Search results for: machine and plant engineering
8338 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring
Procedia PDF Downloads 1518337 Results of EPR Dosimetry Study of Population Residing in the Vicinity of the Uranium Mines and Uranium Processing Plant
Authors: K. Zhumadilov, P. Kazymbet, A. Ivannikov, M. Bakhtin, A. Akylbekov, K. Kadyrzhanov, A. Morzabayev, M. Hoshi
Abstract:
The aim of the study is to evaluate the possible excess of dose received by uranium processing plant workers. The possible excess of dose of workers was evaluated with comparison with population pool (Stepnogorsk) and control pool (Astana city). The measured teeth samples were extracted according to medical indications. In total, twenty-seven tooth enamel samples were analyzed from the residents of Stepnogorsk city (180 km from Astana city, Kazakhstan). About 6 tooth samples were collected from the workers of uranium processing plant. The results of tooth enamel dose estimation show us small influence of working conditions to workers, the maximum excess dose is less than 100 mGy. This is pilot study of EPR dose estimation and for a final conclusion additional sample is required.Keywords: EPR dose, workers, uranium mines, tooth samples
Procedia PDF Downloads 4118336 Determination of Some Agricultural Characters of Developed Pea (Pisum sativum L.) Lines
Authors: Ercan Ceyhan, Mehmet Ali Avci
Abstract:
This research was made during the 2015 growing periods in the trial filed of ‘Research Station for Department of Field Crops, Agricultural Faculty, Selcuk University’ according to ‘Randomized Blocks Design’ with 3 replications. Research material was the following pea lines; PS16, PS18, PS21, PS23, PS24, PS25, PS36, PS47, PS49, PS51, PS54, PS58, PS67, PS69, PS71, PS73, PS83, PS84, PS87 and PSKY and three cultivars and other 2 commercial varieties named as Bolero, Rondo and Ultrello. Some agronomical characteristics such as plant height (cm) number of pod per plant number of seed per pod number of seed per plant 100 seed weight (g) and seed yield (kg ha-1) were determined. Results of the research implicated that the new developed lines were superior compared with the control (commercial) varieties by means of most of the characteristics. Nevertheless, similar researches should be continued in different locations and years.Keywords: agricultural characters, pea, Pisum sativum, seed yield
Procedia PDF Downloads 2398335 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications
Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani
Abstract:
This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.Keywords: human activity detection, media pipe, machine learning, metaverse applications
Procedia PDF Downloads 1798334 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant
Authors: Renzo Castillo, George Tsatsaronis
Abstract:
High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion
Procedia PDF Downloads 1858333 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 1478332 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.Keywords: dissolved oxygen, water quality, predication DO, support vector machine
Procedia PDF Downloads 2908331 Energy Savings with the Use of LED Lights at the Wastewater Treatment Plant
Authors: Kishen Prathivadi
Abstract:
The Sewer Authority Mid-Coastside (SAM) is a Joint Powers Authority formed in 1976 and provides secondary wastewater treatment to an average flow of 2.0 million gallons per day. SAM owns and operates a Wastewater Treatment Plant (WWTP) and a sanitary sewage collection system that collects sewage from its three member agencies: the City of Half Moon Bay, the Granada Community Services District and Montara Water and Sanitary District. The Sewer Authority Mid-Coastside (SAM) partnered with Pacific Gas & Electric, and its contractor GEL America, to review and replace all inefficient lighting fixtures and bulbs at the SAM treatment plant and administrative office. The project focused on replacing old and inefficient lighting fixtures and bulbs, reducing annual operating and maintenance costs, and reducing SAM’s carbon footprint. The project resulted in a 55% overall energy reduction, higher light quality and acuity, and a total operational savings of $495,000 over ten years.Keywords: energy savings, LED, lighting, electrical
Procedia PDF Downloads 1398330 Structural Reliability Analysis Using Extreme Learning Machine
Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra
Abstract:
In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.Keywords: reliability, reliability index, statistically independent, extreme learning machine
Procedia PDF Downloads 6828329 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 1348328 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis
Authors: Syamala Krishnannair
Abstract:
A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale
Procedia PDF Downloads 2098327 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques
Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje
Abstract:
Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings
Procedia PDF Downloads 448326 Effect of a new Released Bio Organic-Fertilizer in Improving Tomato Growth in Hydroponic System and Under Greenhouse
Authors: Zayneb Kthiri, Walid Hamada
Abstract:
The application of organic fertilizers is generally known to be useful to sustain soil fertility and plant growth, especially in poor soils, with less than 1% of organic matter, as it is very common in our Tunisian fields. Therefore, we focused on evaluating the effect of a new released liquid organic fertilizer named Solorga (with 5% of organic matter) compared to a reference product (Espartan: Kimitec, Spain) on tomato plant growth and physiology. Both fertilizers, derived from plant decomposition, were applied at an early stage in hydroponic system and under greenhouse. In hydroponic system, after 14 days of their application by root feeding, a significant difference was observed between treatments. Indeed, Solorga improved shoots and roots length, as well as the biomass respectively, by 45%, 27%, and 27.8% increase rate, while compared to control plants. However, Espartan induced less the measured parameters while compared to untreated control. Moreover, Solorga significantly increased the chlorophyll content by 42% compared to control and by 32% compared to Espartan. In the greenhouse, after 20 days of treatments, the results showed a significant effect of both fertilizers on SPAD index and the number of flowers blossom. Solorga increased the amount of chlorophyll present in the leaf by 7% compared to Espartan as well as the plant height under greenhouse. Moreover, the number of flowers blossom increased by 15% in plants treated with Solorga while compared to Espartan. Whereas, there is no notable difference between both organic fertilizers on the fruits blossom and the number of fruits per blossom. In conclusion, even though there is a difference in the organic matter between both fertilizers, Solorga improved better the plant growth in controlled conditions in hydroponic system while compared to Espartan. Altogether the obtained results are encouraging for the use of Solorga as a soil enriching source of organic matter to help plants to boost their growth and help them to overcome abiotic stresses linked to soil fertility.Keywords: tomato, plant growth, organic fertilizer, hydroponic system, greenhouse
Procedia PDF Downloads 1398325 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test
Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni
Abstract:
A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.Keywords: deflection, FE analysis, shaft, stress, three-point bending
Procedia PDF Downloads 1588324 Interaction of Cucurbitacin-Containing Phytonematicides and Biocontrol Agents on Cultivated Tomato Plants and Nematode Numbers
Authors: Jacqueline T. Madaure, Phatu W. Mashela
Abstract:
Interactive effects of cucurbitacin-containing phytonematicides and biocontrol agents on growth and nematode suppression on tomato (Solanum lycopersicum) had not been documented. The objective of this study was to determine the interactive effects of Nemafric-BL phytonematicide, Trichoderma harzianum and Steinernema feltiae on growth of tomato plants and suppression of root-knot (Meloidogyne species) nematodes. A 2x2x2 trial was conducted using tomato cv. ‘HTX’ on a field infested with Meloidogyne species. The treatments were applied at commercial rates. At 56 days after treatments, interactions were significant (P ≤ 0.05) for selected plant variables, without significant interactions on nematode variables. In conclusion, results of the current study did not support the combination of the test products for nematode suppression, except that some combinations improved plant growth.Keywords: cucumis africanus, cucurbitacin b, ethnobotanicals, entomopathogenic nematodes, natural enemies, plant extracts
Procedia PDF Downloads 1958323 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge
Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux
Abstract:
Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance.Keywords: Ammonia monooxygenase α-subunit gene, amoA, ammonia-oxidizing bacteria, AOB, nitrite-oxidizing bacteria, NOB, specific nitrification rate
Procedia PDF Downloads 4608322 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM
Authors: N. Yogal, C. Lehrmann
Abstract:
The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally.Keywords: permanent magnet (PM), NdFeB, corrosion behavior, temperature effect, Permanent magnet synchronous machine (PMSM)
Procedia PDF Downloads 3958321 Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant
Authors: S. Mokhtar, R. Ibrahim, K. Abdan, A. Rashidi
Abstract:
The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.Keywords: biocomposite, natural reinforce fiber, smart farming, vertical farming
Procedia PDF Downloads 1658320 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
Authors: Samina Khalid, Shamila Nasreen
Abstract:
Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA
Procedia PDF Downloads 4968319 Comparation of Essential Oils Composition from the Leaves and Flowers of Salvia pratensis L.
Authors: Valerija Dunkić, Nada Bezić
Abstract:
Salvia is a genus of the well-known medicinal plant of Lamiaceae family and growing wild throughout the world. This abstract reports the comparation of the essential oils from leaves and flowers composition of Salvia pratensis L. from mountain Velebit, Croatia. Water distilled essential oils from aerial parts of investigation plant have been analysed by GC and GC/MS using VF-5ms capillary column. Fifty-three constituents, representing 99.4% of the leaf oil composition; 51 constituents, representing 86.8% of the flower oil composition. Essential oil yield varied from 0.9% to 1.3% in the leaf and flower parts of the plant. The flower essential oil was characterized by a high concentration of E-caryophyllene (21.9%) and germacrene D (10.2%). Major constituents of the leaf oil were linalool (17.7%), linalool acetate (15.3%) and limonene (9.8%). The comparative results clearly indicated that the leaf and flower oil compositions of S. pratensis were quite different in terms of major components content. The present study gives additional knowledge about secondary metabolites contents on the genus Salvia.Keywords: essential oil, leaf, flower, Salvia pratensis L.
Procedia PDF Downloads 3038318 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures
Authors: Dong Wook Lee, Adrian Mistreanu
Abstract:
The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis
Procedia PDF Downloads 1378317 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin
Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford
Abstract:
Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling
Procedia PDF Downloads 1548316 Influences of Island Characteristics on Plant Community Structure of Farasan Archipelago, Saudi Arabia: Island Biogeography and Nested Pattern
Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Saud L. Al-Rowaily, Asyraf Mansor
Abstract:
The present study was carried out in 20 islands of Farasan Archipelago in Saudi Arabia to describe the biogeography patterns of plants. A total of 191 species belonging to 129 genera and 53 families were identified. Following island biogeography theory, total plant species richness and their ecological groups were positively influenced by island size, number of habitats,elevation and were not affected by isolation. The high level of nestedness, the strong effect of area on total plant species richness and ecological groups, and the similarity of vegetation composition on the islands has several implications for conservation. In conclusion the large and richest islands in Farasan Archipelago such as Farasan Alkbir would conserve higher diversity than several smaller islands. This island also includes rare habitats like coral rocks and rare species. The invasion of the unique habitats such as wadi channels and water catchments in this island by the exotic tree Prosopis juliflora should be managed to conserve the native biodiversity. The protection of such critical habitats is very important on the other large island (e.g. Zufaf), due to their limited distribution in the country.Keywords: island biogeography, conservation, farasan archipelago, saudi arabia, plant diversity
Procedia PDF Downloads 3468315 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 738314 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1588313 Electrical Power Distribution Reliability Improvement by Retrofitting 4.16 kV Vacuum Contactor in Badak LNG Plant
Authors: David Hasurungan
Abstract:
This paper objective is to assess the power distribution reliability improvement by retrofitting obsolete vacuum contactor. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. To support plant operational, Badak LNG is equipped with 4.16 kV switchgear for supplying the storage and loading facilities, utilities facilities, and train facilities. However, there is a problem in two switch gears of sixteen switch gears. The problem is the obsolescence issue in its vacuum contactor. Not only that, but the same switchgear also has suffered from electrical fault due to contact fingering misalignment. In order to improve the reliability in switchgear, the vacuum contactor retrofit project is done. The retrofit will introduce new vacuum contactor design. The comparison between existing design and the new design is presented in this paper. Meanwhile, The reliability assessment and calculation are performed using software Reliasoft 7.Keywords: reliability, obsolescence, retrofit, vacuum contactor
Procedia PDF Downloads 2918312 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 4828311 Bio-Efficacy of Newer Insecticides against Diamondback Moth (Plutella xylostella L. ) in Cabbage
Authors: C. G. Sawant, C. S. Patil
Abstract:
The investigation was conducted during January 2016 on Farmer’s field at Nandur Madhyameshwar, Tq. Niphad, Dist. Nashik (Maharashtra: India) on bio-efficacy of newer insecticides against Plutella xylostella L. infesting cabbage. The cabbage crop (var. Saint) was raised according to package of practices except for plant protection measures. Six newer insecticides along with two conventional insecticides and one synthetic pyrethroid were applied twice at 30 and 55 days after transplanting. Insecticidal solutions were diluted in water (375-500 L ha-1) and applied using knapsack sprayer (16L) with hollow cone nozzle. Treatments included indoxacarb @ 40 g a.i.ha-1, spinosad @ 17.5 g a.i.ha-1, flubendiamide @18.24 g a.i. ha-1, diafenthiuron @ 300 g a. i. ha-1, emamectin benzoate @ 10 g a. i. ha-1, chlorantraniliprole @ 10 g a. i. ha-1, quinalphos @ 250 g a. i. ha-1, triazophos @ 500 g a. i. ha-1, bifenthrin @ 50 g a.i. ha-1 and untreated control. The larvae were counted on head and outside the head. Observations were recorded one day before spray (Precount) and 1,3,7,14 days after spray. Results revealed that all the insecticidal treatments were significantly superior over untreated control by recording lower larval count. Among the insecticidal treatments, significantly lowest number of larvae of diamondback moth was recorded in chlorantraniliprole @ 10 g a.i.ha-1 (1.00 larvae plant-1) followed by spinosad @ 17.5 g a.i. ha-1 (1.45 larvae plant-1 and flubendiamide 18.24 g a.i. ha-1(1.53 larvae plant-1). The efficacy of insecticides reflected on yield of marketable cabbage heads by recording 242.27 qt ha-1 (1:33.38) in the treatment of chlorantraniliprole @ 10 g a.i.ha-1. It was followed by spinosad @ 17.5 g a.i. ha-1 with 236.91 qt ha-1 (1:24.92) and flubendiamide 18.24 g a.i. ha-1 with 228.49 qt ha-1 (1:30.43).Keywords: bio-efficacy, cabbage, chlorantraniliprole, Plutella xylostella L.
Procedia PDF Downloads 1458310 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant
Authors: Yogi Sirodz Gaos, Irvan Wiradinata
Abstract:
In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning
Procedia PDF Downloads 1438309 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 61