Search results for: industrial networks
5279 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks
Authors: Rishabh Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system
Procedia PDF Downloads 1045278 An Enhanced Hybrid Backoff Technique for Minimizing the Occurrence of Collision in Mobile Ad Hoc Networks
Authors: N. Sabiyath Fatima, R. K. Shanmugasundaram
Abstract:
In Mobile Ad-hoc Networks (MANETS), every node performs both as transmitter and receiver. The existing backoff models do not exactly forecast the performance of the wireless network. Also, the existing models experience elevated packet collisions. Every time a collision happens, the station’s contention window (CW) is doubled till it arrives at the utmost value. The main objective of this paper is to diminish collision by means of contention window Multiplicative Increase Decrease Backoff (CWMIDB) scheme. The intention of rising CW is to shrink the collision possibility by distributing the traffic into an outsized point in time. Within wireless Ad hoc networks, the CWMIDB algorithm dynamically controls the contention window of the nodes experiencing collisions. During packet communication, the backoff counter is evenly selected from the given choice of [0, CW-1]. At this point, CW is recognized as contention window and its significance lies on the amount of unsuccessful transmission that had happened for the packet. On the initial transmission endeavour, CW is put to least amount value (C min), if transmission effort fails, subsequently the value gets doubled, and once more the value is set to least amount on victorious broadcast. CWMIDB is simulated inside NS2 environment and its performance is compared with Binary Exponential Backoff Algorithm. The simulation results show improvement in transmission probability compared to that of the existing backoff algorithm.Keywords: backoff, contention window, CWMIDB, MANET
Procedia PDF Downloads 2775277 Microseismicity of the Tehran Region Based on Three Seismic Networks
Authors: Jamileh Vasheghani Farahani
Abstract:
The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).Keywords: Iran, major faults, microseismicity, Tehran
Procedia PDF Downloads 3655276 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farmingas Web of Things to Cloud Interface Using PaaS
Authors: Sumaya Ismail, Aijaz Ahmad Reshi
Abstract:
The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to the Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them with web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular, the Representational State Transfer protocol (REST) was extended for the specific requirements of the application. The Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway
Procedia PDF Downloads 1045275 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 1265274 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 625273 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities
Authors: Elke Mackensen
Abstract:
Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.Keywords: educational systems engineering training, requirements analysis, system modelling, SysML
Procedia PDF Downloads 3465272 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks
Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi
Abstract:
In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward
Procedia PDF Downloads 5815271 Exploring Deep Neural Network Compression: An Overview
Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart
Abstract:
The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition
Procedia PDF Downloads 435270 Coding of RMAC and Its Theoretical and Simulation-Based Performance Comparison with SMAC
Authors: Hamida Qumber Ali, Waseem Muhammad Arain, Shama Siddiqui, Sayeed Ghani
Abstract:
We present an implementing of RMAC in TinyOS 1.x. RMAC is a cross layer and Duty-cycle MAC protocols that was proposed to provide energy efficient transmission services for wireless sensor networks. The protocol has a unique and efficient packet transmission scheduling mechanism that enables it to overcome delivery latency and overcome traffic congestion. Design details and implementation challenges are divulged. Experiments are conducted to show the correctness of our implementation with numerous assumptions. Simulations are performed to compare the performance of RMAC and SMAC. Our results show that RMAC outperforms SMAC in energy efficiency and delay.Keywords: MAC protocol, performance, RMAC, wireless sensor networks
Procedia PDF Downloads 3255269 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks
Authors: Ruchi Makani, B. V. R. Reddy
Abstract:
Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system
Procedia PDF Downloads 1775268 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System
Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia
Abstract:
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition
Procedia PDF Downloads 4895267 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 505266 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: social network, link prediction, granular computing, type-2 fuzzy sets
Procedia PDF Downloads 3265265 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 1235264 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure
Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh
Abstract:
The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.Keywords: thin plate, transverse shear, tension field, finite element analysis, parametric study, design
Procedia PDF Downloads 2205263 Integrating Cost-Benefit Assessment and Contract Design to Support Industrial Symbiosis Deployment
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) is the realization of Industrial Ecology (I.E) principles in production systems in function. I.S consists in the use of waste materials, fatal energy, recirculated utilities and infrastructure/service sharing as resources for production. Environmental benefits can be achieved from resource conservation but economic profitability is required by the participating actors. I.S indeed involves several actors with their own objectives and resources so that each one must be satisfied by ex-ante arrangements to commit toward I.S execution (investments and transactions). Following the Resource-Based View of transactions we build a modular framework to assess global I.S profitability and to specify each actor’s contributions to costs and benefits in line with their resource endowments and performance requirements formulations. I.S projects specificities implied by the need for customization (asset specificity, non-homogeneity) induce the use of long-term contracts for transactions following Transaction costs economics arguments. Thus we propose first a taxonomy of costs and value drivers for I.S and an assignment to each actor of I.S specific risks that we identified as load profiles mismatch, quality problems and value fluctuations. Then appropriate contractual guidelines (pricing, cost sharing and warranties) that support mutual profitability are derived from the detailed identification of contributions by the cost-benefits model. This analytical framework helps identifying what points to focus on when bargaining over contracting for transactions and investments. Our methodology is applied to I.S archetypes raised from a literature survey on eco-industrial parks initiatives and practitioners interviews.Keywords: contracts, cost-benefit analysis, industrial symbiosis, risks
Procedia PDF Downloads 3405262 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farming as Web of Things to Cloud Interface Using Platform as a Service
Authors: Sumaya Iqbal, Aijaz Ahmad Reshi
Abstract:
The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made the resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular Representational State Transfer protocol (REST) was extended for the specific requirements of the application. Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway
Procedia PDF Downloads 1205261 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.Keywords: distributed generation, heuristic approach, optimization, planning
Procedia PDF Downloads 5245260 The Connection Between the International Law and the Legal Consultation on the Social Media
Authors: Amir Farouk Ahmed Ali Hussin
Abstract:
Social media, such as Facebook, LinkedIn and Ex-Twitter have experienced exponential growth and a remarkable adoption rate in recent years. They give fantastic means of online social interactions and communications with family, friends, and colleagues from around the corner or across the globe, and they have become an important part of daily digital interactions for more than one and a half billion users around the world. The personal information sharing practices that social network providers encourage have led to their success as innovative social interaction platforms. Moreover, these practices have outcome in concerns with respect to privacy and security from different stakeholders. Guiding these privacy and security concerns in social networks is a must for these networks to be sustainable. Real security and privacy tools may not be enough to address existing concerns. Some points should be followed to protect users from the existing risks. In this research, we have checked the various privacy and security issues and concerns pertaining to social media. However, we have classified these privacy and security issues and presented a thorough discussion of the effects of these issues and concerns on the future of the social networks. In addition, we have presented a set of points as precaution measures that users can consider to address these issues.Keywords: international legal, consultation mix, legal research, small and medium-sized enterprises, strategic International law, strategy alignment, house of laws, deployment, production strategy, legal strategy, business strategy
Procedia PDF Downloads 635259 An Association between Stock Index and Macro Economic Variables in Bangladesh
Authors: Shamil Mardi Al Islam, Zaima Ahmed
Abstract:
The aim of this article is to explore whether certain macroeconomic variables such as industrial index, inflation, broad money, exchange rate and deposit rate as a proxy for interest rate are interlinked with Dhaka stock price index (DSEX index) precisely after the introduction of new index by Dhaka Stock Exchange (DSE) since January 2013. Bangladesh stock market has experienced rapid growth since its inception. It might not be a very well-developed capital market as compared to its neighboring counterparts but has been a strong avenue for investment and resource mobilization. The data set considered consists of monthly observations, for a period of four years from January 2013 to June 2018. Findings from cointegration analysis suggest that DSEX and macroeconomic variables have a significant long-run relationship. VAR decomposition based on VAR estimated indicates that money supply explains a significant portion of variation of stock index whereas, inflation is found to have the least impact. Impact of industrial index is found to have a low impact compared to the exchange rate and deposit rate. Policies should there aim to increase industrial production in order to enhance stock market performance. Further reasonable money supply should be ensured by authorities to stimulate stock market performance.Keywords: deposit rate, DSEX, industrial index, VAR
Procedia PDF Downloads 1615258 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks
Authors: Mazarine Roquet, Pierre Dewallef
Abstract:
The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating
Procedia PDF Downloads 835257 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment
Authors: Thee Chowwanonthapunya, Junhua Dong, Wei Ke
Abstract:
The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurements were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25 oC and 60 % RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.Keywords: atmospheric corrosion, EIS, low alloy, rust
Procedia PDF Downloads 4495256 Facets of an Upcoming Urban Industrial Hub: A Case Study of Gurgaon-Manesar
Authors: Raman Kumar Singh
Abstract:
Urbanization and economic growth are considered to be the most striking features of the past century. There is currently a radical demographic shift in progress worldwide, wherein people are moving from rural to urban areas at an increasing rate. The UN-Habitat report 2005 indicates that in 2025, 61 per cent of the 5 billion world population will reside in the urban areas with about 85 per cent of the development process taking place in the urban hinterlands widely referred to as ‘peri-urban’, ‘suburbs’, ‘urban fringe’, ‘city edge’, ‘metropolitan shadow’, or ‘urban sprawl’. In this context the study is broadly concerned with understanding the development of the industrial hub in the Gurgaon and its impact on the immediate neighbourhood. However studies have revealed that with the increase of industrial development the growth pattern changes rapidly, not only the growth of the urban area but the overall economy shifts from more agrarian to non-agrarian, with the change in the occupational pattern of the people. The process is mainly known as tertiarization, where a number of tertiary activities increase in comparison to primary or secondary. The change in the occupational pattern creates a pull factor on its immediate neighbourhood, which triggers the in- migrations from the rural areas as people come in the core urban area in search of the better job opportunities and increased standards of living. But this gives way to the unplanned growth of the urban fringe and the villages which tend to accommodate the migrants and in turn the pressure on the socio-economic infrastructure increases. Therefore, it becomes increasing necessary for the government institution and policy level intervention to provide an overall socio-economic growth along with rapid industrial growth.Keywords: policy intervention, urban morphology, urban industrial hub, livelihood transformation
Procedia PDF Downloads 3755255 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4525254 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 6215253 Survey on Energy Efficient Routing Protocols in Mobile Ad-Hoc Networks
Authors: Swapnil Singh, Sanjoy Das
Abstract:
Mobile Ad-Hoc Network (MANET) is infrastructure less networks dynamically formed by autonomous system of mobile nodes that are connected via wireless links. Mobile nodes communicate with each other on the fly. In this network each node also acts as a router. The battery power and the bandwidth are very scarce resources in this network. The network lifetime and connectivity of nodes depends on battery power. Therefore, energy is a valuable constraint which should be efficiently used. In this paper, we survey various energy efficient routing protocol. The energy efficient routing protocols are classified on the basis of approaches they use to minimize the energy consumption. The purpose of this paper is to facilitate the research work and combine the existing solution and to develop a more energy efficient routing mechanism.Keywords: delaunay triangulation, deployment, energy efficiency, MANET
Procedia PDF Downloads 6155252 Incorporation of Growth Factors onto Hydrogels via Peptide Mediated Binding for Development of Vascular Networks
Authors: Katie Kilgour, Brendan Turner, Carly Catella, Michael Daniele, Stefano Menegatti
Abstract:
In vivo, the extracellular matrix (ECM) provides biochemical and mechanical properties that are instructional to resident cells to form complex tissues with characteristics to develop and support vascular networks. In vitro, the development of vascular networks can be guided by biochemical patterning of substrates via spatial distribution and display of peptides and growth factors to prompt cell adhesion, differentiation, and proliferation. We have developed a technique utilizing peptide ligands that specifically bind vascular endothelial growth factor (VEGF), erythropoietin (EPO), or angiopoietin-1 (ANG1) to spatiotemporally distribute growth factors to cells. This allows for the controlled release of each growth factor, ultimately enhancing the formation of a vascular network. Our engineered tissue constructs (ETCs) are fabricated out of gelatin methacryloyl (GelMA), which is an ideal substrate for tailored stiffness and bio-functionality, and covalently patterned with growth factor specific peptides. These peptides mimic growth factor receptors, facilitating the non-covalent binding of the growth factors to the ETC, allowing for facile uptake by the cells. We have demonstrated in the absence of cells the binding affinity of VEGF, EPO, and ANG1 to their respective peptides and the ability for each to be patterned onto a GelMA substrate. The ability to organize growth factors on an ETC provides different functionality to develop organized vascular networks. Our results demonstrated a method to incorporate biochemical cues into ETCs that enable spatial and temporal control of growth factors. Future efforts will investigate the cellular response by evaluating gene expression, quantifying angiogenic activity, and measuring the speed of growth factor consumption.Keywords: growth factor, hydrogel, peptide, angiogenesis, vascular, patterning
Procedia PDF Downloads 1635251 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks
Authors: Ebrahim Alrashed
Abstract:
Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.Keywords: energy-aware routing, reliability, sink-hole attack, WSN
Procedia PDF Downloads 3965250 Developing a GIS-Based Tool for the Management of Fats, Oils, and Grease (FOG): A Case Study of Thames Water Wastewater Catchment
Authors: Thomas D. Collin, Rachel Cunningham, Bruce Jefferson, Raffaella Villa
Abstract:
Fats, oils and grease (FOG) are by-products of food preparation and cooking processes. FOG enters wastewater systems through a variety of sources such as households, food service establishments, and industrial food facilities. Over time, if no source control is in place, FOG builds up on pipe walls, leading to blockages, and potentially to sewer overflows which are a major risk to the Environment and Human Health. UK water utilities spend millions of pounds annually trying to control FOG. Despite UK legislation specifying that discharge of such material is against the law, it is often complicated for water companies to identify and prosecute offenders. Hence, it leads to uncertainties regarding the attitude to take in terms of FOG management. Research is needed to seize the full potential of implementing current practices. The aim of this research was to undertake a comprehensive study to document the extent of FOG problems in sewer lines and reinforce existing knowledge. Data were collected to develop a model estimating quantities of FOG available for recovery within Thames Water wastewater catchments. Geographical Information System (GIS) software was used in conjunction to integrate data with a geographical component. FOG was responsible for at least 1/3 of sewer blockages in Thames Water waste area. A waste-based approach was developed through an extensive review to estimate the potential for FOG collection and recovery. Three main sources were identified: residential, commercial and industrial. Commercial properties were identified as one of the major FOG producers. The total potential FOG generated was estimated for the 354 wastewater catchments. Additionally, raw and settled sewage were sampled and analysed for FOG (as hexane extractable material) monthly at 20 sewage treatment works (STW) for three years. A good correlation was found with the sampled FOG and population equivalent (PE). On average, a difference of 43.03% was found between the estimated FOG (waste-based approach) and sampled FOG (raw sewage sampling). It was suggested that the approach undertaken could overestimate the FOG available, the sampling could only capture a fraction of FOG arriving at STW, and/or the difference could account for FOG accumulating in sewer lines. Furthermore, it was estimated that on average FOG could contribute up to 12.99% of the primary sludge removed. The model was further used to investigate the relationship between estimated FOG and number of blockages. The higher the FOG potential, the higher the number of FOG-related blockages is. The GIS-based tool was used to identify critical areas (i.e. high FOG potential and high number of FOG blockages). As reported in the literature, FOG was one of the main causes of sewer blockages. By identifying critical areas (i.e. high FOG potential and high number of FOG blockages) the model further explored the potential for source-control in terms of ‘sewer relief’ and waste recovery. Hence, it helped targeting where benefits from implementation of management strategies could be the highest. However, FOG is still likely to persist throughout the networks, and further research is needed to assess downstream impacts (i.e. at STW).Keywords: fat, FOG, GIS, grease, oil, sewer blockages, sewer networks
Procedia PDF Downloads 209