Search results for: expansive additive
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 711

Search results for: expansive additive

21 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 115
20 Pharmacognostical, Phytochemical and Biological Studies of Leaves and Stems of Hippophae Salicifolia

Authors: Bhupendra Kumar Poudel, Sadhana Amatya, Tirtha Maiya Shrestha, Bharatmani Pokhrel, Mohan Prasad Amatya

Abstract:

Background: H. salicifolia is a dense, branched, multipurpose, deciduous, nitrogen fixing, thorny willow-like small to moderate tree, restricted to the Himalaya. Among the two species of Nepal (Hippophae salicifolia and H. tibetana), it has been traditionally used as food additive, anticancer (bark), and treating toothache, tooth inflammation (anti-inflammatory) and radiation injury; while people of Western Nepal have largely undermined its veiled treasure by using it for fuel, wood and soil stabilization only. Therefore, the main objective of this study was to explore biological properties (analgesic, antidiabetic, cytotoxic and anti-inflammatory properties of this plant. Methodology: The transverse section of leaves and stems were viewed under microscope. Extracts obtained from soxhlation subjected to tests for phytochemical and biological studies. Rats (used to study antidiabetic and anti-inflammatory properties) and mice (used to study analgesic, CNS depressant, muscle relaxant and locomotor properties) were assumed to be normally distributed; then ANOVA and post hoc tukey test was used to find significance. The data obtained were analyzed by SPSS 17 and Excel 2007. Results and Conclusion: Pharmacognostical analysis revealed the presence of long stellate trichomes, double layered vascular bundle 5-6 in number and double layered compact sclerenchyma. The preliminary phytochemical screening of the extracts was found to exhibit the positive reaction tests for glycoside, steroid, tannin, flavonoid, saponin, coumarin and reducing sugar. The brine shrimp lethality bioassay tested in 1000, 100 and 10 ppm revealed cytotoxic activity inherent in methanol, water, chloroform and ethyl acetate extracts with LC50 (μg/ml) values of 61.42, 99.77, 292.72 and 277.84 respectively. The cytotoxic activity may be due to presence of tannins in the constituents. Antimicrobial screening of the extracts by cup diffusion method using Staphylococcus aereus, Escherichia coli and Pseudomonas aeruginosa against standard antibiotics (oxacillin, gentamycin and amikacin respectively) portrayed no activity against the microorganisms tested. The methanol extract of the stems and leaves showed various pharmacological properties: and antidiabetic, anti-inflammatory, analgesic [chemical writhing method], CNS depressant, muscle relaxant and locomotor activities in a dose-dependent fashion, indicating the possibility of the presence of different constituents in the stems and leaves responsible for these biological activities. All the effects when analyzed by post hoc tukey test were found to be significant at 95% confidence level. The antidiabetic activity was presumed to be due to flavonoids present in extract. Therefore, it can be concluded that this plant’s secondary metabolites possessed strong antidiabetic, anti-inflammatory and cytotoxic activity which could be isolated for further investigation.

Keywords: Hippophae salicifolia, constituents, antidiabetic, inflammatory, brine shrimp

Procedia PDF Downloads 349
19 Digital Transformation in Fashion System Design: Tools and Opportunities

Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci

Abstract:

The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.

Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation

Procedia PDF Downloads 74
18 Ethanolamine Detection with Composite Films

Authors: S. A. Krutovertsev, A. E. Tarasova, L. S. Krutovertseva, O. M. Ivanova

Abstract:

The aim of the work was to get stable sensitive films with good sensitivity to ethanolamine (C2H7NO) in air. Ethanolamine is used as adsorbent in different processes of gas purification and separation. Besides it has wide industrial application. Chemical sensors of sorption type are widely used for gas analysis. Their behavior is determined by sensor characteristics of sensitive sorption layer. Forming conditions and characteristics of chemical gas sensors based on nanostructured modified silica films activated by different admixtures have been studied. As additives molybdenum containing polyoxometalates of the eighteen series were incorporated in silica films. The method of hydrolythic polycondensation from tetraethyl orthosilicate solutions was used for forming such films in this work. The method’s advantage is a possibility to introduce active additives directly into an initial solution. This method enables to obtain sensitive thin films with high specific surface at room temperature. Particular properties make polyoxometalates attractive as active additives for forming of gas-sensitive films. As catalyst of different redox processes, they can either accelerate the reaction of the matrix with analyzed gas or interact with it, and it results in changes of matrix’s electrical properties Polyoxometalates based films were deposited on the test structures manufactured by microelectronic planar technology with interdigitated electrodes. Modified silica films were deposited by a casting method from solutions based on tetraethyl orthosilicate and polyoxometalates. Polyoxometalates were directly incorporated into initial solutions. Composite nanostructured films were deposited by drop casting method on test structures with a pair of interdigital metal electrodes formed at their surface. The sensor’s active area was 4.0 x 4.0 mm, and electrode gap was egual 0.08 mm. Morphology of the layers surface were studied with Solver-P47 scanning probe microscope (NT-MDT, Russia), the infrared spectra were investigated by a Bruker EQUINOX 55 (Germany). The conditions of film formation varied during the tests. Electrical parameters of the sensors were measured electronically in real-time mode. Films had highly developed surface with value of 450 m2/g and nanoscale pores. Thickness of them was 0,2-0,3 µm. The study shows that the conditions of the environment affect markedly the sensors characteristics, which can be improved by choosing of the right procedure of forming and processing. Addition of polyoxometalate into silica film resulted in stabilization of film mass and changed markedly of electrophysical characteristics. Availability of Mn3P2Mo18O62 into silica film resulted in good sensitivity and selectivity to ethanolamine. Sensitivity maximum was observed at weight content of doping additive in range of 30–50% in matrix. With ethanolamine concentration changing from 0 to 100 ppm films’ conductivity increased by 10-12 times. The increase of sensor’s sensitivity was received owing to complexing reaction of tested substance with cationic part of polyoxometalate. This fact results in intramolecular redox reaction which sharply change electrophysical properties of polyoxometalate. This process is reversible and takes place at room temperature.

Keywords: ethanolamine, gas analysis, polyoxometalate, silica film

Procedia PDF Downloads 212
17 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels

Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik

Abstract:

Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.

Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.

Procedia PDF Downloads 226
16 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings

Authors: Kyoungrean Kim

Abstract:

Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.

Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives

Procedia PDF Downloads 157
15 Structural Molecular Dynamics Modelling of FH2 Domain of Formin DAAM

Authors: Rauan Sakenov, Peter Bukovics, Peter Gaszler, Veronika Tokacs-Kollar, Beata Bugyi

Abstract:

FH2 (formin homology-2) domains of several proteins, collectively known as formins, including DAAM, DAAM1 and mDia1, promote G-actin nucleation and elongation. FH2 domains of these formins exist as oligomers. Chain dimerization by ring structure formation serves as a structural basis for actin polymerization function of FH2 domain. Proper single chain configuration and specific interactions between its various regions are necessary for individual chains to form a dimer functional in G-actin nucleation and elongation. FH1 and WH2 domain-containing formins were shown to behave as intrinsically disordered proteins. Thus, the aim of this research was to study structural dynamics of FH2 domain of DAAM. To investigate structural features of FH2 domain of DAAM, molecular dynamics simulation of chain A of FH2 domain of DAAM solvated in water box in 50 mM NaCl was conducted at temperatures from 293.15 to 353.15K, with VMD 1.9.2, NAMD 2.14 and Amber Tools 21 using 2z6e and 1v9d PDB structures of DAAM was obtained on I-TASSER webserver. Calcium and ATP bound G-actin 3hbt PDB structure was used as a reference protein with well-described structural dynamics of denaturation. Topology and parameter information of CHARMM 2012 additive all-atom force fields for proteins, carbohydrate derivatives, water and ions were used in NAMD 2.14 and ff19SB force field for proteins in Amber Tools 21. The systems were energy minimized for the first 1000 steps, equilibrated and produced in NPT ensemble for 1ns using stochastic Langevin dynamics and the particle mesh Ewald method. Our root-mean square deviation (RMSD) analysis of molecular dynamics of chain A of FH2 domains of DAAM revealed similar insignificant changes of total molecular average RMSD values of FH2 domain of these formins at temperatures from 293.15 to 353.15K. In contrast, total molecular average RMSD values of G-actin showed considerable increase at 328K, which corresponds to the denaturation of G-actin molecule at this temperature and its transition from native, ordered, to denatured, disordered, state which is well-described in the literature. RMSD values of lasso and tail regions of chain A of FH2 domain of DAAM exhibited higher than total molecular average RMSD at temperatures from 293.15 to 353.15K. These regions are functional in intra- and interchain interactions and contain highly conserved tryptophan residues of lasso region, highly conserved GNYMN sequence of post region and amino acids of the shell of hydrophobic pocket of the salt bridge between Arg171 and Asp321, which are important for structural stability and ordered state of FH2 domain of DAAM and its functions in FH2 domain dimerization. In conclusion, higher than total molecular average RMSD values of lasso and post regions of chain A of FH2 domain of DAAM may explain disordered state of FH2 domain of DAAM at temperatures from 293.15 to 353.15K. Finally, absence of marked transition, in terms of significant changes in average molecular RMSD values between native and denatured states of FH2 domain of DAAM at temperatures from 293.15 to 353.15K, can make it possible to attribute these formins to the group of intrinsically disordered proteins rather than to the group of intrinsically ordered proteins such as G-actin.

Keywords: FH2 domain, DAAM, formins, molecular modelling, computational biophysics

Procedia PDF Downloads 136
14 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
13 Fabrication of Antimicrobial Dental Model Using Digital Light Processing (DLP) Integrated with 3D-Bioprinting Technology

Authors: Rana Mohamed, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab

Abstract:

Background: Bio-fabrication is a multidisciplinary research field that combines several principles, fabrication techniques, and protocols from different fields. The open-source-software movement is a movement that supports the use of open-source licenses for some or all software as part of the broader notion of open collaboration. Additive manufacturing is the concept of 3D printing, where it is a manufacturing method through adding layer-by-layer using computer-aided designs (CAD). There are several types of AM system used, and they can be categorized by the type of process used. One of these AM technologies is Digital light processing (DLP) which is a 3D printing technology used to rapidly cure a photopolymer resin to create hard scaffolds. DLP uses a projected light source to cure (Harden or crosslinking) the entire layer at once. Current applications of DLP are focused on dental and medical applications. Other developments have been made in this field, leading to the revolutionary field 3D bioprinting. The open-source movement was started to spread the concept of open-source software to provide software or hardware that is cheaper, reliable, and has better quality. Objective: Modification of desktop 3D printer into 3D bio-printer and the integration of DLP technology and bio-fabrication to produce an antibacterial dental model. Method: Modification of a desktop 3D printer into a 3D bioprinter. Gelatin hydrogel and sodium alginate hydrogel were prepared with different concentrations. Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum were extracted, and extractions were selected on different levels (Powder, aqueous extracts, total oils, and Essential oils) prepared for antibacterial bioactivity. Agar well diffusion method along with the E. coli have been used to perform the sensitivity test for the antibacterial activity of the extracts acquired by Zingiber officinale, Syzygium aromaticum, and Allium sativum. Lastly, DLP printing was performed to produce several dental models with the natural extracted combined with hydrogel to represent and simulate the Hard and Soft tissues. Result: The desktop 3D printer was modified into 3D bioprinter using open-source software Marline and modified custom-made 3D printed parts. Sodium alginate hydrogel and gelatin hydrogel were prepared at 5% (w/v), 10% (w/v), and 15%(w/v). Resin integration with the natural extracts of Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum was done following the percentage 1- 3% for each extract. Finally, the Antimicrobial dental model was printed; exhibits the antimicrobial activity, followed by merging with sodium alginate hydrogel. Conclusion: The open-source movement was successful in modifying and producing a low-cost Desktop 3D Bioprinter showing the potential of further enhancement in such scope. Additionally, the potential of integrating the DLP technology with bioprinting is a promising step toward the usage of the antimicrobial activity using natural products.

Keywords: 3D printing, 3D bio-printing, DLP, hydrogel, antibacterial activity, zingiber officinale, syzygium aromaticum, allium sativum, panax ginseng, dental applications

Procedia PDF Downloads 96
12 Delivering User Context-Sensitive Service in M-Commerce: An Empirical Assessment of the Impact of Urgency on Mobile Service Design for Transactional Apps

Authors: Daniela Stephanie Kuenstle

Abstract:

Complex industries such as banking or insurance experience slow growth in mobile sales. While today’s mobile applications are sophisticated and enable location based and personalized services, consumers prefer online or even face-to-face services to complete complex transactions. A possible reason for this reluctance is that the provided service within transactional mobile applications (apps) does not adequately correspond to users’ needs. Therefore, this paper examines the impact of the user context on mobile service (m-service) in m-commerce. Motivated by the potential which context-sensitive m-services hold for the future, the impact of temporal variations as a dimension of user context, on m-service design is examined. In particular, the research question asks: Does consumer urgency function as a determinant of m-service composition in transactional apps by moderating the relation between m-service type and m-service success? Thus, the aim is to explore the moderating influence of urgency on m-service types, which includes Technology Mediated Service and Technology Generated Service. While mobile applications generally comprise features of both service types, this thesis discusses whether unexpected urgency changes customer preferences for m-service types and how this consequently impacts the overall m-service success, represented by purchase intention, loyalty intention and service quality. An online experiment with a random sample of N=1311 participants was conducted. Participants were divided into four treatment groups varying in m-service types and urgency level. They were exposed to two different urgency scenarios (high/ low) and two different app versions conveying either technology mediated or technology generated service. Subsequently, participants completed a questionnaire to measure the effectiveness of the manipulation as well as the dependent variables. The research model was tested for direct and moderating effects of m-service type and urgency on m-service success. Three two-way analyses of variance confirmed the significance of main effects, but demonstrated no significant moderation of urgency on m-service types. The analysis of the gathered data did not confirm a moderating effect of urgency between m-service type and service success. Yet, the findings propose an additive effects model with the highest purchase and loyalty intention for Technology Generated Service and high urgency, while Technology Mediated Service and low urgency demonstrate the strongest effect for service quality. The results also indicate an antagonistic relation between service quality and purchase intention depending on the level of urgency. Although a confirmation of the significance of this finding is required, it suggests that only service convenience, as one dimension of mobile service quality, delivers conditional value under high urgency. This suggests a curvilinear pattern of service quality in e-commerce. Overall, the paper illustrates the complex interplay of technology, user variables, and service design. With this, it contributes to a finer-grained understanding of the relation between m-service design and situation dependency. Moreover, the importance of delivering situational value with apps depending on user context is emphasized. Finally, the present study raises the demand to continue researching the impact of situational variables on m-service design in order to develop more sophisticated m-services.

Keywords: mobile consumer behavior, mobile service design, mobile service success, self-service technology, situation dependency, user-context sensitivity

Procedia PDF Downloads 268
11 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 128
10 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 50
9 Effect of Coated Sodium Butyrate (CM3000®) On Zootechnical Performance, Immune Status and Necrotic Enteritis After Experimental Infection of Broiler Chickens

Authors: Mohamed Ahmed Tony, Mohamed Hamoud

Abstract:

The present study was conducted to determine the effect of commercially coated slow-release sodium butyrate (CM3000®) as a feed additive on zootechnical performance, immune status and Clostridium perfringens severity after experimental infection. Three hundred 1-d-old broiler chicks (Cobb 500) were randomly distributed into 3 treatment groups (4 replicates each) using 25 chicks per replicate on floor pens. Control (C) birds were offered non-supplemented basal diets. Treatments 1 and 2 (T1 and T2) were fed diets containing CM3000® at 300 and 500 g/ton feed, respectively, during the entire experimental period (35 days). Feed and water were offered ad-libitum. Feed consumption and body weight were recorded weekly to calculate body weight gain and feed conversion. Blood samples were collected to evaluate the immune status of the birds against Newcastle disease vaccines using HI test. At the end of the experimental period, 20 birds were chosen randomly from each group (5 birds from each pen) to compare carcass yield. At day 16 of age 20 birds from each group (5 birds/replicate) were bacteriologically examined and proved to be free from Clostridium perfringens. The isolated birds were challenged orally with 1 ml buffer containing 106 CFU/ml Clostridium perfringens local isolate and prepared from necrotic enteritis (NE) diseased farms. Birds were observed on a regular basis daily for any signs of NE. Birds that died in the challenged group were necropsied to determine the cause of death. On day 28 of age, the surviving chickens were killed by cervical dislocation and necropsied immediately. Intestinal tracts were removed and intestinal lesions were scored. Tissue samples of the duodenum, jejunum, ileum and cecum for histopathological examination were collected. All collected data were statistically analyzed using IBM SPSS® version 19 software for personal computers. Means were compared by one-way ANOVA (P<0.05) followed by the Duncan Post Hoc test. The results revealed that body weight gain was significantly (P<0.05) improved in chicks fed on both doses of CM3000® compared to the control one. Final body weight gain in T1 and T2 were 2064.94 and 2141.37 g/bird, respectively, while in the control group, the weight gain showed 1952.78 g/bird. In addition, supplementation of diets with CM3000® increased significantly feed intake (P<0.05). Total feed intake in T1 and T2 were 3186.32 and 3273.29 g/bird, respectively; however, feed intake in the control group recorded 3081.95 g/bird. The best feed conversion was recorded in T2 group (1.53). Feed conversion in the control and T1 groups were 1.58 and 1.54, respectively. Dressing percentage, liver weights and the other carcasses yields were not different between treatments. The butyrate significantly enhanced immune responses measured against Newcastle disease vaccines. Sodium butyrate significantly reduced NE lesions and healthy improved the intestinal tissues in the samples collected from T1 and T2-challenged chickens versus those collected from the control group. In conclusion, exogenous administration of slow-release butyrate (CM3000®) is capable of improving performance, enhancing immunity and NE disease resistance in broiler chickens.

Keywords: sodium butyrate, broiler chicken, zootechnical performance, immunity, necrotic enteritis

Procedia PDF Downloads 87
8 Experimental Study of the Antibacterial Activity and Modeling of Non-isothermal Crystallization Kinetics of Sintered Seashell Reinforced Poly(Lactic Acid) And Poly(Butylene Succinate) Biocomposites Planned for 3D Printing

Authors: Mohammed S. Razali, Kamel Khimeche, Dahah Hichem, Ammar Boudjellal, Djamel E. Kaderi, Nourddine Ramdani

Abstract:

The use of additive manufacturing technologies has revolutionized various aspects of our daily lives. In particular, 3D printing has greatly advanced biomedical applications. While fused filament fabrication (FFF) technologies have made it easy to produce or prototype various medical devices, it is crucial to minimize the risk of contamination. New materials with antibacterial properties, such as those containing compounded silver nanoparticles, have emerged on the market. In a previous study, we prepared a newly sintered seashell filler (SSh) from bio-based seashells found along the Mediterranean coast using a suitable heat treatment process. We then prepared a series of polylactic acid (PLA) and polybutylene succinate (PBS) biocomposites filled with these SSh particles using a melt mixing technique with a twin-screw extruder to use them as feedstock filaments for 3D printing. The study consisted of two parts: evaluating the antibacterial activity of newly prepared biocomposites made of PLA and PBS reinforced with a sintered seashell in the first part and experimental and modeling analysis of the non-isothermal crystallization kinetics of these biocomposites in the second part. In the first part, the bactericidal activity of the biocomposites against three different bacteria, including Gram-negative bacteria such as (E. coli and Pseudomonas aeruginosa), as well as Gram-positive bacteria such as (Staphylococcus aureus), was examined. The PLA-based biocomposite containing 20 wt.% of SSh particles exhibited an inhibition zone with radial diameters of 8mm and 6mm against E. coli and Pseudo. Au, respectively, while no bacterial activity was observed against Staphylococcus aureus. In the second part, the focus was on investigating the effect of the sintered seashell filler particles on the non-isothermal crystallization kinetics of PLA and PBS 3D-printing composite materials. The objective was to understand the impact of the filler particles on the crystallization mechanism of both PLA and PBS during the cooling process of a melt-extruded filament in (FFF) to manage the dimensional accuracy and mechanical properties of the final printed part. We conducted a non-isothermal melt crystallization kinetic study of a series of PLA-SS and PBS-SS composites using differential scanning calorimetry at various cooling rates. We analyzed the obtained kinetic data using different crystallization kinetic models such as modified Avrami, Ozawa, and Mo's methods. Dynamic mode describes the relative crystallinity as a function of temperature; it found that time half crystallinity (t1/2) of neat PLA decreased from 17 min to 7.3 min for PLA+5 SSh and the (t1/2) of virgin PBS was reduced from 3.5 min to 2.8 min for the composite containing 5wt.% of SSh. We found that the coated SS particles with stearic acid acted as nucleating agents and had a nucleation activity, as observed through polarized optical microscopy. Moreover, we evaluated the effective energy barrier of the non-isothermal crystallization process using the Iso conversional methods of Flynn-Wall-Ozawa (F-W-O) and Kissinger-Akahira-Sunose (K-A-S). The study provides significant insights into the crystallization behavior of PLA and PBS biocomposites.

Keywords: avrami model, bio-based reinforcement, dsc, gram-negative bacteria, gram-positive bacteria, isoconversional methods, non-isothermal crystallization kinetics, poly(butylene succinate), poly(lactic acid), antbactirial activity

Procedia PDF Downloads 81
7 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering

Authors: Emre Kara, Ali Kurşun, Halil Aykul

Abstract:

The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.

Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application

Procedia PDF Downloads 340
6 Listeria and Spoilage Inhibition Using Neutralized and Sodium Free Vinegar Powder

Authors: E. Heintz, H. J. van Lent, K. Glass, J. Lim

Abstract:

The trend for sodium reduction in food products is clear. Following the World Health Organization (WHO) publication on sodium usage and intake, several countries have introduced initiatives to reduce food-related sodium intake. As salt is a common food preservative, this trend motivates the formulation of a suitable additive with comparable benefits of shelf life extension and microbial safety. Organic acid derivatives like acetates are known as generic microbial growth inhibitors and are commonly applied as additives to meet food safety demands. However, modern consumers have negative perceptions towards -synthetic-derived additives and increasingly prefer natural alternatives. Vinegar, for example, is a well-known natural fermentation product used in food preservation. However, the high acidity of vinegar often makes it impractical for direct use in meat products and a neutralized form would be desirable. This research demonstrates the efficacy of powdered vinegar (Provian DV) in inhibiting Listeria and spoilage organisms (LAB) to increase safety and shelf life of meat products. For this, the efficacy of Provian DV was compared to the efficacy of Provian K, a commonly used sodium free acetate-based preservative, which is known for its inhibition against Listeria. Materials & methods— Cured pork hams: Ingredients: Pork ham muscle, water, salt, dextrose, sodium tripolyphosphate, carrageenan, sodium nitrite, sodium erythorbate, and starch. Targets: 73-74% moisture, 1.75+0.1% salt, and pH 6.4+0.1. Treatments: Control (no antimicrobials), Provian®K 0.5% and 0.75%, Provian®DV 0.5%, 0.65%, 0.8% and 1.0%. Meat formulations in casings were cooked reaching an internal temperature of 73.9oC, cooled overnight and stored for 4 days at 4oC until inoculation. Inoculation: Sliced products were inoculated with approximately 3-log per gram of a cocktail of L. monocytogenes (including serotypes 4b, 1/2a and 1/2b) or LAB-cocktail (C. divergens and L. mesenteroides). Inoculated slices were vacuum packaged and stored at 4oC and 7°C. Samples were incubated 28 days (LAB) or 12 weeks (L. monocytogenes) Microbial analysis: Microbial populations were enumerated in rinsate obtained after adding 100ml of sterile Butterfield’s phosphate buffer to each package and massaging the contents externally by hand. L. monocytogenes populations were determined on triplicate samples by surface plating on Modified Oxford agar whereas LAB plate counts were determined on triplicate samples by surface plating on All Purpose Tween agar with 0.4% bromocresol purple. Proximate analysis: Triplicate non-inoculated ground samples were analyzed for the moisture content, pH, aw, salt, and residual nitrite. Results—The results confirmed the no growth of Listeria on cured ham with 0.5% Provian K stored at 4°C and 7°C for 12 weeks, whereas the no-antimicrobial control showed a 1-log increase within two weeks. 0.5% Provian DV demonstrated similar efficacy towards Listeria inhibition at 4°C while 0.65% Provian DV was required to match the Listeria control at 7°C. 0.75% Provian K and 1% Provian DV were needed to show inhibition of the LAB for 4 weeks at both temperatures. Conclusions—This research demonstrated that it is possible to increase safety and shelf life of cured ready-to-eat ham using preservatives that meet current food trends, like sodium reduction and natural origin.

Keywords: food safety, natural preservation, listeria control, shelf life extension

Procedia PDF Downloads 130
5 The Use of Antioxidant and Antimicrobial Properties of Plant Extracts for Increased Safety and Sustainability of Dairy Products

Authors: Loreta Serniene, Dalia Sekmokiene, Justina Tomkeviciute, Lina Lauciene, Vaida Andruleviciute, Ingrida Sinkeviciene, Kristina Kondrotiene, Neringa Kasetiene, Mindaugas Malakauskas

Abstract:

One of the most important areas of product development and research in the dairy industry is the product enrichment with active ingredients as well as leading to increased product safety and sustainability. The most expanding field of the active ingredients is the various plants' CO₂ extracts with aromatic, antioxidant and antimicrobial properties. In this study, 15 plant extracts were evaluated based on their antioxidant, antimicrobial properties as well as sensory acceptance indicators for the development of new dairy products. In order to increase the total antioxidant capacity of the milk products, it was important to determine the content of phenolic compounds and antioxidant activity of CO₂ extract. The total phenolic content of fifteen different commercial CO₂ extracts was determined by the Folin-Ciocalteu reagent and expressed as milligrams of the Gallic acid equivalents (GAE) in gram of extract. The antioxidant activities were determined by 2.2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonate (ABTS) methods. The study revealed that the antioxidant activities of investigated CO₂ extract vary from 4.478-62.035 µmole Trolox/g, while the total phenolic content was in the range of 2.021-38.906 mg GAE/g of extract. For the example, the estimated antioxidant activity of Chinese cinnamon (Cinammonum aromaticum) CO₂ extract was 62.023 ± 0.15 µmole Trolox/g and the total flavonoid content reached 17.962 ± 0.35 mg GAE/g. These two parameters suggest that cinnamon could be a promising supplement for the development of new cheese. The inhibitory effects of these essential oils were tested by using agar disc diffusion method against pathogenic bacteria, most commonly found in dairy products. The obtained results showed that essential oil of lemon myrtle (Backhousia citriodora) and cinnamon (Cinnamomum cassia) has antimicrobial activity against E. coli, S. aureus, B. cereus, P. florescens, L. monocytogenes, Br. thermosphacta, P. aeruginosa and S. typhimurium with the diameter of inhibition zones variation from 10 to 52 mm. The sensory taste acceptability of plant extracts in combination with a dairy product was evaluated by a group of sensory evaluation experts (31 individuals) by the criteria of overall taste acceptability in the scale of 0 (not acceptable) to 10 (very acceptable). Each of the tested samples included 200g grams of natural unsweetened greek yogurt without additives and 1 drop of single plant extract (essential oil). The highest average of overall taste acceptability was defined for the samples with essential oils of orange (Citrus sinensis) - average score 6.67, lemon myrtle (Backhousia citriodora) – 6.62, elderberry flower (Sambucus nigra flos.) – 6.61, lemon (Citrus limon) – 5.75 and cinnamon (Cinnamomum cassia) – 5.41, respectively. The results of this study indicate plant extracts of Cinnamomum cassia and Backhousia citriodora as a promising additive not only to increase the total antioxidant capacity of the milk products and as alternative antibacterial agent to combat pathogenic bacteria commonly found in dairy products but also as a desirable flavour for the taste pallet of the consumers with expressed need for safe, sustainable and innovative dairy products. Acknowledgment: This research was funded by the European Regional Development Fund according to the supported activity 'Research Projects Implemented by World-class Researcher Groups' under Measure No. 01.2.2-LMT-K-718.

Keywords: antioxidant properties, antimicrobial properties, cinnamon, CO₂ plant extracts, dairy products, essential oils, lemon myrtle

Procedia PDF Downloads 206
4 Identification of a Panel of Epigenetic Biomarkers for Early Detection of Hepatocellular Carcinoma in Blood of Individuals with Liver Cirrhosis

Authors: Katarzyna Lubecka, Kirsty Flower, Megan Beetch, Lucinda Kurzava, Hannah Buvala, Samer Gawrieh, Suthat Liangpunsakul, Tracy Gonzalez, George McCabe, Naga Chalasani, James M. Flanagan, Barbara Stefanska

Abstract:

Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is the second leading cause of cancer death worldwide. Late onset of clinical symptoms in HCC results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable early detection biomarkers that can distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed and could increase the cure rate from 5% to 80%. We used Illumina-450K microarray to test whether blood DNA, an easily accessible source of DNA, bear site-specific changes in DNA methylation in response to HCC before diagnosis with conventional tools (pre-diagnostic). Top 11 differentially methylated sites were selected for validation by pyrosequencing. The diagnostic potential of the 11 pyrosequenced probes was tested in blood samples from a prospective cohort of cirrhotic patients. We identified 971 differentially methylated CpG sites in pre-diagnostic HCC cases as compared with healthy controls (P < 0.05, paired Wilcoxon test, ICC ≥ 0.5). Nearly 76% of differentially methylated CpG sites showed lower levels of methylation in cases vs. controls (P = 2.973E-11, Wilcoxon test). Classification of the CpG sites according to their location relative to CpG islands and transcription start site revealed that those hypomethylated loci are located in regulatory regions important for gene transcription such as CpG island shores, promoters, and 5’UTR at higher frequency than hypermethylated sites. Among 735 CpG sites hypomethylated in cases vs. controls, 482 sites were assigned to gene coding regions whereas 236 hypermethylated sites corresponded to 160 genes. Bioinformatics analysis using GO, KEGG and DAVID knowledgebase indicate that differentially methylated CpG sites are located in genes associated with functions that are essential for gene transcription, cell adhesion, cell migration, and regulation of signal transduction pathways. Taking into account the magnitude of the difference, statistical significance, location, and consistency across the majority of matched pairs case-control, we selected 11 CpG loci corresponding to 10 genes for further validation by pyrosequencing. We established that methylation of CpG sites within 5 out of those 10 genes distinguish cirrhotic patients who subsequently developed HCC from those who stayed cancer free (cirrhotic controls), demonstrating potential as biomarkers of early detection in populations at risk. The best predictive value was detected for CpGs located within BARD1 (AUC=0.70, asymptotic significance ˂0.01). Using an additive logistic regression model, we further showed that 9 CpG loci within those 5 genes, that were covered in pyrosequenced probes, constitute a panel with high diagnostic accuracy (AUC=0.887; 95% CI:0.80-0.98). The panel was able to distinguish pre-diagnostic cases from cirrhotic controls free of cancer with 88% sensitivity at 70% specificity. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established biomarker panel has high potential to be developed into a routine clinical test after validation in larger cohorts. This study was supported by Showalter Trust, American Cancer Society (IRG#14-190-56), and Purdue Center for Cancer Research (P30 CA023168) granted to BS.

Keywords: biomarker, DNA methylation, early detection, hepatocellular carcinoma

Procedia PDF Downloads 305
3 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU

Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais

Abstract:

Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.

Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking

Procedia PDF Downloads 36
2 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 59
1 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions

Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann

Abstract:

Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.

Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination

Procedia PDF Downloads 437