Search results for: frequency domain reflectometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5435

Search results for: frequency domain reflectometry

4745 School-Related Variables and Adolescents Substance Use

Authors: Nicolas Meylan, Eric Tardif

Abstract:

Many studies have highlighted the links between substance use and school difficulties. However, most of these studies address only the consumption in terms of frequency without considering the different types of behavior (use, abuse, dependence). Moreover, little is known about the associations between substance use and variables such as school engagement and school burnout recently described as a positive state of mind and an exhaustion syndrome related to school, respectively. Through this study, we wish to describe and compare school-related variables in adolescents with different type of substance use. Our study focuses on 402 Swiss adolescents, aged between 14 and 19 years old. They responded collectively and anonymously to a set of scales assessing substance use and several school variables (social support, stress, burnout, engagement and school climate). First, results on frequency and severity of substance use are relatively close to those observed in other studies. Second, it also appears that certain dimensions of stress, burnout, engagement and school climate are associated with the frequency of alcohol and cannabis consumption. Finally, adolescents’ substance abusers show particularly high scores of burnout, cynicism and stress related to workload, which can be understand as self-medication behavior. Additional analyzes are underway to clarify these associations. Results are discussed in terms of implications for research and clinical practice in academic burnout.

Keywords: school burnout, school engagement, adolescence, substance use, self-medication

Procedia PDF Downloads 291
4744 Laser Therapy in Patients with Rheumatoid Arthritis: A Clinical Trial

Authors: Joao Paulo Matheus, Renan Fangel

Abstract:

Rheumatoid arthritis is a chronic, inflammatory, systemic and progressive disease that affects the synovial joints bilaterally, causing definitive orthopedic damage. It has a higher prevalence in postmenopausal female patients. It is a disabling disease that causes joint deformities that may compromise the functionality of the affected segment. The aim of this study was to evaluate the influence of low-intensity therapeutic laser on the perception of pain and quality of life in patients with rheumatoid arthritis. This is a randomized clinical study involving 6 women with a mean age of 56.8+6.3 years. Exclusion criteria: patients with acute pain, chronic infectious disease, underlying acute or chronic underlying disease. An AsGaAl laser with 808nm wavelength, 100mW power, beam output area of 0.028cm2, power density of 3.57W/cm2 was used. The laser was applied at pre-defined points in the interphalangeal and metacarpophalangeal joints, totaling 24 points, 2 times a week, for 4 weeks, totaling 8 sessions. The Pain Inventory (IBD) and Visual Analogue Scale (VAS) were used for the analysis of pain and for the WHOQOL-bref quality of life assessment. There was no statistical difference between the onset (5.67±2.66) and the final (4.67±3.78) of treatments (p=0.70). There was also no statistical difference between the beginning (5.67±2.66) and the final (4.67±3.78) of the treatments in the VAS analysis (p=0.68). The overall mean quality of life obtained by the questionnaire at the start of treatment was 42.3±7.6, while at the end of treatment it was 58.5±7.6 (p=0.01) and the domains of the questionnaire with significant differences were: psychological domain 42.9±6.8 and 66.7±12.9 (p=0.004), social domain 39.9±5.7 and 68.1±6.3 (p=0,0005) and environmental domain 36.3±7.3 and 56.3±12.5 (p=0.003). It can be concluded that the low-intensity therapeutic laser did not produce significant changes in the painful period of rheumatoid arthritis patients. However, there was an improvement in patients' quality of life in the psychological, social and environmental aspects.

Keywords: laser therapy, pain, quality of life, rheumatoid arthritis

Procedia PDF Downloads 233
4743 Nurses' and Patients’ Perception about Care: A Comparative Study

Authors: Evangelia Kotrotsiou, Mairy Gouva, Theodosios Paralikas, Maria Fiaka, Styliani Kotrotsiou, Maria Malliarou

Abstract:

The purpose of this research is to investigate the way nurses perceive the care provided in comparison to the way patients perceive it, taking into account existing literature. As far as the sample of research is concerned, it has come from the population of nurses working in the General Hospital of Thessaloniki, St. Paul and the patients of its surgical clinic. In the present study, the sample consists of 100 nurses and 88 patients. The questionnaire used was the Caring Nurse-Patient Interactions Scale: 23-Item Version, created by Cossette et al. (2006). In the case of both patients and nurses, a high score was observed in relational care in the case of the frequency of nursing care in daily practice, as well as the satisfaction of providing nursing care. Overall, patients rated higher clinical care in the case of the frequency of nursing care in daily practice, as well as the satisfaction of the clinical care they were given. On the other hand, nurses rated higher comfort care in the case of the frequency of nursing care in everyday practice, as well as relational care in the area of the importance of nursing care in everyday practice.

Keywords: nursing care, patient needs, patient satisfaction, care giving

Procedia PDF Downloads 378
4742 ACTN3 Genotype Association with Motoric Performance of Roma Children

Authors: J. Bernasovska, I. Boronova, J. Poracova, M. Mydlarova Blascakova, V. Szabadosova, P. Ruzbarsky, E. Petrejcikova, I. Bernasovsky

Abstract:

The paper presents the results of the molecular genetics analysis in sports research, with special emphasis to use genetic information in diagnosing of motoric predispositions in Roma boys from East Slovakia. The ability and move are the basic characteristics of all living organisms. The phenotypes are influenced by a combination of genetic and environmental factors. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. The aim of the presented study was to examine motion abilities and to determine the frequency of ACTN3 (R577X) gene in Roma children. Genotype data were obtained from 138 Roma and 155 Slovak boys from 7 to 15 years old. Children were investigated on physical performance level in association with their genotype. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor-Gene 6000 Corbett and Light Cycler 480 Roche). The software allows creating reports of any analysis, where information of the specific analysis, normalized and differential graphs and many information of the samples are shown. Roma children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in Roma children was different from controls. The frequency of XX genotype was 9.26%, RX 46.33% and RR was 44.41%. The frequency of XX genotype was 9.26% which is comparable to a frequency of an Indian population. Data were analyzed with the ANOVA test.

Keywords: ACTN3 gene, R577X polymorphism, Roma children, sport performance, Slovakia

Procedia PDF Downloads 322
4741 Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain

Authors: M. Rashid Hussain, Shady S. Refaat

Abstract:

The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects.

Keywords: power transformer, finite element analysis, dielectric response, partial discharge, insulation

Procedia PDF Downloads 136
4740 Design and Evaluation on Sierpinski-Triangle Acoustic Diffusers Based on Fractal Theory

Authors: Lingge Tan, Hongpeng Xu, Jieun Yang, Maarten Hornikx

Abstract:

Acoustic diffusers are important components in enhancing the quality of room acoustics. This paper provides a type of modular diffuser based on the Sierpinski Triangle of the plane and combines it with fractal theory to expand the effective frequency range. In numerical calculations and full-scale model experiments, the effect of fractal design elements on normal-incidence diffusion coefficients is examined. It is demonstrated the reasonable times of iteration of modules is three, and the coverage density is 58.4% in the design frequency from 125Hz to 4kHz.

Keywords: acoustic diffuser, fractal, Sierpinski-triangle, diffusion coefficient

Procedia PDF Downloads 134
4739 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 363
4738 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 129
4737 Second Sub-Harmonic Resonance in Vortex-Induced Vibrations of a Marine Pipeline Close to the Seabed

Authors: Yiming Jin, Yuanhao Gao

Abstract:

In this paper, using the method of multiple scales, the second sub-harmonic resonance in vortex-induced vibrations (VIV) of a marine pipeline close to the seabed is investigated based on a developed wake oscillator model. The amplitude-frequency equations are also derived. It is found that the oscillation will increase all the time when both discriminants of the amplitude-frequency equations are positive while the oscillation will decay when the discriminants are negative.

Keywords: vortex-induced vibrations, marine pipeline, seabed, sub-harmonic resonance

Procedia PDF Downloads 314
4736 Control Effect of Flowering Chrysanthemum, the Trap Plant to the Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) in Greenhouse

Authors: YongSeok Choi, HwaYoung Seo, InSu Whang, GeogKee Park

Abstract:

Frankliniella. occidentalis is major pest in chrysanthemum in worldwide. The density of F. occidentalis increased continuously in spite of the periodical chemical control after planting in this study. F. occidentalis began to increase mid-May. The numbers of F. occidentalis collected on a tray with wet paper by heating the flowers of pink, white, and yellow Chrysanthemum standard mums were 18.4, 56.6, and 52.6 in the flowering season. Also, the numbers were 15.2, 45.8, and 41.6 in bud season, but in the case of the leaves, the numbers were 2, 8.8 and 3.4. In the Y-tube olfactometer test, the frequency of F. occidentalis’ visits to one side arm of the Y-tube olfactometer was higher in the odor cue of the white flower than of the yellow, red, and violet flowers, but the frequency was higher in the odor cue of the violet and red flowers than of the yellow without white. In the case of the four-choice olfactometer test, in the same visual cues as the odor cues of the pot mum flowers, the frequency of F. occidentalis was higher in the yellow flower than in the other flowers (white, red, and violet) in all the observation times (10, 15, and 20 minutes).

Keywords: Frankliniella occidentalis, Chrysanthemum, trap plant, control effect

Procedia PDF Downloads 171
4735 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar

Authors: Shaolin Allen Liao, Hual-Te Chien

Abstract:

Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.

Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar

Procedia PDF Downloads 323
4734 Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads

Authors: Barenten Suciu

Abstract:

Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles.

Keywords: bullet train, creep, cylindrical wheels, damping, dynamical hunting, stability, vibration analysis

Procedia PDF Downloads 138
4733 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer

Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu

Abstract:

Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Flexible coils have been studied for such applications. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power FETs was small. The power efficiencies were 0.44 – 0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.

Keywords: e-textile, flexible coils and antennas, Litz wire, wireless power transfer

Procedia PDF Downloads 117
4732 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force vs deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: graphene, pressure sensor, circular graphene nanoflake, molecular dynamics

Procedia PDF Downloads 374
4731 Shuffled Structure for 4.225 GHz Antireflective Plates: A Proposal Proven by Numerical Simulation

Authors: Shin-Ku Lee, Ming-Tsu Ho

Abstract:

A newly proposed antireflective selector with shuffled structure is reported in this paper. The proposed idea is made of two different quarter wavelength (QW) slabs and numerically supported by the one-dimensional simulation results provided by the method of characteristics (MOC) to function as an antireflective selector. These two QW slabs are characterized by dielectric constants εᵣA and εᵣB, uniformly divided into N and N+1 pieces respectively which are then shuffled to form an antireflective plate with B(AB)N structure such that there is always one εᵣA piece between two εᵣB pieces. Another is A(BA)N structure where every εᵣB piece is sandwiched by two εᵣA pieces. Both proposed structures are numerically proved to function as QW plates. In order to allow maximum transmission through the proposed structures, the two dielectric constants are chosen to have the relation of (εᵣA)² = εᵣB > 1. The advantages of the proposed structures over the traditional anti-reflection coating techniques are two components with two thicknesses and to shuffle to form new QW structures. The design wavelength used to validate the proposed idea is 71 mm corresponding to a frequency about 4.225 GHz. The computational results are shown in both time and frequency domains revealing that the proposed structures produce minimum reflections around the frequency of interest.

Keywords: method of characteristics, quarter wavelength, anti-reflective plate, propagation of electromagnetic fields

Procedia PDF Downloads 132
4730 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 105
4729 Dispersion Effects in Waves Reflected by Lossy Conductors: The Optics vs. Electromagnetics Approach

Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda

Abstract:

The study of dispersion phenomena in electromagnetic waves reflected by conductors at infrared and lower frequencies is a topic which finds a number of applications. We aim to explain in this work what are the most relevant ones and how this phenomenon is modeled from both optics and electromagnetics points of view. We also explain here how the amplitude of an electromagnetic wave reflected by a lossy conductor could depend on both the frequency of the incident wave, as well as on the electrical properties of the conductor, and we illustrate this phenomenon with a practical example. The mathematical analysis made by a specialist in electromagnetics or a microwave engineer is apparently very different from the one made by a specialist in optics. We show here how both approaches lead to the same physical result and what are the key concepts which enable one to understand that despite the differences in the equations the solution to the problem happens to be the same. Our study starts with an analysis made by using the complex refractive index and the reflectance parameter. We show how this reflectance has a dependence with the square root of the frequency when the reflecting material is a good conductor, and the frequency of the wave is low enough. Then we analyze the same problem with a less known approach, which is based on the reflection coefficient of the electric field, a parameter that is most commonly used in electromagnetics and microwave engineering. In summary, this paper presents a mathematical study illustrated with a worked example which unifies the modeling of dispersion effects made by specialists in optics and the one made by specialists in electromagnetics. The main finding of this work is that it is possible to reproduce the dependence of the Fresnel reflectance with frequency from the intrinsic impedance of the reflecting media.

Keywords: dispersion, electromagnetic waves, microwaves, optics

Procedia PDF Downloads 112
4728 Optimization of the Measure of Compromise as a Version of Sorites Paradox

Authors: Aleksandar Hatzivelkos

Abstract:

The term ”compromise” is mostly used casually within the social choice theory. It is usually used as a mere result of the social choice function, and this omits its deeper meaning and ramifications. This paper is based on a mathematical model for the description of a compromise as a version of the Sorites paradox. It introduces a formal definition of d-measure of divergence from a compromise and models a notion of compromise that is often used only colloquially. Such a model for vagueness phenomenon, which lies at the core of the notion of compromise enables the introduction of new mathematical structures. In order to maximize compromise, different methods can be used. In this paper, we explore properties of a social welfare function TdM (from Total d-Measure), which is defined as a function which minimizes the total sum of d-measures of divergence over all possible linear orderings. We prove that TdM satisfy strict Pareto principle and behaves well asymptotically. Furthermore, we show that for certain domain restrictions, TdM satisfy positive responsiveness and IIIA (intense independence of irrelevant alternatives) thus being equivalent to Borda count on such domain restriction. This result gives new opportunities in social choice, especially when there is an emphasis on compromise in the decision-making process.

Keywords: borda count, compromise, measure of divergence, minimization

Procedia PDF Downloads 109
4727 Empirical Study on Factors Influencing SEO

Authors: Pakinee Aimmanee, Phoom Chokratsamesiri

Abstract:

Search engine has become an essential tool nowadays for people to search for their needed information on the internet. In this work, we evaluate the performance of the search engine from three factors: the keyword frequency, the number of inbound links, and the difficulty of the keyword. The evaluations are based on the ranking position and the number of days that Google has seen or detect the webpage. We find that the keyword frequency and the difficulty of the keyword do not affect the Google ranking where the number of inbound links gives remarkable improvement of the ranking position. The optimal number of inbound links found in the experiment is 10.

Keywords: SEO, information retrieval, web search, knowledge technologies

Procedia PDF Downloads 267
4726 Requirement Engineering and Software Product Line Scoping Paradigm

Authors: Ahmed Mateen, Zhu Qingsheng, Faisal Shahzad

Abstract:

Requirement Engineering (RE) is a part being created for programming structure during the software development lifecycle. Software product line development is a new topic area within the domain of software engineering. It also plays important role in decision making and it is ultimately helpful in rising business environment for productive programming headway. Decisions are central to engineering processes and they hold them together. It is argued that better decisions will lead to better engineering. To achieve better decisions requires that they are understood in detail. In order to address the issues, companies are moving towards Software Product Line Engineering (SPLE) which helps in providing large varieties of products with minimum development effort and cost. This paper proposed a new framework for software product line and compared with other models. The results can help to understand the needs in SPL testing, by identifying points that still require additional investigation. In our future scenario, we will combine this model in a controlled environment with industrial SPL projects which will be the new horizon for SPL process management testing strategies.

Keywords: requirements engineering, software product lines, scoping, process structure, domain specific language

Procedia PDF Downloads 216
4725 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging

Authors: Chih-Chung Huang, Po-Hsun Peng

Abstract:

Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.

Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming

Procedia PDF Downloads 515
4724 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube

Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev

Abstract:

A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.

Keywords: two phase flow, bubble growth, mini-channel, generation frequency

Procedia PDF Downloads 421
4723 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients

Procedia PDF Downloads 239
4722 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 368
4721 Antimicrobial Activity of a Single Wap Domain (SWD)-Containing Protein from Litopenaeus vannamei against Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease (AHPND)

Authors: Suchao Donpudsa, Suwattana Visetnan, Anchalee Tassanakajon, Vichien Rimphanitchayakit

Abstract:

The Single Wap Domain (SWD) is a type III crustin antimicrobial peptide whose function is to defense the host animal against the bacterial infection by means of antimicrobial and antiproteinase activities. A study of LvSWD from Litopenaeus vannamei is reported herein about its activities and function against bacteria, particularly the Vibrio parahaemolyticus AHPND (VPAHPND) that causes acute hepatopancreatic necrosis disease. The over-expressed mature recombinant (r)LvSWD exhibits antimicrobial activity against both Gram-positive and Gram-negative bacteria, especially VPAHPND. With four times the MIC of rLvSWD, the treated post larval shrimp infected by VPAHPND is able to survive longer with the 50% survival rate as long as 78 h as compared to 36 h of the infected shrimp without rLvSWD. To a certain extent, we have demonstrated that the rLvSWD can be applied to protect the post larval shrimp.

Keywords: crustin, Litopenaeus vannamei, Vibrio parahaemolyticus AHPND, antimicrobial activity

Procedia PDF Downloads 194
4720 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising

Procedia PDF Downloads 110
4719 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities

Authors: Chusak Thanawattano, Roongroj Bhidayasiri

Abstract:

This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.

Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation

Procedia PDF Downloads 424
4718 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking

Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao

Abstract:

Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.

Keywords: dense suspension, instability, self-organization, density wave

Procedia PDF Downloads 66
4717 Independent Encryption Technique for Mobile Voice Calls

Authors: Nael Hirzalla

Abstract:

The legality of some countries or agencies’ acts to spy on personal phone calls of the public became a hot topic to many social groups’ talks. It is believed that this act is considered an invasion to someone’s privacy. Such act may be justified if it is singling out specific cases but to spy without limits is very unacceptable. This paper discusses the needs for not only a simple and light weight technique to secure mobile voice calls but also a technique that is independent from any encryption standard or library. It then presents and tests one encrypting algorithm that is based of frequency scrambling technique to show fair and delay-free process that can be used to protect phone calls from such spying acts.

Keywords: frequency scrambling, mobile applications, real-time voice encryption, spying on calls

Procedia PDF Downloads 457
4716 Development of Blast Vibration Equation Considering the Polymorphic Characteristics of Basaltic Ground

Authors: Dong Wook Lee, Seung Hyun Kim

Abstract:

Geological structure formed by volcanic activities shows polymorphic characteristics due to repeated cooling and hardening of lava. The Jeju region is showing polymorphic characteristics in which clinker layers are irregularly distributed along with vesicular basalt due to volcanic activities. Accordingly, resident damages and environmental disputes occur frequently in the Jeju region due to blasting. The purpose of this study is to develop a blast vibration equation considering the polymorphic characteristics of basaltic ground in Jeju. The blast vibration equation consists of a functional formula of the blasting vibration constant K that changes according to ground characteristics, and attenuation index n. The case study results in Jeju showed that if there are clinker layers, attenuation index n showed a distribution of -1.11~-1.87, whereas if there are no clinker layers, n was -2.79. Moreover, if there are no clinker layers, the frequency of blast vibration showed a high frequency band from 30Hz to 100Hz, while in rocks with clinker layers it showed a low frequency band from 10Hz to 20Hz.

Keywords: blast vibration equation, basaltic ground, clinker layer, blasting vibration constant, attenuation index

Procedia PDF Downloads 388