Search results for: efficiency classification
7932 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving
Authors: Aly Elshafei, Daniela Romano
Abstract:
With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG
Procedia PDF Downloads 1197931 Leaf Photosynthesis and Water-Use Efficiency of Diverse Legume Species Nodulated by Native Rhizobial Isolates in the Glasshouse
Authors: Lebogang Jane Msiza, Felix Dapare Dakora
Abstract:
Photosynthesis is a process by which plants convert light energy to chemical energy for metabolic processes. Plants are known for converting inorganic CO₂ in the atmosphere to organic C by photosynthesis. A decrease in stomatal conductance causes a decrease in the transpiration rate of leaves, thus increasing the water-use efficiency of plants. Water-use efficiency in plants is conditioned by soil moisture availability and is enhanced under conditions of water deficit. This study evaluated leaf photosynthesis and water-use efficiency in 12 legume species inoculated with 26 rhizobial isolates from soybean, 15 from common bean, 10 from cowpea, 15 from Bambara groundnut, 7 from lessertia and 10 from Kersting bean. Gas-exchange studies were used to measure photosynthesis and water-use efficiency. The results revealed a much higher photosynthetic rate (20.95µmol CO₂ m-2s-1) induced by isolated tutpres to a lower rate (7.06 µmol CO₂ m-2s-1) by isolate mgsa 88. Stomatal conductance ranged from to 0.01 mmol m-2.s-1 by mgsa 88 to 0.12 mmol m-2.s-1 by isolate da-pua 128. Transpiration rate also ranged from 0.09 mmol m-2.s-1 induced by da-pua B2 to 3.28 mmol m-2.s-1 by da-pua 3, while water-use efficiency ranged from 91.32 µmol CO₂ m-1 H₂O elicited by mgsa 106 to 4655.50 µmol CO₂ m-1 H₂O by isolate tutswz 13. The results revealed the highest photosynthetic rate in soybean and the lowest in common bean, and also with higher stomatal conductance and transpiration rates in jack bean and Bambara groundnut. Pigeonpea exhibited much higher water-use efficiency than all the tested legumes. The findings showed significant differences between and among the test legume/rhizobia combinations. Leaf photosynthetic rates are reported to be higher in legumes with high stomatal conductance, which suggests that legume productivity can be improved by manipulating leaf stomatal conductance.Keywords: legumes, photosynthetic rate, stomatal conductance, water-use efficiency
Procedia PDF Downloads 2287930 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour
Procedia PDF Downloads 3507929 Analysis of the Performance of a Solar Water Heating System with Flat Collector
Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.
Abstract:
The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.Keywords: recycling materials, energy efficiency, solar collector, solar water heating system
Procedia PDF Downloads 5977928 Energy Efficiency Factors in Toll Plazas
Authors: S. Balubaid, M. Z. Abd Majid, R. Zakaria
Abstract:
Energy efficiency is one of the most important issues for green buildings and their sustainability. This is not only due to the environmental impacts, but also because of significantly high energy cost. The aim of this study is to identify the potential actions required for toll plaza that lead to energy reduction. The data were obtained through set of questionnaire and interviewing targeted respondents, including the employees at toll plaza, and architects and engineers who are directly involved in design of highway projects. The data was analyzed using descriptive statistics analysis method. The findings of this study are the critical elements that influence the energy usage and factors that lead to energy wastage. Finally, potential actions are recommended to reduce energy consumption in toll plazas.Keywords: energy efficiency, toll plaza, energy consumption
Procedia PDF Downloads 5477927 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble
Procedia PDF Downloads 1387926 A Review on the Use of Salt in Building Construction
Authors: Vesna Pungercar, Florian Musso
Abstract:
Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.Keywords: salt, building material, hygrothermal properties, environment
Procedia PDF Downloads 1697925 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1107924 Construction and Evaluation of Soybean Thresher
Authors: Oladimeji Adetona Adeyeye, Emmanuel Rotimi Sadiku, Oluwaseun Olayinka Adeyeye
Abstract:
In order to resuscitate soybean production and post-harvest processing especially, in term of threshing, there is need to develop an affordable threshing machine which will reduce drudgery associated with manual soybean threshing. Soybean thresher was fabricated and evaluated at Institute of Agricultural Research and Training IAR&T Apata Ibadan. The machine component includes; hopper, threshing unit, shaker, cleaning unit and the seed outlet, all working together to achieve the main objective of threshing and cleaning. TGX1835 - 10E variety was used for evaluation because of its high resistance to pests, rust and pustules. The final moisture content of the used sample was about 15%. The sample was weighed and introduced into the machine. The parameters evaluated includes moisture content, threshing efficiency, cleaning efficiency, machine capacity and speed. The threshing efficiency and capacity are 74% and 65.9kg/hr respectively. All materials used were sourced locally which makes the cost of production of the machine extremely cheaper than the imported soybean thresher.Keywords: efficiency, machine capacity, speed, soybean, threshing
Procedia PDF Downloads 4857923 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 1987922 Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures
Authors: Kewen Li
Abstract:
Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal, including geothermal, power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using thermoelectric generator (TEG), however, can directly transform thermal energy into electricity by using Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the big disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C) TEG system. The efficiency of the system was improved significantly, about 20% greater. Laboratory experiments have been conducted to measure the output power, including both open and net power, at different conditions: different modes of connections between TEG modules, different mechanical structures, different temperature differences between hot and cold sides. The cost of the TEG power generator has been reduced further because of the increased efficiency and is lower than that of photovoltaics (PV) in terms of equivalent energy generated. The TEG apparatus has been pilot tested and the data will be presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are co-produced.Keywords: TEG, direct power generation, efficiency, thermoelectric effect
Procedia PDF Downloads 2427921 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification
Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui
Abstract:
Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.Keywords: EEG, ICA, SVM, wavelet
Procedia PDF Downloads 3847920 Buck Boost Inverter to Improve the Efficiency and Performance of E-Motor by Reducing the Influence of Voltage Sag of Battery on the Performance of E-Motor
Authors: Shefeen Maliyakkal, Pranav Satheesh, Steve Simon, Sharath Kuruppath
Abstract:
This paper researches the impact of battery voltage sag on the performance and efficiency of E-motor in electric cars. Terminal voltage of battery reduces with the S.o.C. This results in the downward shift of torque-speed curve of E-motor and increased copper losses in E-motor. By introducing a buck-boost inverter between the battery and E-motor, an additional degree of freedom was achieved. By boosting the AC voltage, the dependency of voltage sag on the performance of E-motor was eliminated. A strategy was also proposed for the operation of the buck-boost inverter to minimize copper and iron losses in E-motor to maximize efficiency. MATLAB-SIMULINK model of E-drive was used to obtain simulation results. The temperature rise in the E-motor was reduced by 14% for a 10% increase in AC voltage. From the results, it was observed that a 20% increase in AC voltage can result in improvement of running torque and maximum torque of E-motor by 44%. Hence it was concluded that using a buck-boost inverter for E-drive significantly improves both performance and efficiency of E-motor.Keywords: buck-boost, E-motor, battery, voltage sag
Procedia PDF Downloads 3997919 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light
Authors: W. Y. Zhu, X. L. Yan, Y. Zhou
Abstract:
Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide
Procedia PDF Downloads 3597918 Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia
Authors: Zuhaina Zakaria, Noraliza Hamzah, Siti Halijjah Shariff, Noor Aizah Abdul Karim
Abstract:
The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues.Keywords: consumer behavior theories, energy efficiency, household occupants, residential consumer
Procedia PDF Downloads 3337917 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1617916 The Effect of Mean Pressure on the Performance of a Low-Grade Heat-Driven Thermoacoustic Cooler
Authors: Irna Farikhah
Abstract:
Converting low-grade waste heat into useful energy such as sound energy which can then be used to generate acoustic power in a thermoacoustic engine has become an attracting issue for researchers. The generated power in thermoacoustic engine can be used for driving a thermoacoustic cooler when they are installed in a tube. This cooler system can be called as a heat-driven thermoacoustic cooler. In this study, low heating temperature of the engine is discussed. In addition, having high efficiency of the whole cooler is also essential. To design a thermoacoustic cooler having high efficiency with using low-grade waste heat for the engine, the effect of mean pressure is investigated. By increasing the mean pressure, the heating temperature to generate acoustic power can be decreased from 557 °C to 300 °C. Moreover, the efficiency of the engine and cooler regenerators attain 67% and 47% of the upper limit values, respectively and 49% of the acoustical work generated by the engine regenerator is utilized in the cooler regenerator. As a result, the efficiency of the whole cooler becomes 15% of the upper limit value.Keywords: cooler, mean pressure, performance, thermoacoustic
Procedia PDF Downloads 2577915 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 867914 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: segmentation, road signs, characters, classification
Procedia PDF Downloads 4447913 Exergy Analysis of Regenerative Organic Rankine Cycle Using Turbine Bleeding
Authors: Kyoung Hoon Kim
Abstract:
This work presents an exergetical performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding based on the second law of thermodynamics for recovery of finite thermal energy. Effects of system parameters such as turbine bleeding pressure and turbine bleeding fraction are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as the exergy and the second-law efficiencies. Under the conditions of the critical fraction of turbine bleeding, the simulation results show that the exergy efficiency decreases monotonically with respect to the bleeding pressure, however, the second-law efficiency has a peak with respect to the turbine bleeding pressure.Keywords: organic Rankine cycle, ORC, regeneration, turbine bleeding, exergy, second-law efficiency
Procedia PDF Downloads 4997912 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 3257911 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica
Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson
Abstract:
In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.Keywords: machine learning, sentiment analysis, social media, supervised learning
Procedia PDF Downloads 4447910 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant
Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim
Abstract:
This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.Keywords: efficiency, exergy, gas turbine, temperature
Procedia PDF Downloads 2847909 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions
Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias
Abstract:
This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented.Keywords: teledosimetric data, efficiency, reliability, safety, cluster solution
Procedia PDF Downloads 5157908 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 947907 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 1347906 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation
Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian
Abstract:
The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction
Procedia PDF Downloads 997905 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy
Authors: G. Kaur, A. P. Kulkarni, S. Giddey
Abstract:
Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy
Procedia PDF Downloads 2377904 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management
Authors: Arun Prasad Jaganathan
Abstract:
In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling
Procedia PDF Downloads 587903 Classification Rule Discovery by Using Parallel Ant Colony Optimization
Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan
Abstract:
Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery
Procedia PDF Downloads 295