Search results for: logistic regression analysis
28576 Change of Endocrine and Exocrine Insufficiency on Non-Diabetes Patients after Distal Pancreatectomy: A Nationwide Database Study
Authors: Jin-Ming Wu, Te-Wei Ho, Yu-Wen Tien
Abstract:
Background: The aim of this population-based study was to determine the occurrence of diabetes and exocrine pancreatic insufficiencies (EPI) on non-diabetes subjects receiving distal pancreatectomy (DP). Method: A nationwide cohort study between 2000 and 2010 was collected from the Taiwan National Health Insurance Research Database. Among 3264 DP patients, we identified 1410 non-diabetes and 966 non-diabetes non-EPI. Results. Of 1410 non-diabetes DP subjects, 312 patients (22.1%) developed newly-diagnosed diabetes after PD. On a multiple logistic regression model, co-morbid hyperlipidemia (odds ratio, 1.640; 95% CI, 1.362–2.763; P < 0.001) and pancreatitis (odds ratio, 2.428; 95% CI, 1.889–3.121; P < 0.001) significantly contributed to higher incidences of diabetes after DP. Moreover, 380 subjects (39.3%) developed EPI, and pancreatic cancer is the statistically significant risk factor (odds ratio, 4.663; 95% CI, 2.108–6.085; P < 0.001). Conclusion: The patients with co-morbid hyperlipidemia and chronic pancreatitis had higher rates of newly-diagnosed diabetes after DP, moreover, pancreatic cancer subjects had higher rates of pancreatic exocrine insufficiency after DP. The clinicians should be alert to follow up glucose metabolism and clinical symptoms of fat intolerance for DP patients.Keywords: distal pancreatectomy, National database, diabetes, exocrine insufficiency
Procedia PDF Downloads 19628575 The Influence of Contextual Factors on Long-Term Contraceptive Use in East Java
Authors: Ni'mal Baroya, Andrei Ramani, Irma Prasetyowati
Abstract:
The access to reproduction health services, including with safe and effective contraception were human rights regardless of social stratum and residence. In addition to individual factors, family and contextual factors were also believed to be the cause in the use of contraceptive methods. This study aimed to assess the determinants of long-term contraceptive methods (LTCM) by considering all the factors at either the individual level or contextual level. Thereby, this study could provide basic information for program development of prevalence enhancement of MKJP in East Java. The research, which used cross-sectional design, utilized Riskesdas 2013 data, particularly in East Java Province for further analysis about multilevel modeling of MKJP application. The sample of this study consisted of 20.601 married women who were not in pregnant that were drawn by using probability sampling following the sampling technique of Riskesdas 2013. Variables in this study were including the independent variables at the individual level that consisted of education, age, occupation, access to family planning services (KB), economic status and residence. As independent variables in district level were the Human Development Index (HDI, henceforth as IPM) in each districts of East Java Province, the ratio of field officers, the ratio of midwives, the ratio of community health centers and the ratio of doctors. As for the dependent variable was the use of Long-Term Contraceptive Method (LTCM or MKJP). The data were analyzed by using chi-square test and Pearson product moment correlation. The multivariable analysis was using multilevel logistic regression with 95% of Confidence Interval (CI) at the significance level of p < 0.05 and 80% of strength test. The results showed a low CPR LTCM was concentrated in districts in Madura Island and the north coast. The women which were 25 to 35 or more than 35 years old, at least high school education, working, and middle-class social status were more likely to use LTCM or MKJP. The IPM and low PLKB ratio had implications for poor CPR LTCM / MKJP.Keywords: multilevel, long-term contraceptive methods, east java, contextual factor
Procedia PDF Downloads 24428574 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 10728573 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa
Authors: Yegnanew A. Shiferaw
Abstract:
Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility
Procedia PDF Downloads 20228572 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin
Authors: A. Ishag Mohamed, A. A. Rabah
Abstract:
The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.Keywords: N-Alkanes, N-Alkenes, nonparametric, regression
Procedia PDF Downloads 65428571 The Relation between Proactive Coping and Well-Being: An Example of Middle-Aged and Older Learners from Taiwan
Authors: Ya-Hui Lee, Ching-Yi Lu, Hui-Chuan Wei
Abstract:
The purpose of this research was to explore the relation between proactive coping and well-being of middle-aged adults. We conducted survey research that with t-test, one way ANOVA, Pearson correlation and stepwise multiple regression to analyze. This research drew on a sample of 395 participants from the senior learning centers of Taiwan. The results provided the following findings: 1.The participants from different residence areas associated significant difference with proactive coping, but not with well-being. 2. The participants’ perceived of financial level associated significant difference with both proactive coping and well-being. 3. There was significant difference between participants’ income and well-being. 4. The proactive coping was positively correlated with well-being. 5. From stepwise multiple regression analysis showed that two dimensions of proactive coping had positive predictability. Finally, these results of this study can be provided as references for designing older adult educational programs in Taiwan.Keywords: middle-age and older adults, learners, proactive coping, well-being
Procedia PDF Downloads 45628570 Private and Public Health Sector Difference on Client Satisfaction: Results from Secondary Data Analysis in Sindh, Pakistan
Authors: Wajiha Javed, Arsalan Jabbar, Nelofer Mehboob, Muhammad Tafseer, Zahid Memon
Abstract:
Introduction: Researchers globally have strived to explore diverse factors that augment the continuation and uptake of family planning methods. Clients’ satisfaction is one of the core determinants facilitating continuation of family planning methods. There is a major debate yet scanty evidence to contrast public and private sectors with respect to client satisfaction. The objective of this study is to compare quality-of-care provided by public and private sectors of Pakistan through a client satisfaction lens. Methods: We used Pakistan Demographic Heath Survey 2012-13 dataset (Sindh province) on a total of 3133 Married Women of Reproductive Age (MWRA) aged 15-49 years. Source of family planning (public/private sector) was the main exposure variable. Outcome variable was client satisfaction judged by ten different dimensions of client satisfaction. Means and standard deviations were calculated for continuous variable while for categorical variable frequencies and percentages were computed. For univariate analysis, Chi-square/Fisher Exact test was used to find an association between clients’ satisfaction in public and private sectors. Ten different multivariate models were made. Variables were checked for multi-collinearity, confounding, and interaction, and then advanced logistic regression was used to explore the relationship between client satisfaction and dependent outcome after adjusting for all known confounding factors and results are presented as OR and AOR (95% CI). Results: Multivariate analyses showed that clients were less satisfied in contraceptive provision from private sector as compared to public sector (AOR 0.92,95% CI 0.63-1.68) even though the result was not statistically significant. Clients were more satisfied from private sector as compared to the public sector with respect to other determinants of quality-of-care (follow-up care (AOR 3.29, 95% CI 1.95-5.55), infection prevention (AOR 2.41, 95% CI 1.60-3.62), counseling services (AOR 2.01, 95% CI 1.27-3.18, timely treatment (AOR 3.37, 95% CI 2.20-5.15), attitude of staff (AOR 2.23, 95% CI 1.50-3.33), punctuality of staff (AOR 2.28, 95% CI 1.92-4.13), timely referring (AOR 2.34, 95% CI 1.63-3.35), staff cooperation (AOR 1.75, 95% CI 1.22-2.51) and complications handling (AOR 2.27, 95% CI 1.56-3.29).Keywords: client satisfaction, family planning, public private partnership, quality of care
Procedia PDF Downloads 41928569 Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians
Authors: Fatma Mohamed Magdy Badr El Dine, Amr Mohamed Abd Allah
Abstract:
Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors.Keywords: age determination, canines, central incisors, Egypt, lateral incisors, pulp/tooth ratio
Procedia PDF Downloads 18428568 Exercise Behavior of Infertile Women at Risk of Osteoporosis: Application of The Health Belief Model
Authors: Arezoo Fallahi
Abstract:
We aimed at investigating the association between health beliefs and exercise behavior in infertile women who were at risk of developing osteoporosis. This cross-sectional study was conducted in Sanandaj city, west of Iran in 2018. From 35 comprehensive healthcare centers, 483 infertile women were included in the study through convenience sampling. Standardized face-to-face interviews were conducted using established, reliable instruments for the assessment of exercise behavior behavior and health beliefs. Logistic regression models were applied to assess the association between exercise behavior and health beliefs. Estimates were adjusted for age, job status, income, literacy, and duration and type of infertility. We reported estimated logits and Odds Ratios (OR) with corresponding 95% confidence intervals (95% CI). Employed women compared to housewives had substantially higher odds of adopting exercise behavior behaviors (OR=3.19, 95% CI=1.53-6.66, p<0.01). Moreover, the odds of exercise behavior adoption increased with self-efficacy (OR=1.35, 95% CI=1.20-1.52, p<0.01), and decreased with perceived barriers (OR=0.90, 95% CI=0.84-0.97, p<0.01). It is essential to increase perceived self-efficacy and reduce perceived barriers to promote EB in infertile women. Consequently, health professionals should develop or adopt appropriate strategies to decrease barriers and increase self-efficacy to enhance exercise behavior in this group of women.Keywords: infertility, women, exercise, osteoporosis
Procedia PDF Downloads 7128567 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry
Authors: Gamze Sekeroglu, Mikail Altan
Abstract:
Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.Keywords: profitability, regression analysis, inventory management, working capital
Procedia PDF Downloads 33628566 Effect of Leadership Style on Organizational Performance
Authors: Khadija Mushtaq, Mian Saqib Mehmood
Abstract:
This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan
Procedia PDF Downloads 40428565 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis
Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby
Abstract:
The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.Keywords: component analysis, multivariate, slaughter, regression
Procedia PDF Downloads 16528564 Premature Menopause among Women in India: Evidence from National Family Health Survey-IV
Authors: Trupti Meher, Harihar Sahoo
Abstract:
Premature menopause refers to the occurrence of menopause before the age of 40 years. Women who experience premature menopause either due to biological or induced reasons have a longer duration of exposure to severe symptoms and adverse health consequences when compared to those who undergo menopause at a later age, despite the fact that premature menopause has a profound effect on the health of women. This study attempted to determine the prevalence and predictors of premature menopause among women aged 25-39 years, using data from the National Family Health Survey (NFHS-4) conducted during 2015–16 in India. Descriptive statistics and multinomial logistic regression were used to carry out the result. The results revealed that the prevalence of premature menopause in India was 3.7 percent. Out of which, 2.1 percent of women had experienced natural premature menopause, whereas 1.7 percent had premature surgical menopause. The prevalence of premature menopause was highest in the southern region of India. Further, results of the multivariate model indicated that rural women, women with higher parity, early age at childbearing and women with smoking habits were at a greater risk of premature menopause. A sizeable proportion of women in India are attaining menopause prematurely. Unless due attention is given to this matter, it will emerge as a major problem in India in the future. The study also emphasized the need for further research to enhance knowledge on the problems of premature menopausal women in different socio-cultural settings in India.Keywords: India, natural menopause, premature menopause, surgical menopause
Procedia PDF Downloads 20728563 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis
Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath
Abstract:
The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression
Procedia PDF Downloads 19728562 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 37528561 Assessment of Oral and Dental Health Status of Pregnant Women in Malaga, Spain
Authors: Nepton Kiani
Abstract:
Dental decay is one of the most common chronic diseases worldwide and imposes significant costs annually on people and healthcare systems. Addressing this issue is among the important programs of the World Health Organization in the field of oral and dental disease prevention and health promotion. In this context, oral and dental health in vulnerable groups, especially pregnant women, is of greater importance due to the health maintenance of the mother and fetus. The aim of this study is to investigate the DMFT index and various factors affecting it in order to identify different factors influencing the process of dental decay and to take an effective step in reducing the progression of this disease, control, and prevention. In this cross-sectional descriptive study, 120 pregnant women attending Nepton Policlinica clinic in Malaga, Spain, were evaluated for the DMFT index and oral and dental hygiene. In this regard, interviews, precise observations, and data collection were used. Subsequently, data analysis was performed using SPSS software and employing correlation tests, Kruskal-Wallis, and Mann-Whitney tests. The DMFT index for pregnant women in three age groups 22-26, 27- 31, and 32-36 years was respectively 2.8, 4.5, and 5.6. The results of logistic regression analysis showed that demographic variables (age, education, job, economic status) and the frequency of brushing and flossing lead to preventive behavior up to 49.58 percent (P<0.05). Generally, the results indicated that oral and dental care during pregnancy is poor. Only a small number of pregnant women regularly used toothbrush and dental floss or visited the dentist regularly. On the other hand, poor performance in adopting oral and dental care was more observed in pregnant women with lower economic and educational status. The present study showed that raising the level of awareness and education on oral and dental health in pregnant women is essential. In this field, it is necessary to focus on conducting educational-care courses at the level of healthcare centers for midwives, healthcare personnel, and at the community level for families, to prevent and perform dental treatments before the pregnancy periodKeywords: Malaga, oral and dental health, pregnant women, Spain
Procedia PDF Downloads 5828560 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA
Procedia PDF Downloads 14328559 Correlation of IFNL4 ss469415590 and IL28B rs12979860 with the Hepatitis C Virus Treatment Response among Tunisian Patients
Authors: Khaoula Azraiel, Mohamed Mehdi Abassi, Amel Sadraoui, Walid Hammami, Azouz Msaddek, Imed Cheikh, Maria Mancebo, Elisabet Perez-Navarro, Antonio Caruz, Henda Triki, Ahlem Djebbi
Abstract:
IL28B rs12979860 genotype is confirmed as an important predictor of response to peginterferon/ribavirin therapy in patients with chronic hepatitis C (CHC). IFNL4 ss469415590 is a newly discovered polymorphism that could also affect the sustained virological response (SVR). The aim of this study was to evaluate the association of IL28B and IFNL4 genotypes with peginterferon/ribavirin treatment response in Tunisians patients with CHC and to determine which of these SNPs, was the stronger marker. A total of 120 patients were genotyped for both rs12979860 and ss469415590 polymorphisms. The association of each genetic marker with SVR was analyzed and comparison between the two SNPs was calculated by logistic regression models. For rs12979860, 69.6% of patients with CC, 41.8% with CT and 42.8% with TT achieved SVR (p = 0.003). Regarding ss469415590, 70.4% of patients with TT/TT genotype achieved SVR compared to 42.8% with TT/ΔG and 37.5% with ΔG /ΔG (p = 0.002). The presence of CC and TT/TT genotypes was independently associated with treatment response with an OR of 3.86 for each. In conclusion, both IL28B rs12979860 and IFNL4 ss469415590 variants were associated with response to pegIFN/RBV in Tunisian patients, without any additional benefit in performance for IFNL4. Our results are different from those detected in Sub-Saharan Africa countries.Keywords: Hepatitis C virus, IFNL4, IL28B, Peginterferon/ribavirin, polymorphism
Procedia PDF Downloads 33828558 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar
Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo
Abstract:
The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB
Procedia PDF Downloads 8928557 The Impact of Geophagia on the Iron Status of Black South African Women
Authors: A van Onselen, C. M. Walsh, F. J. Veldman, C. Brand
Abstract:
Objectives: To determine the nutritional status and risk factors associated with women practicing geophagia in QwaQwa, South Africa. Materials and Methods: An observational epidemiological study design was adopted which included an exposed (geophagia) and non-exposed (control) group. A food frequency questionnaire, anthropometric measurements and blood sampling were applied to determine nutritional status of participants. Logistic regression analysis was performed in order to identify factors that were likely to be associated with the practice of geophagia. Results: The mean total energy intake for the geophagia group (G) and control group(C) were 10324.31 ± 2755.00 kJ and 10763.94 ± 2556.30 kJ respectively. Both groups fell within the overweight category according to the mean body mass index (BMI) of each group (G= 25.59 kg/m2; C= 25.14 kg/m2). The mean serum iron levels of the geophagia group (6.929 μmol/l) were significantly lower than that of the control group (13.75 μmol/l) (p = 0.000). Serum transferrin (G=3.23g/l; C=2.7054g/l) and serum transferrin saturation (G=8.05%; C=18.74%) levels also differed significantly between groups (p=0.00). Factors that were associated with the practice of geophagia included haemoglobin (Odds ratio (OR):14.50), serum-iron (OR: 9.80), serum-ferritin (OR: 3.75), serum-transferrin (OR: 6.92) and transferrin saturation (OR: 14.50). A significant negative association (p=0.014) was found between women who were wage-earners and those who were not wage-earners and the practice of geophagia (OR: 0.143; CI: 0.027; 0.755). These findings seem to indicate that a permanent income may decrease the likelihood of practising geophagia. Key findings: Geophagia was confirmed to be a risk factor for iron deficiency in this community. The significantly strong association between geophagia and iron deficiency emphasizes the importance of identifying the practice of geophagia in women, especially during their child bearing years. Further research to establish whether the practice of geophagia is a cause of iron-deficiency, or whether it is the consequence thereof, would give a clearer view on how to recognise and treat the condition.Keywords: geophagia, iron deficiency anaemia, dietary intake, anthropometry
Procedia PDF Downloads 34928556 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul
Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt
Abstract:
Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow
Procedia PDF Downloads 36728555 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations
Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana
Abstract:
Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS
Procedia PDF Downloads 26228554 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring
Procedia PDF Downloads 16128553 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections
Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee
Abstract:
The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.Keywords: vaccination, NFHS, machine learning, public health
Procedia PDF Downloads 5928552 Drivers and Barriers to the Acceptability of a Human Milk Bank Among Malaysians: A Cross Sectional Study
Authors: Kalaashini Ramachandran, Maznah Dahlui, Nik Daliana Nik Farid
Abstract:
WHO recommends all babies to be exclusively breastfed and donor milk is the next best alternative in the absence of mother’s own milk. The establishment of a human milk bank (HMB) is still being debated due to religious concerns in Malaysia leading to informal milk sharing practices, but little is known on the knowledge, attitude and perception of women towards HMB and its benefits. This study hypothesizes that there is no association between knowledge and attitude and the acceptance towards the establishment of human milk bank among Malaysian women and healthcare providers. The aim of this study is to determine the drivers and barriers among Malaysian towards the acceptance of an HMB. A cross-sectional study with 367 participants was enrolled within a period of 3 months to answer an online self-administered questionnaire. Data on sociodemographic, knowledge on breastfeeding benefits, knowledge and attitude on HMB and its specific issues were analyzed in terms of frequency and then proceed to multiple logistic regression. Majority of the respondents are of Islamis religion (73.3%), have succeesfully completed their tertiary education (82.8%), and are employed (70.8%). Only 55.9% of respondents have heard of an HMB stating internet as their main source of information but a higher prevalence is agreeable to the establishment of a human milk bank (67.8%). Most respondents have a good score on knowledge of breastfeeding benefits and on HMB specific issues (70% and 54.2% respectively) while 63.8% of them have a positive attitude towards HMB. In the multivariate analysis, mothers with a good score on general knowledge of breastfeeding (AOR: 1.715) were more likely to accept the establishment of an HMB while Islamic religion was negatively associated with its establishment (AOR:0.113). This study has found a high prevalence rate of mothers who are willing to accept the establishment of an HMB. This action can be potentially shaped by educating mothers on the benefits of breastfeeding as well as addressing their religious concerns so the establishment of a religiously abiding HMB in Malaysia may be accepted without compromising their belief or the health benefit of donor milk.Keywords: acceptability, attitude, human milk bank, knowledge
Procedia PDF Downloads 10228551 The Comparative Study of Attitudes toward Entrepreneurial Intention between ASEAN and Europe: An Analysis Using GEM Data
Authors: Suchart Tripopsakul
Abstract:
This paper uses data from the Global Entrepreneurship Monitor (GEM) to investigate the difference of attitudes towards entrepreneurial intention (EI). EI is generally assumed to be the single most relevant predictor of entrepreneurial behavior. The aim of this paper is to examine a range of attitudes effect on individual’s intent to start a new venture. A cross-cultural comparison between Asia and Europe is used to further investigate the possible differences between potential entrepreneurs from these distinct national contexts. The empirical analysis includes a GEM data set of 10 countries (n = 10,306) which was collected in 2013. Logistic regression is used to investigate the effect of individual’s attitudes on EI. Independent variables include individual’s perceived capabilities, the ability to recognize business opportunities, entrepreneurial network, risk perceptions as well as a range of socio-cultural attitudes. Moreover, a cross-cultural comparison of the model is conducted including six ASEAN (Malaysia, Indonesia, Philippines, Singapore, Vietnam and Thailand) and four European nations (Spain, Sweden, Germany, and the United Kingdom). The findings support the relationship between individual’s attitudes and their entrepreneurial intention. Individual’s capability, opportunity recognition, networks and a range of socio-cultural perceptions all influence EI significantly. The impact of media attention on entrepreneurship and was found to influence EI in ASEAN, but not in Europe. On the one hand, Fear of failure was found to influence EI in Europe, but not in ASEAN. The paper develops and empirically tests attitudes toward Entrepreneurial Intention between ASEAN and Europe. Interestingly, fear of failure was found to have no significant effect in ASEAN, and the impact of media attention on entrepreneurship and was found to influence EI in ASEAN. Moreover, the resistance of ASEAN entrepreneurs to the otherwise high rates of fear of failure and high impact of media attention are proposed as independent variables to explain the relatively high rates of entrepreneurial activity in ASEAN as reported by GEM. The paper utilizes a representative sample of 10,306 individuals in 10 countries. A range of attitudes was found to significantly influence entrepreneurial intention. Many of these perceptions, such as the impact of media attention on entrepreneurship can be manipulated by government policy. The paper also suggests strategies by which Asian economy in particular can benefit from their apparent high impact of media attention on entrepreneurship.Keywords: an entrepreneurial intention, attitude, GEM, ASEAN and Europe
Procedia PDF Downloads 31128550 Impact Factor Analysis for Spatially Varying Aerosol Optical Depth in Wuhan Agglomeration
Authors: Wenting Zhang, Shishi Liu, Peihong Fu
Abstract:
As an indicator of air quality and directly related to concentration of ground PM2.5, the spatial-temporal variation and impact factor analysis of Aerosol Optical Depth (AOD) have been a hot spot in air pollution. This paper concerns the non-stationarity and the autocorrelation (with Moran’s I index of 0.75) of the AOD in Wuhan agglomeration (WHA), in central China, uses the geographically weighted regression (GRW) to identify the spatial relationship of AOD and its impact factors. The 3 km AOD product of Moderate Resolution Imaging Spectrometer (MODIS) is used in this study. Beyond the economic-social factor, land use density factors, vegetable cover, and elevation, the landscape metric is also considered as one factor. The results suggest that the GWR model is capable of dealing with spatial varying relationship, with R square, corrected Akaike Information Criterion (AICc) and standard residual better than that of ordinary least square (OLS) model. The results of GWR suggest that the urban developing, forest, landscape metric, and elevation are the major driving factors of AOD. Generally, the higher AOD trends to located in the place with higher urban developing, less forest, and flat area.Keywords: aerosol optical depth, geographically weighted regression, land use change, Wuhan agglomeration
Procedia PDF Downloads 35728549 Eating Disorders and Eating Behaviors in Morbid Obese Women with and without Type 2 Diabetes
Authors: Azadeh Mottaghi, Zeynab Shakeri
Abstract:
Background: Eating disorders (ED) are group of psychological disorders that significantly impair physical health and psychosocial function. EDconsists wide range of morbidity such as loss of eating control, binge eating disorder(BED), night eating syndrome (NES), and bulimia nervosa. Eating behavior is a wide range term that includes food choices, eating patterns, eating problems. In this study, current knowledge will be discussed aboutcomparison of eating disorders and eating behaviors in morbid obese women with and without type 2 diabetes. Methods: 231 womenwith morbid obesity were included in the study.Loss of eating control, Binge eating disorder and Bulimia nervosa, Night eating syndrome, and eating behaviors and psychosocial factorswere assessed. SPSS version 20 was used for statistical analysis. A p-value of <0.05 was considered significant. Results: There was a significant difference between women with and without diabetes in case of binge eating disorder (76.3% vs. 47.3%, p=0.001). Women with the least Interpersonal support evaluation list (ISEL) scores had a higher risk of eating disorders, and it is more common among diabetics (29.31% vs. 30.45%, p= 0.050). There was no significant difference between depression level and BDI score among women with or without diabetes. Although 38.5% (n=56) of women with diabetes and 50% (n=71) of women without diabetes had minimal depression. The logistic regression model has shown that women without diabetes had lower odds of exhibiting BED (OR=0.28, 95% CI 0.142-0.552).Women with and without diabetes with high school degree (OR=5.54, 95% CI 2.46-9.45, P= 0.0001 & OR=6.52, 95% CI 3.15-10.56, respectively) and moderate depression level (OR=2.03, 95% CI 0.98-3.95 & OR=3.12, 95% CI 2.12-4.56, P= 0.0001) had higher odds of BED. Conclusion: The result of the present study shows that the odds of BED was lower in non-diabetic women with morbid obesity. Women with morbid obesity who had high school degree and moderate depression level had more odds for BED.Keywords: eating disorders binge eating disorder, night eating syndrome, bulimia nervosa, morbid obesity
Procedia PDF Downloads 13528548 Cross-Sectional Association between Socio-Demographic Factors and Paid Blood Donation in Half Million Chinese Population
Authors: Jiashu Shen, Guoting Zhang, Zhicheng Wang, Yu Wang, Yun Liang, Siyu Zou, Fan Yang, Kun Tang
Abstract:
Objectives: This study aims to enhance the understanding of paid blood donors’ characteristics in Chinese population and devise strategies to protect these paid donors. Background: Paid blood donation was the predominant mode of blood donation in China from the 1970s to 1998 and caused several health and social problems including largely increased the risk of infectious diseases with nonstandard operation in unhygienic conditions. Methods: This study utilized the cross-sectional data from the China Kadoorie Biobank with about 0.5 million people from 10 regions of China from 2004 to 2008. Multivariable logistic regression was performed to examine the associations between socio-demographic factors and paid blood donation. Furthermore, a stratified analysis was applied in education level and annual household income by rural and urban areas. Results: The prevalence of paid blood donation was 0.50% in China and males were more likely to donate blood than females (Adjusted odds ratio (AOR) =0.81, 95%Confident Intervals (CI): 0.75-0.88). Urban people had much lower odds than rural people (AOR =0.24, 95%CI: 0.21-0.27). People with a high annual household income had lower odds of paid blood donation compared with that of people with low income (AOR=0.37, 95%CI: 0.31-0.44). Compared with people who didn’t receive school education, people in a higher level of education had increased odds of paid blood donation (AOR=2.31, 95%CI: 1.94-2.74). Conclusion: Paid blood donors in China were associated with those who were males, living in rural areas, with low annual household income and educational background.Keywords: China Kadoorie Biobank, Chinese population, paid blood donation, socio-demographic factors
Procedia PDF Downloads 15228547 Neural Network Modelling for Turkey Railway Load Carrying Demand
Authors: Humeyra Bolakar Tosun
Abstract:
The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.Keywords: railway load carrying, neural network, modelling transport, transportation
Procedia PDF Downloads 143