Search results for: laser line detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6732

Search results for: laser line detection

6042 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 150
6041 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 164
6040 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA

Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata

Abstract:

We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.

Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time

Procedia PDF Downloads 558
6039 Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses

Authors: Dinesh Gundavaram

Abstract:

This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement.

Keywords: bridge, damage, dynamic responses, detection

Procedia PDF Downloads 274
6038 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 17
6037 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line

Procedia PDF Downloads 391
6036 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection

Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud

Abstract:

A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.

Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique

Procedia PDF Downloads 177
6035 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
6034 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 182
6033 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam

Authors: Pajaree Donkhampa, Fuangfa Unob

Abstract:

Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.

Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye

Procedia PDF Downloads 169
6032 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori

Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh

Abstract:

An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.

Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)

Procedia PDF Downloads 267
6031 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery

Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur

Abstract:

Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.

Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly

Procedia PDF Downloads 531
6030 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 13
6029 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: antenna array, signal detection, ToA, AoA estimation

Procedia PDF Downloads 499
6028 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 89
6027 Screening of the Sunflower Genotypes for Drought Stress at Seedling Stage by Polyethylene Glycol under Laboratory Conditions

Authors: Uzma Ayaz, Sanam Bashir, Shahid Iqbal Awan, Muhammad Ilyas, Muhammad Fareed Khan

Abstract:

Drought stress directly affects growth along with the productivity of plants by altering plant water status. Sunflower (Helianthus annuus L.), an oilseed crop, is adversely affected by abiotic stresses. The present study was carried out to characterize the genetic variability for seedling and morpho-physiological parameters in different sunflower genotypes under water-stressed conditions. A total of twenty-seven genotypes, including two hybrids, eight advanced lines and seventeen accessions of sunflower (Helianthus annuus L.) were tested against drought stress at Seedling stages by Polyethylene glycol (PEG). Significant means were calculated among traits using analysis of variance (ANOVA) whereas, correlation and principal component analysis also confirmed that germination percentage, root length, shoot length, chlorophyll content, stomatal frequency are positively linked with each other hence, these traits were responsible for most of the variation among genotypes. The cluster analysis results showed that genotypes Ausun, line-3, line-2, and 17578, line-1, line-7, line-6 and 17562 as more diverse among all the genotypes. These most divergent genotypes could be utilized in the development of drought-tolerant inbreed lines which could be subsequently used in future heterosis breeding programs.

Keywords: sunflower, drought, stress, polyethylene- glycol, screening

Procedia PDF Downloads 127
6026 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 302
6025 The Value of Dynamic Magnetic Resonance Defecography in Assessing the Severity of Defecation Disorders

Authors: Ge Sun, Monika Trzpis, Robbert J. de Haas, Paul M. A. Broens

Abstract:

Introduction: Dynamic magnetic resonance defecography is frequently used to assess defecation disorders. We aimed to investigate the usefulness of dynamic magnetic resonance defecography for assessing the severity of defecation disorder. Methods: We included patients retrospectively from our tertiary referral hospital who had undergone dynamic magnetic resonance defecography, anorectal manometry, and anal electrical sensitivity tests to assess defecation disorders between 2014 and 2020. The primary outcome was the association between the dynamic magnetic resonance defecography variables and the severity of defecation disorders. We assessed the severity of fecal incontinence and constipation with the Wexner incontinence and Agachan constipation scores. Results: Out of the 32 patients included, 24 completed the defecation questionnaire. During defecation, the M line length at magnetic resonance correlated with the Agachan score (r = 0.45, p = 0.03) and was associated with anal sphincter pressure (r=0.39, p=0.03) just before defecation. During rest and squeezing, the H line length at imaging correlated with the Wexner incontinence score (r=0.49, p=0.01 and r=0.69, p< 0.001, respectively). H line length also correlated positively with the anal electrical sensation threshold during squeezing (r=0.50, p=0.004) and during rest (r= 0.42, p=0.02). Conclusions: The M and H line lengths at dynamic magnetic resonance defecography can be used to assess the severity of constipation and fecal incontinence respectively and reflect anatomic changes of the pelvic floor. However, as these anatomic changes are generally late-stage and irreversible, anal manometry seems a better diagnostic approach to assess early and potentially reversible changes in patients with defecation disorders.

Keywords: defecation disorders, dynamic magnetic resonance defecography, anorectal manometry, anal electrical sensitivity tests, H line, M line

Procedia PDF Downloads 106
6024 Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser

Authors: Monika Singh

Abstract:

A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals.

Keywords: surface plasmons, surface waves, thin films, THz radiation

Procedia PDF Downloads 392
6023 Clustering Color Space, Time Interest Points for Moving Objects

Authors: Insaf Bellamine, Hamid Tairi

Abstract:

Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.

Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering

Procedia PDF Downloads 379
6022 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 216
6021 Experimental Demonstration of Broadband Erbium-Doped Fiber Amplifier

Authors: Belloui Bouzid

Abstract:

In this paper, broadband design of erbium doped fiber amplifier (EDFA) is demonstrated and proved experimentally. High and broad gain is covered in C and L bands. The used technique combines, in one configuration, two double passes with split band structure for the amplification of two traveled signals one for the C band and the other for L band. This new topology is to investigate the trends of high gain and wide amplification at different status of pumping power, input wavelength, and input signal power. The presented paper is to explore the performance of EDFA gain using what it can be called double pass double branch wide band amplification configuration. The obtained results show high gain and wide broadening range of 44.24 dB and 80 nm amplification respectively.

Keywords: erbium doped fiber amplifier, erbium doped fiber laser, optical amplification, fiber laser

Procedia PDF Downloads 255
6020 Magnesium Nanoparticles for Photothermal Therapy

Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini

Abstract:

Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.

Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy

Procedia PDF Downloads 270
6019 An Advanced YOLOv8 for Vehicle Detection in Intelligent Traffic Management

Authors: A. Degale Desta, Cheng Jian

Abstract:

Background: Vehicle detection accuracy is critical to intelligent transportation systems and autonomous driving. The state-of-the-art object identification technology YOLOv8 has shown significant gains in efficiency and detection accuracy. This study uses the BDD100K dataset, which is renowned for its extensive and varied annotations, to assess how well YOLOv8 performs in vehicle detection. Objectives: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Methods: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Results: The results show that YOLOv8 achieves high mAP, recall, precision, and F1-score values, indicating state-of-the-art performance. This suggests that YOLOv8 can identify cars in complex urban environments with a high degree of accuracy and reliable results in a variety of traffic scenarios. Conclusion: The results indicate that YOLOv8 is a useful tool for enhancing vehicle detection accuracy in intelligent transportation systems, hence advancing urban public safety and security. The model's demonstrated performance shows how well it may be incorporated into autonomous driving applications to improve situational awareness and responsiveness.

Keywords: vehicle detection, YOLOv8, BDD100K, object detection, deep learning

Procedia PDF Downloads 12
6018 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 420
6017 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 203
6016 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 123
6015 A Cephalometric Superimposition of a Skeletal Class III Orthognathic Patient on Nasion-Sella Line

Authors: Albert Suryaprawira

Abstract:

The Nasion-Sella Line (NSL) has been used for several years as a reference line in longitudinal growth study. Therefore this line is considered to be stable not only to evaluate treatment outcome and to predict relapse possibility but also to manage prognosis. This is a radiographic superimposition of an adult male aged 19 years who complained of difficulty in aesthetic, talking and chewing. Patient has a midface hypoplasia profile (concave). He was diagnosed to have a severe Skeletal Class III with Class III malocclusion, increased lower vertical height, and an anterior open bite. A pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. A panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, a pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, a post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition using NSL as a reference line between those radiographs was performed to analyse the outcome. It is important to describe the amount of hard and soft tissue movement and to predict the possibility of relapse after the surgery. The patient also needs to understand all the surgical plan, outcome and relapse prevention. The surgical management included maxillary impaction and advancement of Le Fort I osteotomy. The evaluation using NSL as a reference was a very useful method in determining the outcome and prognosis.

Keywords: Nasion-Sella Line, midface hypoplasia, Le Fort 1, maxillary advancement

Procedia PDF Downloads 142
6014 Yield Performance of Two Locally Adapted and Two Introductions of Common Cowpea in Response to Amended In-Row-Spaces and Planting Dates

Authors: Ayman M. A. Rashwan, Mohamed F. Mohamed, Mohamed M. A. Abdalla

Abstract:

A field experiment was conducted in the Agricultural Research Station, at El-Ghoraieb, Assiut to study dry seed yield performance of two locally adapted cultivars (‘Azmerly’ and ‘Cream 7’) and two line introductions (IT81D-1032 and IT82D-812) of common cowpea (Vigna unguiculata (L.) Walp) grown at three different within-row spaces (20, 30 and 40 cm) and two planting dates in the summer (April 15th and 30th) and in the fall season (Aug. 12th and 27th) of two successive seasons. The data showed that total dry-seed yield produced by plants grown at 20 cm was greater than at 30 cm in all cvs/lines in both years. Increases in 1000-seed weight were detected in cv ‘Azmerly’ and line IT82D-812 when they were grown at 30 cm as compared with 20 cm in the summer season. However, in the fall season such increases were found in all cvs/lines. Planting at 40 cm produced seeds of greater weight than planting at 30 cm for all cvs/lines in the fall season and also in cv. Cream 7 and line IT82D-812 in the summer season. Planting on April 15th in the summer and also planting on Aug. 12th in the fall had plants which showed increases in 1000-seed weight and total dry-seed yield. The greatest 1000-seed weight was found in the line IT81D-1032 in the summer season and in the line IT82D-812 in the fall season. The sum up results revealed that ‘Azmerly’ produced greater dry-seed yield than ‘Cream 7’ and both of them were superior to the line IT82D-812 and IT81D-1032 in the summer season. In the fall, however, the line IT82D-812 produced greater dry-seed yield than the other cultivars/lines.

Keywords: Cowpea, Assiut, fall, planting dates, El-Ghoraieb, dry-seed yield

Procedia PDF Downloads 634
6013 Medical Advances in Diagnosing Neurological and Genetic Disorders

Authors: Simon B. N. Thompson

Abstract:

Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.

Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning

Procedia PDF Downloads 386