Search results for: numerical weather prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6262

Search results for: numerical weather prediction

5572 Simulation Model of Induction Heating in COMSOL Multiphysics

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

The induction heating phenomenon depends on various factors, making the problem highly nonlinear. The mathematical analysis of this problem in most cases is very difficult and it is reduced to simple cases. Another knowledge of induction heating systems is generated in production environments, but these trial-error procedures are long and expensive. The numerical models of induction heating problem are another approach to reduce abovementioned drawbacks. This paper deals with the simulation model of induction heating problem. The simulation model of induction heating system in COMSOL Multiphysics is created. In this work we present results of numerical simulations of induction heating process in pieces of cylindrical shapes, in an inductor with four coils. The modeling of the inducting heating process was made with the software COMSOL Multiphysics Version 4.2a, for the study we present the temperature charts.

Keywords: induction heating, electromagnetic field, inductor, numerical simulation, finite element

Procedia PDF Downloads 317
5571 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 550
5570 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market

Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua

Abstract:

Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.

Keywords: candlestick chart, deep learning, neural network, stock market prediction

Procedia PDF Downloads 453
5569 Numerical Modeling of a Retaining Wall in Soil Reinforced by Layers of Geogrids

Authors: M. Mellas, S. Baaziz, A. Mabrouki, D. Benmeddour

Abstract:

The reinforcement of massifs of backfill with horizontal layers of geosynthetics is an interesting economic solution, which ensures the stability of retaining walls. The mechanical behavior of reinforced soil by geosynthetic is complex, and requires studies and research to understand the mechanisms of rupture. The behavior of reinforcements in the soil and the behavior of the main elements of the system: reinforcement-wall-soil. The present study is interested in numerical modeling of a retaining wall in soil reinforced by horizontal layers of geogrids. This modeling makes use of the software FLAC3D. This work aims to analyze the effect of the length of the geogrid "L" where the soil massif is supporting a uniformly distributed surcharge "Q", taking into account the fixing elements rather than the layers of geogrids to the wall.

Keywords: retaining wall, geogrid, reinforced soil, numerical modeling, FLAC3D

Procedia PDF Downloads 487
5568 Numerical Investigation of Flow Behaviour Across a Trapezoidal Bluff Body at Low Reynolds Number

Authors: Zaaraoui Abdelkader, Kerfah Rabeh, Noura Belkheir, Matene Elhacene

Abstract:

The trapezoidal bluff body is a typical configuration of vortex shedding bodies. The aim of this work is to study flow behaviour over a trapezoidal cylinder at low Reynolds number. The geometry was constructed from a prototype device for measuring the volumetric flow-rate by counting vortices. Simulations were run for this geometry under steady and unsteady flow conditions using finite volume discretization. Laminar flow was investigated in this model with rigid walls and homogeneous incompressible Newtonian fluid. Calculations were performed for Reynolds number range 5 ≤ Re ≤ 180 and several flow parameters were documented. The present computations are in good agreement with the experimental observations and the numerical calculations by several investigators.

Keywords: bluff body, confined flow, numerical calculations, steady and unsteady flow, vortex shedding flow meter

Procedia PDF Downloads 289
5567 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.

Keywords: gas pipelines, incident radiation, numerical simulation, safety distance

Procedia PDF Downloads 334
5566 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar's Harsh Climate

Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue

Abstract:

Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.

Keywords: atmospheric turbulence, haze, hybrid FSO/RF, outage probability, refractive index

Procedia PDF Downloads 420
5565 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 280
5564 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 194
5563 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil

Procedia PDF Downloads 128
5562 Numerical Modeling of Structural Failure of a Ship During the Collision Event

Authors: Adjal Yassine, Semmani Amar

Abstract:

During the last decades, The risk of collision has been increased, especially in high maritime traffic. As the consequence, the demand is required for safety at sea and environmental protection. For this purpose, the consequences prediction of ship collisions is recommended in order to minimize structural failure. additionally, at the design stage of the ship, damage generated during the collision event must be taken into consideration. This structural failure, in some cases, can develop into the progressive collapse of other structural elements and generate catastrophic consequences. The present study investigates the progressive collapse of ships damaged by collisions using the Non -linear finite element method. The failure criteria are taken into account. The impacted area has a refined mesh in order to have more reliable results. Finally, a parametric study was conducted in this study to highlight the effect of the ship's speed, as well as the different impacted areas of double-bottom ships.

Keywords: collsion, strucural failure, ship, finite element analysis

Procedia PDF Downloads 101
5561 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 176
5560 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 95
5559 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles

Authors: Khaled Ayfi

Abstract:

In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior

Procedia PDF Downloads 107
5558 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 457
5557 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm

Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei

Abstract:

In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.

Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes

Procedia PDF Downloads 76
5556 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 344
5555 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 108
5554 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage

Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais

Abstract:

The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.

Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless

Procedia PDF Downloads 295
5553 Prediction of Compressive Strength in Geopolymer Composites by Adaptive Neuro Fuzzy Inference System

Authors: Mehrzad Mohabbi Yadollahi, Ramazan Demirboğa, Majid Atashafrazeh

Abstract:

Geopolymers are highly complex materials which involve many variables which makes modeling its properties very difficult. There is no systematic approach in mix design for Geopolymers. Since the amounts of silica modulus, Na2O content, w/b ratios and curing time have a great influence on the compressive strength an ANFIS (Adaptive neuro fuzzy inference system) method has been established for predicting compressive strength of ground pumice based Geopolymers and the possibilities of ANFIS for predicting the compressive strength has been studied. Consequently, ANFIS can be used for geopolymer compressive strength prediction with acceptable accuracy.

Keywords: geopolymer, ANFIS, compressive strength, mix design

Procedia PDF Downloads 856
5552 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with Elliptical Pin-Fin Heat Sink

Authors: J. Y Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Therefore, the effects of convection and radiation heat transfer are considered. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. In addition, the effects of different operating conditions, including various inlet velocities (Vin = 1, 3, 5 m/s) and inlet temperatures (Tgas = 450, 550, 650K) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: thermoelectric generator, waste heat recovery, pin-fin heat sink, experimental and numerical analysis

Procedia PDF Downloads 383
5551 Effect of Abiotic Factors on Population of Red Cotton Bug Dysdercus Koenigii F. (Heteroptera: Pyrrhocoridae) and Its Impact on Cotton Boll Disease

Authors: Haider Karar, Saghir Ahmad, Amjad Ali, Ibrar Ul Haq

Abstract:

The experiment was conducted at Cotton Research Station, Multan to study the impact of weather factors and red cotton bug (RCB) on cotton boll disease yielded yellowish lint during 2012. The population on RCB along with abiotic factors was recorded during three consecutive years i.e. 2012, 2013, and 2014. Along with population of RCB and abiotic factors, the number of unopened/opened cotton bolls (UOB), percent yellowish lint (YL) and whitish lint (WL) were also recorded. The data revealed that the population per plant of RCB remain 0.50 and 0.34 during years 2012, 2013 but increased during 2014 i.e. 3.21 per plant. The number of UOB were more i.e. 13.43% in 2012 with YL 76.30 and WL 23.70% when average maximum temperature 34.73◦C, minimum temperature 22.83◦C, RH 77.43% and 11.08 mm rainfall. Similarly in 2013 the number of UOB were less i.e. 0.34 per plant with YL 1.48 and WL 99.53 per plant when average maximum temperature 34.60◦C, minimum temperature 23.37◦C, RH 73.01% and 9.95 mm rainfall. During 2014 RCB population per plant was 3.22 with no UOB and YL was 0.00% and WL was 100% when average maximum temperature 23.70◦C, minimum temperature 23.18◦C, RH 71.67% and 4.55 mm rainfall. So it is concluded that the cotton bolls disease was more during 2012 due to more rainfall and more percent RH. The RCB may be the carrier of boll rot disease pathogen during more rainfall.

Keywords: red cotton bug, cotton, weather factors, years

Procedia PDF Downloads 346
5550 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: building materials, heat transfer, moisture diffusion, numerical solution

Procedia PDF Downloads 294
5549 Prediction of Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 339
5548 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study

Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia

Abstract:

Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.

Keywords: machining, infrared thermography, FEM, temperature measurement

Procedia PDF Downloads 185
5547 Ranking of Provinces in Iran for Capital Formation in Spatial Planning with Numerical Taxonomy Technique (An Improvement) Case Study: Agriculture Sector

Authors: Farhad Nouparast

Abstract:

For more production we need more capital formation. Capital formation in each country should be based on comparative advantages in different economic sectors due to the different production possibility curves. In regional planning, recognizing the relative advantages and consequently investing in more production requires identifying areas with the necessary capabilities and location of each region compared to other regions. In this article, ranking of Iran's provinces is done according to the specific and given variables as the best investment position in agricultural activity. So we can provide the necessary background for investment analysis in different regions of the country to formulate national and regional planning and execute investment projects. It is used factor analysis technique and numerical taxonomy analysis to do this in thisarticle. At first, the provinces are homogenized and graded according to the variables using cross-sectional data obtained from the agricultural census and population and housing census of Iran as data matrix. The results show that which provinces have the most potential for capital formation in agronomy sub-sector. Taxonomy classifies organisms based on similar genetic traits in biology and botany. Numerical taxonomy using quantitative methods controls large amounts of information and get the number of samples and categories and take them based on inherent characteristics and differences indirectly accommodates. Numerical taxonomy is related to multivariate statistics.

Keywords: Capital Formation, Factor Analysis, Multivariate statistics, Numerical Taxonomy Analysis, Production, Ranking, Spatial Planning

Procedia PDF Downloads 143
5546 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial

Procedia PDF Downloads 147
5545 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.

Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods

Procedia PDF Downloads 49
5544 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate

Procedia PDF Downloads 190
5543 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal

Authors: Linta Rose, Prasad K. Bhaskaran

Abstract:

Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.

Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind

Procedia PDF Downloads 222