgul, Alp Gunay, Can Bayoglu, Dante J. Dorantes-Gonzalez

Abstract:

Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented.

Keywords: Explosive Manipulation, Robotic Hand, Tele-Operation, Tool Integration

Procedia PDF Downloads 138
4153 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 207
4152 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.

Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork

Procedia PDF Downloads 541
4151 Implementing Service Innovation in Public Transport Sector: Drivers and Challenges

Authors: Chaoren Lu

Abstract:

Public policy is playing as one driving force that influencing service innovation implementation in public sector. However, public policy implications cannot be automatically derived from the analyses of innovation issues, and there lacks of researches about the influences of public policy onto innovation. Moreover, innovation in service system is hard to predictable and whether policy encourages or hidden innovation is still lack of study. Especially, by given the context that multiple actors are active involving within the service delivery process in public transport sector, the complex driving forces and challenges are emerged towards the service operation. This study is aim to analysis the service innovation practices within service operating organizations to understand the drivers and challenges of service operation based on policy requirements, and where the innovation idea generating from. The case studies of Changzhou Transit Group and Nanjing Jiangnan Public Transit Group will be launched. This paper reveals the ambidexterity between top-down and bottom-up demands within the public transport service operating organizations contribute to the innovation ideas. Meanwhile, it contributes to the understanding of fundamental elements of service innovation is the new relationship creation and new way of sharing knowledge. The policy contributes to the trigger of creation of such relationship. The research question is: what are the sources of service innovation practices in local public transport system in China in in facing the policy implementation?

Keywords: public value, service innovation, public transport service, China

Procedia PDF Downloads 320
4150 Metallurgical Analysis of Surface Defect in Telescopic Front Fork

Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya

Abstract:

Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.

Keywords: telescopic front fork, induction welding, hook crack, internal oxidation

Procedia PDF Downloads 130
4149 Key Performance Indicators of Cold Supply Chain Practices in Agriculture Sector: Empirical Study on the Egyptian Export Companies

Authors: Ahmed Barakat, Nourhan Ahmed Saad, Mahmoud Hammad

Abstract:

Tracking and monitoring agricultural products, cold chain activities, and transportation in real-time can effectively ensure both the quality and safety of agricultural products, as well as reduce overall logistics costs. Effective supply chain practices are one of the main requirements for enhancing agricultural business in Egypt. Cold chain is among the best practices for the storage and transportation of perishable goods and has potential within the agricultural sector in Egypt. This practice has the scope of reducing the wastage of food and increasing the profitability with a reduction in costs. Even though it has several implementation challenges for the farmers, traders, and people involved in the entire supply chain, it has highlighted better benefits for all and for the export of goods for the economic progression for Egypt. The aim of this paper is to explore cold supply chain practices for the agriculture sector in Egypt, to enhance the export performance of fresh goods. In this context, this study attempts to explore those aspects of the performance of cold supply chain practices that can enhance the functioning of the agriculture sector in Egypt from the perspective of export companies (traders) and farmers. Based on the empirical results obtained by data collection from the farmers and traders, the study argues that there is a significant association between cold supply chain practices and enhancement of the agriculture value chain. The paper thus highlights the contribution of the study with final conclusions and limitations with scope for future research.

Keywords: agriculture sector, cold chain management, export companies, non-traded goods, supply chain management

Procedia PDF Downloads 159
4148 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 84
4147 Analysis of the Unmanned Aerial Vehicles’ Incidents and Accidents: The Role of Human Factors

Authors: Jacob J. Shila, Xiaoyu O. Wu

Abstract:

As the applications of unmanned aerial vehicles (UAV) continue to increase across the world, it is critical to understand the factors that contribute to incidents and accidents associated with these systems. Given the variety of daily applications that could utilize the operations of the UAV (e.g., medical, security operations, construction activities, landscape activities), the main discussion has been how to safely incorporate the UAV into the national airspace system. The types of UAV incidents being reported range from near sightings by other pilots to actual collisions with aircraft or UAV. These incidents have the potential to impact the rest of aviation operations in a variety of ways, including human lives, liability costs, and delay costs. One of the largest causes of these incidents cited is the human factor; other causes cited include maintenance, aircraft, and others. This work investigates the key human factors associated with UAV incidents. To that end, the data related to UAV incidents that have occurred in the United States is both reviewed and analyzed to identify key human factors related to UAV incidents. The data utilized in this work is gathered from the Federal Aviation Administration (FAA) drone database. This study adopts the human factor analysis and classification system (HFACS) to identify key human factors that have contributed to some of the UAV failures to date. The uniqueness of this work is the incorporation of UAV incident data from a variety of applications and not just military data. In addition, identifying the specific human factors is crucial towards developing safety operational models and human factor guidelines for the UAV. The findings of these common human factors are also compared to similar studies in other countries to determine whether these factors are common internationally.

Keywords: human factors, incidents and accidents, safety, UAS, UAV

Procedia PDF Downloads 241