Search results for: features comparison
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8717

Search results for: features comparison

8027 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 84
8026 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 127
8025 Leaf Epidermal Micromorphology as Identification Features in Accessions of Sesamum indicum L. Collected from Northern Nigeria

Authors: S. D. Abdul, F. B. J. Sawa, D. Z. Andrawus, G. Dan'ilu

Abstract:

Fresh leaves of twelve accessions of S. indicum were studied to examine their stomatal features, trichomes, epidermal cell shapes and anticlinal cell-wall patterns which may be used for the delimitation of the varieties. The twelve accessions of S. indicum studied have amphistomatic leaves, i.e. having stomata on both surfaces. Four types of stomatal complex types were observed namely, diacytic, anisocytic, tetracytic and anomocytic. Anisocytic type was the most common occurring on both surfaces of all the varieties and occurred 100% in varieties lale-duk, ex-sudan and ex-gombe 6. One-way ANOVA revealed that there was no significant difference between the stomatal densities of ex-gombe 6, ex-sudan, adawa-wula, adawa-ting, ex-gombe 4 and ex-gombe 2 . Accession adawa-ting (improved) has the smallest stomatal size (26.39µm) with highest stomatal density (79.08mm2) while variety adawa-wula possessed the largest stomatal size (74.31µm) with lowest stomatal density (29.60mm2), the exception was found in variety adawa-ting whose stomatal size is larger (64.03µm) but with higher stomatal density (71.54mm2). Wavy, curve or undulate anticlinal wall patterns with irregular and or isodiametric epidermal cell shapes were observed. These accessions were found to exhibit high degree of heterogeneity in their trichome features. Ten types of trichomes were observed: unicellular, glandular peltate, capitate glandular, long unbranched uniseriate, short unbranched uniseriate, scale, multicellular, multiseriate capitate glandular, branched uniseriate and stallate trichomes. The most frequent trichome type is short-unbranched uniseriate, followed by long-unbranched uniseriate (72.73% and 72.5%) respectively. The least frequent was multiseriate capitate glandular (11.5%). The high variation in trichome types and density coupled with the stomatal complex types suggest that these varieties of S. indicum probably have the capacity to conserve water. Furthermore, the leaf micromorphological features varied from one accession to another, hence, are found to be good diagnostic and additional tool in identification as well as nomenclature of the accessions of S. indicum.

Keywords: Sesamum indicum, stomata, trichomes, epidermal cells, taxonomy

Procedia PDF Downloads 277
8024 Examining a Volunteer-Tutoring Program for Students with Special Education Needs

Authors: David Dean Hampton, William Morrison, Mary Rizza, Jan Osborn

Abstract:

This evaluation examined the effects of a supplemental reading intervThis evaluation examined the effects of a supplemental reading intervention for students with specific learning disabilities in reading who were presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4. ntion for students with specific learning disabilities in reading who presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4.

Keywords: special education, evidence-based practices, curriculum, tutoring

Procedia PDF Downloads 67
8023 Revisited: Financial Literacy and How University Students Fare

Authors: Zaiton Osman, Phang Ing, Azaze Azizi Abd Adis, Izyanti Awg Razli, Mohd Rizwan Abd Majid, Rosle Mohidin

Abstract:

This study is conducted to investigate the level of financial literacy among students taking Financial Management and Banking in Universiti Malaysia Sabah, Malaysia. Students are asked to answer basic financial literacy questions in their first class before study commence and the similar questions were given in their final week of study (after 14 weeks of study duration). The comparison on their level of financial literacy will be examined. This study is expected to yields the following findings; firstly, comparison of the level of financial literacy 'before and after' courses in finance being introduced can be revealed. Secondly, it will provide suggestion on improving the standard of teaching and learning in financial management and banking courses and lastly it will help in identifying financial courses that are important in improving the level of financial literacy among students in Malaysia.

Keywords: financial literacy, university students, personal financial planning, business and management engineering

Procedia PDF Downloads 724
8022 Effect of Vitrification on Embryos Euploidy Obtained from Thawed Oocytes

Authors: Natalia Buderatskaya, Igor Ilyin, Julia Gontar, Sergey Lavrynenko, Olga Parnitskaya, Ekaterina Ilyina, Eduard Kapustin, Yana Lakhno

Abstract:

Introduction: It is known that cryopreservation of oocytes has peculiar features due to the complex structure of the oocyte. One of the most important features is that mature oocytes contain meiotic division spindle which is very sensitive even to the slightest variation in temperature. Thus, the main objective of this study is to analyse the resulting euploid embryos obtained from thawed oocytes in comparison with the data of preimplantation genetic screening (PGS) in fresh embryo cycles. Material and Methods: The study was conducted at 'Medical Centre IGR' from January to July 2016. Data were analysed for 908 donor oocytes obtained in 67 cycles of assisted reproductive technologies (ART), of which 693 oocytes were used in the 51 'fresh' cycles (group A), and 215 oocytes - 16 ART programs with vitrification female gametes (group B). The average age of donors in the groups match 27.3±2.9 and 27.8±6.6 years. Stimulation of superovulation was conducted the standard way. Vitrification was performed in 1-2 hours after transvaginal puncture and thawing of oocytes were carried out in accordance with the standard protocol of Cryotech (Japan). Manipulation ICSI was performed 4-5 hours after transvaginal follicle puncture for fresh oocytes, or after defrosting - for vitrified female gametes. For the PGS, an embryonic biopsy was done on the third or on the fifth day after fertilization. Diagnostic procedures were performed using fluorescence in situ hybridization with the study of such chromosomes as 13, 16, 18, 21, 22, X, Y. Only morphologically quality blastocysts were used for the transfer, the estimation of which corresponded to the Gardner criteria. The statistical hypotheses were done using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: The mean number of mature oocytes per cycle in group A was 13.58±6.65 and in group B - 13.44±6.68 oocytes for patient. The survival of oocytes after thawing totaled 95.3% (n=205), which indicates a highly effective quality of performed vitrification. The proportion of zygotes in the group A corresponded to 91.1%(n=631), in the group B – 80.5%(n=165), which shows statistically significant difference between the groups (p<0.001) and explained by non-viable oocytes elimination after vitrification. This is confirmed by the fact that on the fifth day of embryos development a statistically significant difference in the number of blastocysts was absent (p>0.05), and constituted respectively 61.6%(n=389) and 63.0%(n=104) in the groups. For the PGS performing 250 embryos analyzed in the group A and 72 embryos - in the group B. The results showed that euploidy in the studied chromosomes were 40.0%(n=100) embryos in the group A and 41.7% (n=30) - in the group B, which shows no statistical significant difference (p>0.05). The indicators of clinical pregnancies in the groups amounted to 64.7% (22 pregnancies per 34 embryo transfers) and 61.5% (8 pregnancies per 13 embryo transfers) respectively, and also had no significant difference between the groups (p>0.05). Conclusions: The results showed that the vitrification does not affect the resulting euploid embryos in assisted reproductive technologies and are not reflected in their morphological characteristics in ART programs.

Keywords: euploid embryos, preimplantation genetic screening, thawing oocytes, vitrification

Procedia PDF Downloads 334
8021 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

The study of the primary flow velocity and the self impinging secondary jet flow mixing is important from both the fundamental research and the application point of view. Real industrial configurations are more complex than simple shear layers present in idealized numerical thrust-vectoring models due to the presence of combustion, swirl and confinement. Predicting the flow features of self impinging secondary jets in a supersonic primary flow is complex owing to the fact that there are a large number of parameters involved. Earlier studies have been highlighted several key features of self impinging jets, but an extensive characterization in terms of jet interaction between supersonic flow and self impinging secondary sonic jets is still an active research topic. In this paper numerical studies have been carried out using a validated two-dimensional k-omega standard turbulence model for the design optimization of a thrust vector control system using shock induced self impinging secondary flow sonic jets using non-reacting flows. Efforts have been taken for examining the flow features of TVC system with various secondary jets at different divergent locations and jet impinging angles with the same inlet jet pressure and mass flow ratio. The results from the parametric studies reveal that in addition to the primary to the secondary mass flow ratio the characteristics of the self impinging secondary jets having bearing on an efficient thrust vectoring. We concluded that the self impinging secondary jet nozzles are better than single jet nozzle with the same secondary mass flow rate owing to the fact fixing of the self impinging secondary jet nozzles with proper jet angle could facilitate better thrust vectoring for any supersonic aerospace vehicle.

Keywords: fluidic thrust vectoring, rocket steering, supersonic to sonic jet interaction, TVC in aerospace vehicles

Procedia PDF Downloads 590
8020 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 155
8019 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity

Procedia PDF Downloads 257
8018 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)

Authors: Mahacine Amrani

Abstract:

This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.

Keywords: process performance, model, wavelets, Haar, Moroccan

Procedia PDF Downloads 318
8017 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 139
8016 Next Generation of Tunnel Field Effect Transistor: NCTFET

Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka

Abstract:

Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.

Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance

Procedia PDF Downloads 196
8015 Local Texture and Global Color Descriptors for Content Based Image Retrieval

Authors: Tajinder Kaur, Anu Bala

Abstract:

An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.

Keywords: color, texture, feature extraction, local binary patterns, image retrieval

Procedia PDF Downloads 368
8014 Value Creation by Sustainable Supply Chain Horizontal Integration

Authors: Ananth Malali, Rohan Prasad, Ananth Revankar, Chiranth Hulgur

Abstract:

This paper aims to show evidence that value creation by sustainable methods is achieved when a relation is shared with a sustainability attribute between two or more companies in every stage of the supply chain. The pillars of this paper, the value creation factors, attributes of sustainability and various relations that exist between firms in a horizontally integrated supply chain are defined. Further, a relational analysis was done using a simple analysis tool built based on research. Couple of case studies from the German manufacturing and Australian retail sectors were considered for the intra industry analysis and comparison. Taking the analysis ahead, for inter-industry comparison, the same cases were scrutinised in order to understand how the sustainability attributes change across each industry. Concluding, this paper gives an overview of how companies can plan their strategies to attain sustainability through horizontal integration.

Keywords: horizontal integration, value creation, sustainable supply chain

Procedia PDF Downloads 606
8013 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka

Procedia PDF Downloads 296
8012 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab

Authors: Jeries Khoury

Abstract:

The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.

Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism

Procedia PDF Downloads 200
8011 Intelligent Production Machine

Authors: A. Şahinoğlu, R. Gürbüz, A. Güllü, M. Karhan

Abstract:

This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified.

Keywords: cutting process, sound processing, intelligent late, sound analysis

Procedia PDF Downloads 334
8010 Morphological Variation of the Mesenteric Lymph Node in Dromedary Camels: The Impact of Rearing Systems

Authors: Khenenou Tarek, Mohamed Amine Fares, Djallal Eddine Rahmoun

Abstract:

The study intends to evaluate the morphological changes in the mesenteric lymph nodes of dromedaries in different rearing systems. we aimed to evaluate the adaptative behavior of the animal’s immune system with environmental variations, and to conduct a comparative analysis on the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued, with two different rearing systems, with different practices and different purposes. The study was conducted using histo-morphometric techniques to analyze the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued. Two groups of dromedaries were used in the study, one group raised in a free-roaming housing system and another group raised in a restricted-roaming housing system. The results revealed that there were significant differences between the two groups in terms of active follicle ratio and size and also the cellular population of functional zones. Animals living and roaming outside the farm barriers were more exposed to pathogens, which leads to the installation of an adaptative process, whereas the animals living under restricted-roaming housing system were not exposed to pathogens. This study indicated that the adaptative behavior of the animal’s immune system with environmental variations is the functional translation of morphological changes. The obtained findings revealed that the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued are directly linked to the rearing system practices

Keywords: adaptative behavior, dromedary, lymph node, morphology, rearing systems

Procedia PDF Downloads 26
8009 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems

Authors: Smko Zangana, Ergun Ercelebi

Abstract:

The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.

Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability

Procedia PDF Downloads 367
8008 The Results of the Archaeological Excavations at the Site of Qurh in Al Ula Region

Authors: Ahmad Al Aboudi

Abstract:

The Department of Archaeology at King Saud University conduct a long Term excavations since 2004 at the archaeological site of (Qurh) in Al-Ula area. The history of the site goes back to the eighth century AD. The main aim of the excavations is the training of the students on the archaeological field work associated with the scientific skills of exploring, surveying, classifying, documentations and other necessary in the field archaeology. During the 12th Season of Excavations, an area of 20 × 40 m2 of the site was excavated. The depth of the excavating the site was reached to 2-3 m. Many of the architectural features of a residential area in the northern part of the site were excavated this season. Circular walls made of mud-brick and a brick column drums and tiles made of clay were revealed this season. Additionally, lots of findings such as Gemstones, jars, ceramic plates, metal, glass, and fabric, as well as some jewelers and coins were discovered. This paper will deal with the main results of this field project including the architectural features and phenomena and their interpretations, the classification of excavated material culture remains and stratigraphy.

Keywords: Islamic architecture, Islamic art, excavations, early Islamic city

Procedia PDF Downloads 276
8007 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges

Authors: V. Reyes, P. Ferreira

Abstract:

In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.

Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model

Procedia PDF Downloads 118
8006 The Research of Students Internet in Choosing the Technical and Professional Course in Izeh: Educational Year 2001-2002

Authors: Seyyed Kavous Abbasi

Abstract:

Technical and professional branch is a subcategory of high school educational system. It deals with the programs which have been designed for the promotion of applied science and necessary skill and growth of potential talents in students. The purpose of performance of this branch is preparing of preponderance of in police in different section of industries and service. The aim of this research is the survey of group relation family, economic, educational and individual factors and the student's tendency toward technical professional courses. The method of the study is descriptive survey. 195 subjects were chosen randomly from all the male and female students of technical and professional school in Izeh. Instrument for this research was research-made questionnaire consisting of 22 questions on the base of likers spectrum. The reliability of this questionnaire has been estimated 0.8. Analyses of research data has been performed in two levels of descriptive and inferential statistics. Analyses of data has shown that the family factors with average of 3.12, individual factors 3.95, economic factors 3.92 and educational factors 3.57 more than middle level have more effects , in comparison with the factor of group relation with average of 2.79 less than average level in tendency the technical and professional course . Comparison of effective factors in tendency to technical and professional course has shown that individual factors had the most effects and the group relation factors had the least effects. Comparison between male and female subject's ideas showed that there is a different between their ideas about economics and family factors.

Keywords: high school, relation family, individual factors, analysis interest

Procedia PDF Downloads 247
8005 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 392
8004 Three-Dimensional Finite Element Analysis of Geogrid-Reinforced Piled Embankments on Soft Clay

Authors: Mahmoud Y. Shokry, Rami M. El-Sherbiny

Abstract:

This paper aims to highlight the role of some parameters that may be of a noticeable impact on numerical analysis/design of embankments. It presents the results of a three-dimensional (3-D) finite element analysis of a monitored earth embankment that was constructed on soft clay formation stabilized by cast in-situ piles using software PLAXIS 3D. A comparison between the predicted and the monitored responses is presented to assess the adequacy of the adopted numerical model. The model was used in the targeted parametric study. Moreover, a comparison was performed between the results of the 3-D analyses and the analytical solutions. This paper concluded that the effect of using mono pile caps led to decrease both the total and differential settlement and increased the efficiency of the piled embankment system. The study of using geogrids revealed that it can contribute in decreasing the settlement and maximizing the part of the embankment load transferred to piles. Moreover, it was found that increasing the stiffness of the geogrids provides higher values of tensile forces and hence has more effective influence on embankment load carried by piles rather than using multi-number of layers with low values of geogrid stiffness. The efficiency of the piled embankments system was also found to be greater when higher embankments are used rather than the low height embankments. The comparison between the numerical 3-D model and the theoretical design methods revealed that many analytical solutions are conservative and non-accurate rather than the 3-D finite element numerical models.

Keywords: efficiency, embankment, geogrids, soft clay

Procedia PDF Downloads 323
8003 The Impact of Recurring Events in Fake News Detection

Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair

Abstract:

Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.

Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM

Procedia PDF Downloads 25
8002 A Topological Approach for Motion Track Discrimination

Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson

Abstract:

Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.

Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis

Procedia PDF Downloads 114
8001 Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony

Authors: Michael R. Phangtriastu, Herriyandi Herriyandi, Diaz D. Santika

Abstract:

This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set.

Keywords: ANFIS, artificial bee colony, genetic algorithm, metaheuristic algorithm, particle swarm optimization

Procedia PDF Downloads 353
8000 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 349
7999 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
7998 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 107