Search results for: joint shear strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5463

Search results for: joint shear strength

4773 Chip Morphology and Cutting Forces Investigation in Dry High Speed Orthogonal Turning of Titanium Alloy

Authors: M. Benghersallah, L. Boulanouar, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000 and 1200 m / min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. In these experiments, the chip shape was systematically investigated at each cutting conditions using optical microscopy. The chips produced were collected and polished to measure the thicknesses t2max and t2min, dch the distance between each segments and ɸseg the inclination angle As described in the introduction part, the shear angle f and the inclination angle of a segment ɸseg are differentiated. The angle ɸseg is actually measured on the collected chips while the shear angle f cannot be. The angle ɸ represents the initial shear similar to the one that describes the formation of a continuous chip in the primary shear zone. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: dry high speed, orthogonal turning, chip formation, cutting speed, cutting forces

Procedia PDF Downloads 269
4772 Non-Linear Transformation of Bulk Acoustic Waves at Oblique Incidence on Plane Solid Boundary

Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy

Abstract:

The transformation of two types of acoustic waves can occur on a flat interface between two solids at oblique incidence of longitudinal and shear bulk acoustic waves (BAW). This paper presents the results of experimental studies of the properties of reflection and propagation of longitudinal wave and generation of second and third longitudinal and shear harmonics of BAW at oblique incidence of longitudinal BAW on a flat rough boundary between two solids. The experimental sample was a rectangular isosceles pyramid made of D16 aluminum alloy with the plane parallel bases cylinder made of D16 aluminum alloy pressed to the base. The piezoelectric lithium niobate transducer with a resonance frequency of 5 MHz was secured to one face of the pyramid to generate a longitudinal wave. Longitudinal waves emitted by this transducer felt at an angle of 45° to the interface between two solids and reflected at the same angle. On the opposite face of the pyramid, and on the flat side of the cylinder was attached longitudinal transducer with resonance frequency of 10 MHz or the shear transducer with resonance frequency of 15 MHz. These transducers also effectively received signal at a frequency of 5 MHz. In the spectrum of the transmitted and reflected BAW was observed shear and longitudinal waves at a frequency of 5 MHz, as well as longitudinal harmonic at a frequency harmonic of 10 MHz and a shear harmonic at frequency of 15 MHz. The effect of reversing changing of external pressure applied to the rough interface between two solids on the value of the first and higher harmonics of the BAW at oblique incidence on the interface of the longitudinal BAW was experimentally investigated. In the spectrum of the reflected signal from the interface, there was a decrease of amplitudes of the first harmonics of the signal, and non-monotonic dependence of the second and third harmonics of shear wave with an increase of the static pressure applied to the interface. In the spectrum of the transmitted signal growth of the first longitudinal and shear harmonic amplitude and non-monotonic dependence - first increase and then decrease in the amplitude of the second and third longitudinal shear harmonic with increasing external static pressure was observed. These dependencies were hysteresis at reversing changing of external pressure. When pressure applied to the border increased, acoustic contact between the surfaces improves. This increases the energy of the transmitted elastic wave and decreases the energy of the reflected wave. The second longitudinal acoustic harmonics generation was associated with the Hertz nonlinearity on the interface of two pressed rough surfaces, the generation of the third harmonic was caused by shear hysteresis nonlinearity due to dry friction on a rough interface. This study was supported by the Russian Science Foundation (project №14-22-00042).

Keywords: generation of acoustic harmonics, hysteresis nonlinearity, Hertz nonlinearity, transformation of acoustic waves

Procedia PDF Downloads 365
4771 Parametric Study on the Behavior of Reinforced Concrete Continuous Beams Flexurally Strengthened with FRP Plates

Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour

Abstract:

External bonding of fiber reinforced polymer (FRP) plates to reinforced concrete (RC) beams is an effective technique for flexural strengthening. This paper presents an analytical parametric study on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers, conducted using simple uniaxial nonlinear finite element model (UNFEM). UNFEM is able to estimate the load-carrying capacity, different failure modes and the interfacial stresses of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. The study investigated the effect of five key parameters on the behavior and moment redistribution of FRP-reinforced continuous beams. The investigated parameters were the length of the FRP plate, the width and the thickness of the FRP plate, the ratio between the area of the FRP plate to the concrete area, the cohesive shear strength of the adhesive layer, and the concrete compressive strength. The investigation resulted in a number of important conclusions reflecting the effects of the studied parameters on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates.

Keywords: continuous beams, parametric study, finite element, fiber reinforced polymer

Procedia PDF Downloads 358
4770 In-Plane Shear Tests of Prefabricated Masonry Panel System with Two-Component Polyurethane Adhesive

Authors: Ekkehard Fehling, Paul Capewell

Abstract:

In recent years, the importance of masonry glued by polyurethane adhesive has increased. In 2021, the Institute of Structural Engineering of the University of Kassel was commissioned to carry out quasi-static in-plane shear tests on prefabricated brick masonry panel systems with 2K PUR adhesive in order to investigate the load-bearing behavior during earthquakes. In addition to the usual measurement of deformations using displacement transducers, all tests were documented using an optical measuring system (“GOM”), which was used to determine the surface strains and deformations of the test walls. To compare the results with conventional mortar walls, additional reference tests were carried out on test specimens with thin-bed mortar joints. This article summarizes the results of the test program and provides a comparison between the load-bearing behavior of masonry bonded with polyurethane adhesive and thin bed mortar in order to enable realistic non-linear modeling.

Keywords: masonry, shear tests, in-plane, polyurethane adhesive

Procedia PDF Downloads 55
4769 Comparison of Water Curing and Carbonation Curing on Mortar Mix Incorporating Cement Kiln Dust

Authors: Devender Sharma, Shweta Goyal

Abstract:

Sustainable development is a key to protect the environment for a secure future. Accelerated carbonation curing is a comparatively new technique for curing of concrete which involves sequestration of carbon dioxide gas into the precast concrete, resulting in improvement of the properties of concrete. This paper presents the results of a study to evaluate the effect of carbonation curing on cement mortars incorporating cement kiln dust (CKD) as partial replacement of cement. The mortar specimens were prepared by replacing cement with CKD in varying percentages of 0-50% by the weight of cement. The specimens were subjected to 12 hour carbonation curing, followed by sealed packing till testing age. The results were compared with the normal curing procedure, in which the specimens were water cured till the testing age. Compressive strength and microstructure of the mix were studied. It was noted that on increasing the percentage of CKD up to 10% by the weight of the cement, no considerable change was observed in the compressive strength. But as the percentage of CKD was further increased, there was a decrease in compressive strength, with strength decreasing up to 40% when 50% of the cement was replaced with CKD. The decrease in strength is due to the lesser lime content in CKD as compared to cement. High ettringite formation was observed in mixes with high percentages of CKD, thus indicating a decrease in the compressive strength. With carbonation curing, an early age strength gain was observed in mortars, even with higher percentages of CKD. The early strength of the carbonation cured mixes was found to be greater than water cured mixes irrespective of the percentage of CKD. 7 days and 28 days compressive strength of the mix was comparable for both the carbonation cured and water cured specimen. The increase in compressive strength can be attributed to the conversion of unstable Ca(OH)2 into stable CaCO3, which causes densification of the mix. CaCO3 precipitation and greater CSH gel formation was clearly observed in the SEM images of carbonation cured specimen, indicating higher compressive strength. Thus, carbonation curing can be used as an efficient method to enhance the properties of concrete.

Keywords: carbonation, cement kiln dust, compressive strength, microstructure

Procedia PDF Downloads 213
4768 A Pilot Study on the Short Term Effects of Paslop Dance Exercise on Core Strength, Balance and Flexibility

Authors: Wilawan Kanhachon, Yodchai Boonprakob, Uraiwon Chatchawan, Junichiro Yamauchi

Abstract:

Introduction: Paslop is a traditional dance from Laos, which is popular in Laos and northeastern of Thailand. This unique type of Paslop dancing is to control body movement with the song. While dancing to the beat, dancers should contract their abdomen and back muscle all the time. Paslop may be a good alternative to improve strengthening, balance and flexibility. Objective: To investigate the effects of Paslop dance exercise on core strength, balance, and flexibility. Methods: Seven healthy participants (age, 20.57±1.13 yrs; height, 162.29±6.16 cm; body mass, 58.14±7.03 kg; mean± S.D.) were volunteered to perform the 45-minute Paslop dance exercise in three times a week for 8 weeks. Before, during and after the exercise period, core strength, balance and flexibility were measured with the pressure biofeedback unit (PBU), one-leg stance test (OLST), and sit and reach test (SAR), respectively. Result: PBU score for core strength increased from 2.12 mmHg in baseline to 6.34 mmHg at the 4th week and 10.10 mmHg at the 8th week after the Paslop dance training, while OLST and SAR did not change. Conclusion: The study demonstrates that 8-week Paslop dancing exercise can improve the core strength.

Keywords: balance, core strength, flexibility, Paslop

Procedia PDF Downloads 369
4767 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete

Authors: Jiaqi Huang, Lu Jin

Abstract:

Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.

Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete

Procedia PDF Downloads 161
4766 Numerical Assessment on the Unsaturated Behavior of Silty Sand

Authors: Seyed Abolhassan Naeini, Ali Namaei

Abstract:

This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.

Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test

Procedia PDF Downloads 104
4765 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation

Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei

Abstract:

Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.

Keywords: hammershock, IDDES, S-bend, surge signature

Procedia PDF Downloads 275
4764 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution

Procedia PDF Downloads 106
4763 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: C. J. Coetzee, E. Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out

Procedia PDF Downloads 282
4762 Evaluation of Fresh, Strength and Durability Properties of Self-Compacting Concrete Incorporating Bagasse Ash

Authors: Abdul Haseeb Wani, Shruti Sharma, Rafat Siddique

Abstract:

Self-compacting concrete is an engineered concrete that flows and de-airs without additional energy input. Such concrete requires a high slump which can be achieved by the addition of superplasticizers to the concrete mix. In the present work, bagasse ash is utilised as a replacement of cement in self-compacting concrete. This serves the purpose of both land disposal and environmental concerns related to the disposal of bagasse ash. Further, an experimental program was carried out to study the fresh, strength, and durability properties of self-compacting concrete made with bagasse ash. The mixes were prepared with four percentages (0, 5, 10 and 15) of bagasse ash as partial replacement of cement. Properties investigated were; Slump-flow, V-funnel and L-box, Compressive strength, Splitting tensile strength, Chloride-ion penetration resistance and Water absorption. Compressive and splitting tensile strength tests were conducted at the age of 7 and 28 days. Rapid chloride-ion permeability test was carried at the age of 28 days and water absorption test was carried out at the age of 7 days after initial curing of 28 days. Test results showed that there is an increase in the compressive strength and splitting tensile strength of the concrete specimens having up to 10% replacement level, however, there is a slight decrease at 15% level of replacement. Resistance to chloride-ion penetration of the specimens increased as the percentage of replacement was increased. The charge passed in all the specimens containing bagasse ash was lower than that of the specimen without bagasse ash. Water absorption of the specimens decreased up to 10% replacement level and increased at 15% level of replacement. Hence, it can be concluded that optimum level of replacement of cement with bagasse ash in self-compacting concrete comes out to be 10%; at which the self-compacting concrete has satisfactory flow characteristics (as per the European guidelines), improved compressive and splitting tensile strength and better durability properties as compared to the control mix.

Keywords: bagasse ash, compressive strength, self-compacting concrete, splitting tensile strength

Procedia PDF Downloads 336
4761 Predicting the Uniaxial Strength Distribution of Brittle Materials Based on a Uniaxial Test

Authors: Benjamin Sonnenreich

Abstract:

Brittle fracture failure probability is best described using a stochastic approach which is based on the 'weakest link concept' and the connection between a microstructure and macroscopic fracture scale. A general theoretical and experimental framework is presented to predict the uniaxial strength distribution according to independent uniaxial test data. The framework takes as input the applied stresses, the geometry, the materials, the defect distributions and the relevant random variables from uniaxial test results and gives as output an overall failure probability that can be used to improve the reliability of practical designs. Additionally, the method facilitates comparisons of strength data from several sources, uniaxial tests, and sample geometries.

Keywords: brittle fracture, strength distribution, uniaxial, weakest link concept

Procedia PDF Downloads 308
4760 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 622
4759 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model

Authors: Nafiseh Ebrahimi, Amir Jafari

Abstract:

The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.

Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel

Procedia PDF Downloads 118
4758 Effect of Stirrup Corrosion on Concrete Confinement Strength

Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya

Abstract:

This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.

Keywords: bridge, column, concrete, corrosion, inspection, stirrup reinforcement

Procedia PDF Downloads 432
4757 Effect of Lead Content on Physical Properties of the Al–Si Eutectic Alloys

Authors: Hasan Kaya

Abstract:

Effect of lead content on the microstructure, mechanical (microhardness, ultimate tensile strength) and electrical resistivity properties of Al–Si eutectic alloys has been investigated. Al–12.6 Si–xSn (x=1, 2, 4, 6 and 8 wt. %) were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient (5.50 K/mm) and growth rate (8.25 μm/s) by using a Bridgman–type directional solidification furnace. Eutectic spacing, microhardness, ultimate tensile strength and electrical resistivity were expressed as functions of the composition by using a linear regression analysis. The dependency of the eutectic spacing, microhardness, tensile strength and electrical resistivity on the composition (Sn content) were determined. According to experimental results, the microhardness, ultimate tensile strength and electrical resistivity of the solidified samples increase with increasing the Sn content, but decrease eutectic spacing. Variation of electrical resistivity with the temperature in the range of 300-500 K for studied alloys was also measured by using a standard d.c. four-point probe technique.

Keywords: content elements, solidification, microhardness, strength

Procedia PDF Downloads 277
4756 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers

Authors: Yungtai Lo

Abstract:

The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.

Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model

Procedia PDF Downloads 269
4755 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel

Authors: Rachelly Ashwall, Ephraim Tabory

Abstract:

In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.

Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity

Procedia PDF Downloads 236
4754 Influence of Recycled Glass Content on the Properties of Concrete and Mortar

Authors: Bourmatte Nadjoua, Houari Hacène

Abstract:

The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar.

Keywords: compressive strength, concrete, mortar, recycled glass

Procedia PDF Downloads 422
4753 Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand

Authors: Ravande Kishore

Abstract:

The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry.

Keywords: construction material, partial replacement, marble dust, compressive strength

Procedia PDF Downloads 414
4752 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction

Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi

Abstract:

Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.

Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping

Procedia PDF Downloads 493
4751 Radio Based Location Detection

Authors: M. Pallikonda Rajasekaran, J. Joshapath, Abhishek Prasad Shaw

Abstract:

Various techniques has been employed to find location such as GPS, GLONASS, Galileo, and Beidou (compass). This paper currently deals with finding location using the existing FM signals that operates between 88-108 MHz. The location can be determined based on the received signal strength of nearby existing FM stations by mapping the signal strength values using trilateration concept. Thus providing security to users data and maintains eco-friendly environment at zero installation cost as this technology already existing FM stations operating in commercial FM band 88-108 MHZ. Along with the signal strength based trilateration it also finds azimuthal angle of the transmitter by employing directional antenna like Yagi-Uda antenna at the receiver side.

Keywords: location, existing FM signals, received signal strength, trilateration, security, eco-friendly, direction, privacy, zero installation cost

Procedia PDF Downloads 500
4750 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction

Authors: Huijuan Liu, Fukun Li, Hao Yuan

Abstract:

The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.

Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration

Procedia PDF Downloads 123
4749 Analyzing Tensile Strength in Different Composites at High Temperatures: Insights from 761 Tests

Authors: Milad Abolfazli, Milad Bazli

Abstract:

In this critical review, the topic of how composites maintain their tensile strength when exposed to elevated temperatures will be studied. A comprehensive database of 761 tests have been analyzed and closely examined to study the various factors that affect the strength retention. Conclusions are drawn from the collective research efforts of numerous scholars who have investigated this subject. Through the analysis of these tests, the relationships between the tensile strength retention and various effective factors are investigated. This review is meant to be a practical resource for researchers and engineers. It provides valuable information that can guide the development of composites tailored for high-temperature applications. By offering a deeper understanding of how composites behave in extreme heat, the paper contributes to the advancement of materials science and engineering.

Keywords: tesnile tests, high temperatures, FRP composites, mechanical perfomance

Procedia PDF Downloads 54
4748 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 213
4747 Features of Rail Strength Analysis in Conditions of Increased Force Loading

Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze

Abstract:

In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure. As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.

Keywords: axial loading, rail force loading, rail structure, rail strength analysis, rail track stability

Procedia PDF Downloads 409
4746 Strength and Permeability of the Granular Pavement Materials Treated with Polyacrylamide Based Additive

Authors: Romel N. Georgees, Rayya A Hassan, Robert P. Evans, Piratheepan Jegatheesan

Abstract:

Among other traditional and non-traditional additives, polymers have shown an efficient performance in the field and improved sustainability. Polyacrylamide (PAM) is one such additive that has demonstrated many advantages including a reduction in permeability, an increase in durability and the provision of strength characteristics. However, information about its effect on the improved geotechnical characteristics is very limited to the field performance monitoring. Therefore, a laboratory investigation was carried out to examine the basic and engineering behaviors of three types of soils treated with a PAM additive. The results showed an increase in dry density and unconfined compressive strength for all the soils. The results further demonstrated an increase in unsoaked CBR and a reduction in permeability for all stabilized samples.

Keywords: CBR, hydraulic conductivity, PAM, unconfined compressive strength

Procedia PDF Downloads 362
4745 Evaluating Cement Brands in Southwestern Nigeria for Local Construction Industries

Authors: Olonade, K. A., Jaji, M. B., Rasak, S. A., Ojo, B. A., Adefuye, O. E.

Abstract:

Different brands of cement are used in Nigeria by local contractors for various works without prior knowledge of their performance. Qualities of common cement brands in Southwestern Nigeria were investigated. Elephant, Dangote, Gateway, Purechem, Burham and Five Star cements were selected for the study. Fineness, setting times, chemical composition, compressive and flexural strengths of each of the cement brands were determined. The results showed that all the cement brands contained major oxides in amount within the acceptable values except that the sulphite content of Gateway fell outside the range. Strength comparison indicated that Burham had highest flexural and compressive strength, followed by Elephant and then Dangote while Gateway had the lowest strength at 28 days. It was observed that Dangote cement set earlier than other cement brands. The study has shown that there were differences in performance of the selected cement brands and concluded that the choice of cement brand should be based on the expected performance.

Keywords: cement brand, compressive strength, flexural strength, local construction industries

Procedia PDF Downloads 471
4744 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model

Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas

Abstract:

Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.

Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior

Procedia PDF Downloads 287